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Abstract13

Social media has considerable potential as a source of passive citizen science observations of the14

natural environment, including wildlife monitoring. Here we compare and combine two main15

strategies for using social media postings to predict species distributions: (i) identifying postings16

that explicitly mention the target species name and (ii) using a text classifier that exploits all17

tags to construct a model of the locations where the species occurs. We find that the first18

strategy has high precision but suffers from low recall, with the second strategy achieving a19

better overall performance. We furthermore show that even better performance is achieved with20

a meta classifier that combines data on the presence or absence of species name tags with the21

predictions from the text classifier.22
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1 Introduction26

The value of social media to assist in mapping and predicting geospatial phenomena has been27

demonstrated in areas including the occurrence of disease, social unrest, natural disasters,28

levels of wellbeing and characteristics of the man-made and natural environment [7, 8].29

In the fields of environmental monitoring and wildlife observation there is clearly strong30

potential for exploiting social media, reflected in the fact that searching for named species on31

photo-sharing websites such as Flickr often reveals thousands of results, many of which are32

associated with coordinates and almost all with time stamps. It can be envisaged that these33

observations could complement the many effective citizen science campaigns that record34

aspects of the natural environment and assist environmental scientists in understanding the35

occurrence and behaviour of animals and plants [4]. Although many mentions of species36

names in social media might not correspond to records of actual occurrences, several studies37

have confirmed the validity of significant numbers of species observations in social media38
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[1, 2]. While these studies highlight the potential value of such data, little progress has been39

made to date on developing reliable automated methods for exploiting all the textual content40

of social media postings for tasks such as mapping species distributions.41

Here we present the results of experiments to predict species distribution based on42

geocoded social media postings from the Flickr website. As a baseline approach we study43

the performance of a method that predicts the occurrence of a species in a given region if44

there is at least one photograph on Flickr from that region which has been tagged with the45

name of the species (using either its common name or scientific name). This method is then46

compared with a standard machine learning based text classification approach, in which all47

Flickr tags are used, and in which a species may be predicted to occur in a region even if48

no photographs in that region have been tagged with its name. For the text classifier, we49

follow the method from [6]. In particular, we show that the best results are obtained by a50

meta-classifier, which combines the prediction of the text classifier with information about51

the occurrence of the species name in or near the given region. These results clearly show52

that better distribution models can be found by taking explicit account of the occurrence of53

the species name as a tag, in combination with exploiting all other tags.54

2 Related Work55

An overview of the potential for exploiting social media in conservation and biodiversity was56

provided by Di Mini et al [3], who conducted a study of the use of social media platforms for57

posting observations of nature. The most commonly used platforms were, in order of level58

of sharing of nature related content: Facebook, Instagram, Twitter, Youtube, Flickr and59

LinkedIn. The potential of Flickr for mapping wildlife observations was illustrated by Barve60

[1] who mapped geotagged postings that included the scientific or common names for the61

Monarch Butterfly and the Snowy Owl, although that study did not conduct any systematic62

evaluation of the quality of the retrieved data. Daume [2] performed a manual evaluation of63

a sample of Twitter postings that named three invasive species (using associated photos for64

validation). They identified factors correlated with valid observations, such as the presence65

of a linked photo and tags that describe the environment (e.g. ‘leaves’ and ‘tree’). The66

present work exploits such associated tags in predicting species distribution. An approach67

to validating individual observations in Flickr was described by ElQadi et al [5] who used68

Google’s reverse image-search service to find photos similar to those in Flickr postings. The69

tags of the Google photos were then compared with those in Flickr in an attempt to filter70

out non-wildlife images. In our work we learn an association between all Flickr tags and the71

presence of particular species at a location.72

The methods presented here build on the work of [6] which exploited weighted values73

of all tags to train an SVM (support vector machine) classifier to predict the presence of74

various environmental phenomena including species. In looking at species distribution no75

distinction was made in [6] between whether the species name was present or not and the76

focus was on the additional value that Flickr tags provide relative to scientific data such as77

climate and landcover.78

3 Methodology79

The objective of this paper is to find a method that can use Flickr tags for predicting the80

occurrence of wildlife species. To this end, we split the target spatial area into grid cells81

C = {c1, ..., cxm} and associate each cell with all the georeferenced Flickr tags that occur82
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within the cell. Following [6], we use Positive Pointwise Mutual Information (PPMI) to83

weight how strongly tag t is associated with cell c. In particular, PPMI compares the actual84

number of occurrences with the expected number of occurrences (given how many tags85

occur overall in c and how common the tag t is). Let f(t,c) be the number of times tag86

t (from the set of all tags T ) occurs in the cell c. Then the weight PPMI(t,c) is given by87

max
(

0, log
(

P (t,c)
P (c)P (t)

))
where:88

P (t, c) = f(t, c)
N

P (t) =
∑

c′∈C f(t, c′)
N

P (c) =
∑

t′∈T f(t′, c)
N

N =
∑
t′∈T

∑
c′∈C

f(t′, c′)89

90

Each cell c is now represented as a sparse vector Vp, encoding the PPMI weight of all the91

tags in c. We assume that a training set K ⊂ C is available which contains cells with known92

ground truth species observations and a testing set U ⊂ C \K containing cells whose species93

presence our method will try to estimate.94

Our method of estimating the presence of a particular species s in cell c involves learning95

two classifiers SV M1 and SV M2. The aim of the first classifier SV M1 is to make initial96

predictions for the cells in the testing set U using the feature vector representation Vp. To97

give a higher confidence to tags that correspond to the name of the species, we combined the98

output of SV M1 (i.e. classifier confidence score value) with information about the presence99

or absence of the Common Name or the Scientific Name of that species in the cell c or100

the neighboring cells. In particular, the cell c is now represented as a feature vector Vm101

which contains three features: the confidence value predicted by SV M1, the presence of the102

species actual name in c as a binary feature (being 1 if the c contains the actual name and103

0 otherwise), and the percentage of neighbours that contain the species name (again as a104

common or scientific name) as tag. The second classifier SV M2 is learned using the feature105

vector Vm to give the final estimation.106

4 Experimental Evaluation107

4.1 Data Acquisition108

In this work we use two datasets: the ground truth species distribution from the National109

Biodiversity Network Atlas (NBN Atlas)3 and the geocoded social media postings from the110

photo sharing website Flickr4. The NBN is a collaborative project committed to making111

biodiversity information available via the NBN Atlas. This dataset covers the UK and Ireland.112

We used the Flickr API to collect approximately 12 million georeferenced Flickr photographs113

within the UK and Ireland in September 2015. However, our analysis in this paper will focus114

only on the tags associated with these photographs. The NBN Atlas dataset contains a total115

of 302 birds with at least 1000 observations, of which 200 have a name that occurs in at least116

100 Flickr photographs. Among these, we have considered a random sample of 50 birds for117

our experiments. Note that even species with a large number of occurrences may possibly118

only occur in a few cells.119

4.2 Experimental Settings and Baselines120

In the experiments, we consider a binary classification problem for each of the selected birds.121

Specifically, the task we consider is to predict in which of the grid cells the bird occurs (i.e. for122

3 NBN Atlas occurrence download at http://nbnatlas.org. Accessed 19 April 2018.
4 http://www.flickr.com
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which grid cells the NBN Atlas data contains at least one observation). We test our method123

at three levels of granularity, considering grid cells of size 10, 20 and 30 kilometers. The124

set of cells C was split into two-thirds for training, one-sixth for testing, and one-sixth for125

tuning the SVM parameters. It is known that the quality of any supervised model is strongly126

affected by the way in which the data are divided. Therefore, we split the study area into127

geographically separated regions, as shown in Figure 1, to test the ability of our method to128

make predictions about geographic regions for which no observation records are given. This129

makes the task more challenging than choosing the cells randomly, due to possible differences130

between the training and testing regions. Finally, for formal evaluation we compared the131

results of three different methods: “Species Names” which predicts that the species occurs132

if its common or scientific name appears in at least one Flickr photo in the test cell, “All133

Flickr Tags” (SV M1) which uses the PPMI-based feature vector modelling all Flickr tags134

to train an SVM classifier using the cells in the training set and predict labels for the cells135

in the testing cells, and finally “Meta features”(SV M2) which is our proposed method, as136

described in Section 3.137

Figure 1 Training, Tuning, and Testing regions.

4.3 Results and Discussion138

The results of predicting species distribution are reported in Table 1 in terms of the average139

accuracy, average precision, average recall, average F1 score, and average Area Under the140

ROC Curve (AUC) over the 50 birds. The results clearly show that “All Flickr Tags”141

significantly outperforms “Species Names”. However, the proposed meta-classifier leads to142

the best results overall, especially in terms of F1 score.143

While the “All Flickr Tags” approach works well overall, we found a few cases where144

using only the species names led to better performance. Perhaps unsurprisingly, this is145

mostly the case when the number of NBN records (i.e. True labels) in the training region146

is low, as there may not be enough training data to effectively learn an SVM classifier in147

such cases. To illustrate such issues, Table 2 shows the F1 scores of 5 individual species.148

As can be seen, for common species such as Mallard, Dunlin, and Green Sandpiper, the149

“All Flickr Tags” method performs rather well. In contrast, for some less common species150

(or species which only occur in particular geographic contexts), such as Atlantic Puffin and151

Nightingale, we found better results when using the “Species name” method. Interestingly,152

our proposed meta classifier, which takes account of both the species presence data and the153

all tags classification for nearby regions, outperforms both of the other methods for almost154

all the considered species.155
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Figures 2 and 3 visually illustrate the performance of our method. Note that these species156

(like most of the considered birds) occur in fewer than 50% of the cells, which is intuitively157

why the “All Flickr Tags” method is more cautious in predicting occurrence (i.e. in absence158

of any reason to predict occurrence, it is safer for a classifier to predict non-occurrence).159

Table 1 Results for predicting the distribution of 50 species across the testing area.

Dataset Cell Size Accuracy Precision Recall F1 Score AUC
Species Names 10 km 0.520 0.876 0.109 0.183 0.550
All Flickr Tags 10 km 0.779 0.787 0.500 0.560 0.801
Meta features 10 km 0.825 0.820 0.603 0.637 0.850
Species Names 20 km 0.501 0.943 0.241 0.355 0.613
All Flickr Tags 20 km 0.784 0.852 0.639 0.705 0.893
Meta features 20 km 0.870 0.907 0.811 0.832 0.917
Species Names 30 km 0.567 0.970 0.384 0.515 0.684
All Flickr Tags 30 km 0.831 0.868 0.758 0.795 0.943
Meta features 30 km 0.919 0.943 0.896 0.905 0.952

Figure 2 Prediction of the Dunlin distribution across the testing area with 10km grid cells.

Figure 3 Prediction of the Atlantic Puffin distribution across the testing area with 10km grid
cells.

5 Conclusions and Future Work160

In this paper we have presented a method for mapping the location of wildlife species161

occurrence using the evidence of tags from the photo sharing web site Flickr. We have shown162

GISc ience 2018
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Table 2 F1 scores for predicting the distribution of individual species using different methods.

No.NBN No.Flickr Cell Species All Flickr Meta
records photos size Names Tags features

Mallard 1718823 11831 10 km 0.640 0.978 0.985
(Anas platyrhynchos ) 20 km 0.899 0.974 0.986

30 km 0.955 0.988 0.992
Dunlin 278872 796 10 km 0.196 0.630 0.744

(Calidris alpina ) 20 km 0.346 0.920 0.969
30 km 0.553 0.980 0.996

Green Sandpiper 103295 187 10 km 0.077 0.610 0.806
(Tringa ochropus ) 20 km 0.195 0.849 0.955

30 km 0.367 0.906 0.980
(Common) Nightingale 24437 383 10 km 0.128 0.0 0.401

(Luscinia megarhynchos ) 20 km 0.326 0.0 0.705
30 km 0.512 0.0 0.835

(Atlantic) Puffin 11551 2512 10 km 0.152 0.136 0.367
(Fratercula arctica ) 20 km 0.173 0.359 0.518

30 km 0.264 0.476 0.630

that while a method based simply on the presence or absence of the species name provides163

good precision, much better overall accuracy, with similar precision, can be achieved with a164

machine learning classifier that combines the presence-absence data with predictors based on165

all the textual tags of the photos.166

One line of future work is to investigate the use of a text classifier to estimate confidence167

in observations of wildlife species in individual social media postings. This could be of168

particular value when considering postings that mention a species name but in a context169

that might be unrelated to its occurrence in nature.170
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