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ABSTRACT
Spatiotemporal modelling is an important task for ecology. Social media tags have been found to
have great potential to assist in predicting aspects of the natural environment, particularly through
the use of machine learning methods. Here we propose a novel spatiotemporal embeddings model,
called SPATE, which is able to integrate textual information from the photo-sharing platform Flickr
and structured scientific information from more traditional environmental data sources. The proposed
model can be used for modelling and predicting a wide variety of ecological features such as species
distribution, as well as related phenomena such as climate features. We first propose a new method
based on spatiotemporal kernel density estimation to handle the sparsity of Flickr tag distributions over
space and time. Then, we efficiently integrate the spatially and temporally smoothed Flickr tags with
the structured scientific data into low-dimensional vector space representations. We experimentally
show that our model is able to substantially outperform baselines that rely only on Flickr or only on
traditional sources.

1. Introduction
With the popularity of social media, a large amount of user

generated textual data that is grounded in time and space has
become available. As an example, Flickr1, a photo-sharing
platform, hosts more than 10 billion photographs2, most of5

which are associated with short textual descriptions in the
form of tags to describe what is depicted in the photograph.
In addition, the time at which these photographs were taken
and their geographical coordinates are available asmeta-data
for many photographs. The tags associated with such georef-10

erenced photographs often describe the location where they
were taken and Flickr can thus be regarded as a source of
environmental information. The use of Flickr for modelling
urban environments has already received considerable atten-
tion. For instance, various approaches have been proposed15

for modelling urban regions (Cunha andMartins, 2014), and
for identifying points-of-interest (Van Canneyt et al., 2013a)
and itineraries (De Choudhury et al., 2010; Quercia et al.,
2014). However, using Flickr for modelling the natural en-
vironment has so far received only limited attention. Other20

social media such as Instagram and Facebook have had very
limited applications due to the restrictions of data access
(Ghermandi and Sinclair, 2019).

Many recent studies have highlighted the fact that Flickr
captures valuable ecological information (Ghermandi and25

Sinclair, 2019), which can complement more traditional
sources. A shortcoming of most of these existing methods
is that they rely on manual evaluations, with little automated
exploitation of the associated tags, and fail therefore to ex-
ploit the full potential of the data (Richards and Friess, 2015;30
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ElQadi et al., 2017). This motivates us to automate meth-
ods that can utilize Flickr as a supplementary source of en-
vironmental information. In previous work (Jeawak et al.,
2017), we introduced a method for modelling locations, and
hence inferring environmental phenomena, using georefer- 35

enced Flickr tags. Our focus was on comparing the predic-
tive power of Flickr tags with that of structured environmen-
tal data from more traditional sources for the task of predict-
ing a range of environmental phenomena. We found that
Flickr was generally competitive with the structured envi- 40

ronmental data for prediction, being sometimes better and
sometimes worse. However, combining Flickr tags with the
existing environmental data sources consistently improved
the results, which suggests that Flickr can indeed be consid-
ered as complementary to traditional sources. This method 45

represents each location as a concatenation of two feature
vectors: a bag-of-words representation derived from Flickr
and a feature vector encoding the numerical and categori-
cal features obtained from the structured dataset. Following
on from that approach we experimented in (Jeawak et al., 50

2019) with the EGEL (Embedding Geographic Locations)
model, which learns vector space embeddings of geographic
locations by integrating the textual information derived from
Flickr with the numerical and categorical information de-
rived from environmental datasets. We found that this ap- 55

proach led to more accurate predictions than the previous
approach from (Jeawak et al., 2017) that concatenated the
bag of words data with the structured data.

A bag-of-words (BOW) representation is a sparse vec-
tor of occurrence counts of individual words. Technically 60

a “bag-of-words” contains frequency scores, such as, in our
case, the number of times that an individual tag is used.
In our work we convert the counts of tag occurrences to
weights, based on a form of Pointwise Mutual Information
(PMI) that attaches more significance to tags that are less 65

S. Jeawak et al.: Preprint submitted to Elsevier Page 1 of 22

http://www.flickr.com
http://expandedramblings.com/index.php/flickr-stats


SPAtioTemporal Embeddings (SPATE)

common and more closely correlated with a particular loca-
tion. Such representations are often still called bag-of-words
models. Note that each dimension of the BOW corresponds
to an individual tag of which there can be millions of dis-
tinct values. An embedding is a mapping from such a high-70

dimensional vector representation into a relatively low di-
mensional representation (e.g. 300-dimensions). Unlike the
BOW, the individual dimensions in the vector space embed-
ding typically have no specific meaning. They represent the
overall patterns of distance between objects (i.e. locations)75

by placing semantically similar objects close together in the
embedding space.

In this paper, we extend our approach from (Jeawak et al.,
2019) by considering a spatiotemporal representation of re-
gions. In particular, we learn a vector space embedding for80

each geographic region and each month of the year, which
allows us to capture environmental phenomena that may de-
pend on monthly or seasonal variation. Apart from extend-
ing our main model, we also introduce a new smoothing
method to deal with the sparsity of Flickr tags. This is mo-85

tivated by the fact that when fine grained regions are used
and data may be sparse, the number of times that a tag is
used in a particular region and month is not a reliable indi-
cator by itself of the relevance of that tag. For evaluation,
we consider the problem of predicting climate features and90

predicting the distribution of species in a given location and
a given month. The proposed method has proven to be ad-
vantageous, in particular when we have a very small training
data set. We also qualitatively evaluate the proposed model
by generating similarity maps for a number of selected loca-95

tions (the details of which can be found in Section 6.5) .
The remainder of this paper is organized as follows. In the

next section, we provide a discussion of the related work.
Section 3 and Section 4 present our methodology for spa-
tiotemporal modelling using Flickr tags and using structured100

data respectively. Section 5 then describes our spatiotempo-
ral embeddings model. In Section 6 we provide a detailed
discussion about the experimental results as well as the qual-
itative evaluations. Finally, Section 7 summarizes our con-
clusions.105

2. Related Work
2.1. Spatiotemporal analysis and modelling

Spatiotemporal analysis and modelling has been a major
interest in many research areas. Examples include environ-
mental science (Shaddick and Zidek, 2015; McLean, 2018),110

social science (Brunsdon et al., 2007; Hu et al., 2018), and
business (Fotheringham et al., 2015a,b). Fotheringham et al.
(2015b) developed a geographical and temporal weighted
regression (GTWR) model to account for the variations in
time and space whenmodelling house prices in London from115

1980 to 1998. Themodel is based on a spatiotemporal kernel
function using a Gaussian distribution. Similar to our work,
they allocated each spatial point to a time interval. However,
while they model time on a linear scale, we use a circular
scale since our focus is on modelling seasonality. Brunsdon120

et al. (2007) proposed a spatiotemporal kernel density esti-
mation method (STKDE) which is based on multiplying the
spatial kernel function and the temporal kernel function. It
is a space-time cube method that extends the 2-dimensional
grid used in the spatial kernel to a 3-dimensional cube and 125

computes density values at cube centres with overlapping
space-time cylinders. Time was represented on a circular
scale that uses a Von Mises distribution as the time kernel.
STKDE has shown promising results in many applications
such as crime hot-spot detection (Hu et al., 2018) and dis- 130

ease patterns detection (Delmelle et al., 2014). In this paper,
we use the STKDEmethod (Brunsdon et al., 2007) to smooth
the distribution of Flickr tags over space and time, as a way
of alleviating the sparsity of Flickr tags.

Within a broader context, kernel-based methods have also 135

been used for estimating geographic locations of unstruc-
tured text documents. For example, Adams and Janowicz
(2012) proposed a method based on kernel density estima-
tion (KDE) and topic modelling to estimate the locations of
documents from Wikipedia and a travel blog. Hulden et al. 140

(2015) used kernel density estimation (KDE) to smooth rel-
evant features on a geodesic grid to address the problem of
data sparsity. These features were then used for georeferenc-
ing text documents. They show that using KDE significantly
improves the results. The aim of using KDE in this latter 145

work is similar in spirit to our motivation for using KDE.

2.2. Analyzing Flickr data
Many studies have focused on analyzing Flickr data to ex-

tract useful information in domains such as linguistics (e.g.
Eisenstein et al. (2010)), geography (e.g. Cunha and Mar- 150

tins (2014); Grothe and Schaab (2009)) and ecology (e.g.
Barve (2015); Jeawak et al. (2018)). In the context of ecol-
ogy, Barve (2015) examined Flickr biodiversity data qual-
ity by analysing its metadata and comparing it with ground-
truth data, using Snowy owls and Monarch butterflies as a 155

case study. They concluded that Flickr data has the potential
to add to the knowledge of these species in terms of geo-
graphic, taxonomic, and temporal dimensions, which tends
to be complementary to the information contained in other
available sources. In (Richards and Friess, 2015), the con- 160

tent of the Flickr photos was analysed manually to assess
the quality of cultural ecosystem services and derive use-
ful information to manage Singapore’s mangroves. Wang
et al. (2013) analysed the visual features of the photographs
on Flickr (in an automated way) to observe natural world 165

features such as snow cover and particular species of flow-
ers. In (Zhang et al., 2012) photos from Flickr were used to
estimate snow cover and vegetation cover, and to compare
these estimations with fine-grained ground truth collected
by earth-observing satellites and ground stations. Both the 170

text associated with Flickr photographs and their visual fea-
tures were used in Leung and Newsam (2012) to perform
land-use classification. The approach was evaluated on two
university campuses and three land-use classes were consid-
ered: Academic, Residential, and Sports. In (Estima et al., 175

2014; Estima and Painho, 2014), they classified a sample
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of georeferenced Flickr photos according to CORINE land
cover classes. They also evaluated the use of Flickr photos
in supporting Land Use/Land Cover (LULC) classification
for the city of Coimbra in Portugal and for comparison with180

Corine Land Cover (CLC) level 1 and level 2 classes. Note
that their approach did not use machine learning and the re-
sults were evaluated manually by experts. Their results sug-
gest that Flickr photos cannot be used as a single source to
achieve this purpose but they could be helpful if combined185

with other sources of data.
In our previous work (Jeawak et al., 2017), we found that

the tags of georeferenced Flickr photos can effectively sup-
plement traditional environmental data in tasks such as pre-
dicting climate features, land cover, species occurrence, and190

human assessments of scenicness. To encode locations, we
combined a bag-of-words representation of geographically
nearby tags with a feature vector that encodes the associ-
ated structured data. We found that the predictive value of
Flickr tags is roughly on a par with that of standard com-195

monly available environmental datasets, and that combin-
ing both types of information leads to significantly better
results than using either of them alone. In (Jeawak et al.,
2019), we proposed the EGEL (Embedding GEographic Lo-
cations) model that integrates both Flickr and environmental200

data into low-dimensional vector space embeddings. This
model was found to outperform the bag-of-words model for
all the evaluation experiments. The main difference between
the SPATE (SPAtioTemporal Embeddings) model proposed
in this paper and EGEL is that EGEL used a location-based205

embedding model while here we also take into account the
time of year. The resulting model also handles the data spar-
sity problem in a more robust way than the EGEL model.

2.3. Vector space embeddings
The use of low-dimensional vector space embeddings for

representing objects has already proven effective in a large
number of applications, including natural language process-
ing (NLP), image processing, and pattern recognition. In
the context of NLP, the most prominent example is that of
word embeddings (Mikolov et al., 2013; Pennington et al.,
2014; Grave et al., 2017), which represent word meaning us-
ing vectors of typically around 300 dimensions. These vec-
tors are derived from associated words that occur in the con-
text of the target word. A large number of different meth-
ods for learning such word embeddings have already been
proposed, including Skip-gram and the Continuous Bag-of-
Words (CBOW) model (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014), and fastText (Grave et al., 2017). They
have been applied effectively inmanyNLP tasks such as sen-
timent analysis (Tang et al., 2014), part of speech tagging
(Qiu et al., 2014; Liu et al., 2016a), and text classification
(Lilleberg et al., 2015; Ge and Moh, 2017). The model we
consider in this paper builds on GloVe, which was designed
to capture linear regularities of word-word co-occurrence. In
GloVe, there are two word vectors wi and w̃j for each word
in the vocabulary (i.e. the set of words for which we want to
learn a vector representation), that are learned by minimiz-

ing the following objective:

J =
V
∑

i,j=1
f (xij)(wi.w̃j + bi + b̃j − log xij)2

where xij is the number of times that word i appears in the 210

context of word j, V is the vocabulary size, bi is the tar-
get word bias, b̃j is the context word bias. The weighting
function f is used to limit the impact of rare terms. It is de-
fined as 1 if x > xmax and as ( x

xmax
)� otherwise, where xmax

is usually fixed to 100 and � to 0.75. Intuitively, the target 215

word vectors wi correspond to the actual word representa-
tions which we would like to find, while the context word
vectors w̃j model how occurrences of j in the context of a
given word i affect the representation of this latter word. In
this paper we will use a similar model, which will however 220

be aimed at learning spatiotemporal cell vectors instead of
the target word vectors.

Beyond word embeddings, various methods have been
proposed for learning vector space representations from
structured data such as knowledge graphs (Bordes et al., 225

2013; Yang et al., 2015; Trouillon et al., 2016), social net-
works (Grover and Leskovec, 2016; Wang et al., 2017) and
taxonomies (Vendrov et al., 2015; Nickel and Kiela, 2017).
The idea of combining a word embedding model with struc-
tured information has also been explored by several au- 230

thors, for example to improve the word embeddings based
on information coming from knowledge graphs (Xu et al.,
2014; Speer et al., 2017). Along similar lines, various lex-
icons have been used to obtain word embeddings that are
better suited at modelling, for example, sentiment (Tang 235

et al., 2014) and antonymy (Ono et al., 2015). The method
proposed by (Liu et al., 2015) imposes the condition that
words that belong to the same semantic category should be
closer together than words from different categories, which
is somewhat similar in spirit to howwewill model categories 240

in our model.
2.4. Embedding Spatiotemporal information

The problem of representing geographic locations using
embeddings has also attracted some attention. An early ex-
ample is (Saeidi et al., 2015), which used principal com- 245

ponent analysis and stacked autoencoders to learn low-
dimensional vector representations of city neighbourhoods
based on census data. They use these representations to
predict attributes such as crime, which is not included in
the given census data, and find that in most of the consid- 250

ered evaluation tasks, the low-dimensional vector represen-
tations lead to more faithful predictions than the original
high-dimensional census data.

Some existing works combine word embedding models
with geographic coordinates. For example, in (Cocos and 255

Callison-Burch, 2017) an approach is proposed to learn word
embeddings based on the assumption that words which tend
to be used in the same geographic locations are likely to be
similar. Note that their aim is dual to our aim in this paper:
while they use geographic location to learn word vectors, 260
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we use textual descriptions to learn vectors representing ge-
ographic locations.

Several methods also useword embeddingmodels to learn
representations of Points-of-Interest (POIs) that can be used
for predicting user visits (Feng et al., 2017; Liu et al., 2016b;265

Zhao et al., 2017). These works use the machinery of exist-
ing word embedding models to learn POI representations,
intuitively by letting sequences of POI visits by a user play
the role of sequences of words in a sentence. In other words,
despite the use of word embedding models, many of these270

approaches do not actually consider any textual information.
For example, in (Liu et al., 2016b) the Skip-gram model is
utilized to create a global pattern of users’ POIs. Each lo-
cation was treated as a word and the other locations visited
before or after were treated as context words. They then use275

a pair-wise ranking loss (Weston et al., 2010) which takes
into account the user’s location visit frequency to person-
alize the location recommendations. The methods of (Liu
et al., 2016b) were extended in (Zhao et al., 2017) to use a
temporal embedding and to take more account of geographic280

context, in particular the distances between preferred and
non-preferred neighbouring POIs, to create a “geographi-
cally hierarchical pairwise preference ranking model”. Sim-
ilarly, Yang and Eickhoff (2018) developed a method for
modeling places, neighbourings, and users from social me-285

dia check-ins. They treat the check-ins as sentences to gener-
ate the embeddings which encode the geographical, tempo-
ral, and functional (e.g. College & University, Event, Resi-
dence 3) aspects. In (Yao et al., 2017) the CBOWmodel was
trained with POI data. They ordered POIs spatially within290

the traffic-based zones of urban areas. The orderingwas used
to generate characteristic vectors of POI types. Zone vec-
tors, represented by averaging the vectors of the POIs con-
tained in them, were then used as features to predict land
use types. Yan et al. (2017) proposed a method that uses the295

Skip-gram model to represent POI types, based on the in-
tuition that the vector representing a given POI type should
be predictive of the POI types found in nearby places of that
type. In the CrossMap method, Zhang et al. (2017a) learned
unsupervised embeddings for spatio-temporal hotspots ob-300

tained from social media data of locations, times and text.
In one form of embedding, intended to enable reconstruction
of records, neighbourhood relations in space and time were
encoded by averaging hotspots in a target location’s spatial
and temporal neighborhoods. They also proposed a graph-305

based embedding method with with different nodes for mod-
elling location, time and text. The concatenation of the loca-
tion, time and text vectors was then used to predict peoples’
activities in urban environments. In another work, Zhang
et al. (2017b) proposed the ReAct model, which is similar310

to CrossMap. However, while the CrossMap model is unsu-
pervised and handles static data, ReAct is a semi-supervised
model and handles continuous online data to learn the activ-
ity models.

In NLP research, embedding methods have been used315

to measure the language variation across geographical re-
3https://developer.foursquare.com/docs/resources/categories

gions as well as over time (Bamman et al., 2014; Kim et al.,
2014; Kulkarni et al., 2016; Phillips et al., 2017; Hovy and
Purschke, 2018). For instance, Bamman et al. (2014) and
Kulkarni et al. (2016) present methods to learn geograph- 320

ically situated word embeddings from geo-tagged tweets.
They used cosine similarities between the generated embed-
dings to measure the spatial variation of language across En-
glish speaking countries. Hovy and Purschke (2018) used
the Doc2Vec method (Le and Mikolov, 2014) to learn docu- 325

ment embeddings from online posts in German speaking re-
gions. These embeddings have been used to study language
variation in German. To study the temporal variation of lan-
guage, Kim et al. (2014), among others, trained the Skip-
gram model on text from the Google Books corpus for the 330

period from 1900 to 2009. They also used cosine similarity
to measured the change in word meaning between the em-
beddings of the samewords learned in different time periods.
Phillips et al. (2017) used the CBOW model to learn spa-
tiotemporal embeddings from geo-tagged tweets. They first 335

split the data into 8 hour windows (i.e. the temporal granu-
larity) for each separate country (i.e. the spatial granularity).
For each time window they then trained a joint embedding
using tweets from all countries and used it to initialize the
country specific embeddings. 340

Despite the considerable progress that has been made on
embedding social media data, the problem of embedding
Flickr tags has so far received very limited attention. To the
best of our knowledge, (Hasegawa et al., 2018) is the only
work that generated embeddings for Flickr tags. However, 345

their focus was on learning embeddings that capture word
meaning which has been evaluated on word similarity tasks.

Our work is different from all these studies, as our focus
is on spatiotemporal embeddings based on text descriptions
(in the form of Flickr tags), along with numerical and cate- 350

gorical features from environmental datasets.

3. Spatiotemporal Modelling Using Flickr tags
3.1. Data Acquisition

The first source of information that we consider in this
work is a collection of georeferenced time-stamped social 355

media postings from the photo-sharing website Flickr4. We
used the Flickr API to collect the metadata of approximately
12 million geocoded Flickr photographs within the UK and
Ireland (which is the region our experiments will focus on),
all of which were uploaded to Flickr from January 2004 to 360

September 2015. Our analysis in this paper will focus on the
tags in addition to the spatial and temporal information asso-
ciated with these photographs. We only considered the pho-
tographs in which the difference between the time at which
the photo was taken and the upload time is less than 6months 365

to, as much as possible, avoid photographs with an incorrect
time stamp.

4http://www.flickr.com
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3.2. Data Preprocessing
With the objective of using Flickr tags for spatiotemporal

modelling, we split the target spatial area into 10km× 10km
grid cells. Furthermore, we discretize the time stamps with
a granularity of 1 month. We thus view the overall dataset as
12 separate grid layers, each layer corresponding to a month
of the year. Thus there are 12 instances for each spatial cell
as illustrated in Figure 1. The choice of the 10km × 10km
spatial granularity and the one-month temporal granularity
is to balance between resolution and computation time. Let
c1, ..., cn be the spatiotemporal grid cells, each represented
by a triple (lat, lon, m) where lat is the latitude coordinate of
the centre of c, lon is the longitude coordinate of the centre
of c, and m is the month of the year. We associate each such
a cell with a histogram of Flickr tags, reflecting how many
times each tag has been added to a photographwhose coordi-
nates and time stamp fall within the cell. However, to reduce
the impact of bulk uploading, following Van Canneyt et al.
(2013b), we count a tag occurrence only once for all pho-
tos by the same user at the same location and on the same
date. Let f(t,c) be the number of times tag t (from the set of
all tags T ) occurs in the cell c. We then use Positive Point-
wise Mutual Information (PPMI) to weight how strongly tag
t is associated with cell c. In particular, PPMI compares the
actual number of occurrences with the expected number of
occurrences, considering how many tags occur overall in c
and how common the tag t is. Then thePPMI weight is given
by:

PPMI(t, c) = max
(

0, log
(

P (t, c)
P (c)P (t)

))

(1)

where:

P (t, c) =
f (t, c)
N

P (t) =
∑

c′∈C f (t, c′)
N

P (c) =
∑

t′∈T f (t′, c)
N

N =
∑

t′∈T

∑

c′∈C
f (t′, c′)

Each cell c can thus be represented as a sparse vector vf (c)which is defined as (PPMI(t1, c), ...,PPMI(tk, c)), where370

t1, ..., tk is an enumeration of the tags in T .
3.3. Tag Selection

Our aim here is to select tags whose occurrence is cor-
related with specific times of the year (e.g. Summer) or
with photos that occur in particular geographic regions (e.g.
forests). When constructing the feature representation vf (c),we then only consider those tags that have been selected. The
aim of this step is to reduce the impact of tags that are not
relevant for modelling the environment, such as tags which
only relate to a given individual or a group of users. In-
tuitively, to determine whether a given tag is time and/or
location specific, we assess to what extent the distribution
of its occurrences across all spatiotemporal cells diverges
from the overall distribution of all tag occurrences. To this
end, we use a method based on Kullback-Leibler (KL) di-
vergence, which was previously found to be effective in Van

Figure 1: Spatiotemporal grid cells.

Laere et al. (2014) and Jeawak et al. (2019). In particular,
we select those tags TKL ⊆ T which maximize the follow-
ing score:

DKL(t) =
n
∑

i=1
Ps(ci|t) log

Ps(ci|t)
Q(ci)

(2)

where Ps(ci|t) is the probability that a photo with tag t has
a location and time in ci and Q(ci) is the probability that an
arbitrary tag occurrence is assigned to a photo in ci. Since
Ps(ci|t) has to be estimated from a small number of tag oc-
currences, it is estimated using Bayesian smoothing as fol-
lows:

Ps(ci|t) =
f (t, ci) + � ⋅Q(ci)
(

∑n
j=1 f (t, cj)

)

+ �

where n is the total number of cells, � is a parameter con-
trolling the amount of smoothing, which will be tuned in the
experiments. Q(ci) is estimated using maximum likelihood,
as more data is available for estimating these probabilities:

Q(ci) =
1
N

∑

t′∈T
f (t′, ci)

We will use the notation vKL(c) for the sparse vector repre-sentation of cell c encoding the PPMI weight of those tags
in TKL only. 375

3.4. Spatiotemporal Smoothing
The vector representation vKL(c) encodes which tags are

most strongly correlated with the spatiotemporal grid cell c.
S. Jeawak et al.: Preprint submitted to Elsevier Page 5 of 22
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However, these scores are computed from sometimes very
limited amounts of data, and for some cells we may not have
any photographs at all. To tackle this problem, we used ker-
nel density estimation to smooth the PPMI weight of each
tag in TKL over a larger region. For this purpose, we used the
spatiotemporal kernel density estimationmethod that was in-
troduced in Brunsdon et al. (2007). In particular, we define
the smoothed weight of tag t in cell c as follows:

KDE(t, c) = ŝ(t, c)
max (ŝ(t, c))

(3)

where nt is the number of cells c with tag t, ℎs is the spa-
tial smoothing bandwidth of tag t, and ℎm is the temporal
smoothing bandwidth of tag t. The reason for normalising
the KDE value is to keep the weight of all the tags within the380

same range and avoid the impact of the dominant tags. The
ŝ(t, c) value is computed as:

ŝ(t, c) =
nt
∑

i=1
PPMI(t, ci) ⋅Ks

(

Λlati ,Λloni
)

⋅Km
(

Λmi
) (4)

where Λlati =
clat−clati

ℎs
, Λloni =

clon−cloni
ℎs

, and Λmi = cm−cmi
ℎm

.
Here clat, clon and cm are respectively the latitude, longitude
and the month of cell c, clati , cloni and cmi are respectively
the latitude, longitude and the month of cell ci. As the spa-tial kernel function Ks, we use a Gaussian distribution (Sil-
verman, 1986) given by:

Ks(clat, clon) =
1
2�

exp

(

−
(clat − clati )2 + (clon − cloni )2

2ℎ2s

)

As the temporal kernel Km, we use a von Mises distribution
(Taylor, 2008) which is a continuous probability distribu-
tion on the circle. The Von Mises distribution was chosen
because of its wrap-around property (it is sometimes called
circular Gaussian) which is well suited to the cyclic nature
of the months of the year representation. Here, we first en-
code months using values in {0,...,11}, then the month value
is mapped to its corresponding point on the circle by:

�(cm) =
2�cm
12

Now ‘January’ is represented as pi
6 , ’February’ is repre-

sented as pi
3 and so on, as explained in Figure 2.

The von Mises distribution is computed by:

Km(�(cm)) =
1

2�I0(ℎm)
exp (ℎm cos(� − Θ))

where I0 is the modified Bessel function of order 0.385

Finally, to model the spatiotemporal grid cell c using
Flickr tags, we consider a vector vKDE(c) encoding the
smoothed weight of all the tags {t1...tnt} ∈ TKL which is de-
fined as (KDE(t1, c), ...,KDE(tnt , c)). This vector (vKDE(c))will be used to train the proposed embeddings model in Sec-390

tion 5.

Figure 2: The representation of the months as circular data.

3.5. Bandwidth Selection
The critical parameter in any kernel based method is the

selection of the optimal bandwidth. The variables ℎs and ℎmare of key importance and their values are generally consid- 395

ered to be more important than the type of the kernel itself.
In general, large values lead to over-smoothing while small
values lead to under-smoothing. Various methods have been
developed for selecting the optimal kernel bandwidth. In this
paper, we compare experimentally the performance of three 400

of the most widely used methods.
1. The rule of thumb (Silverman, 1986) is a simple and

fast method. It estimates a fixed kernel bandwidth
based on the data driven scale of the distribution which
is defined as: 405

ℎ = �̂
(

n ∗ (d + 2)
4

)−1∕(d+4)
(5)

where n is the size of the data, d is the number of di-
mensions, and �̂ is the data standard deviation. Here
we need to estimate two different bandwidths (the spa-
tial and the temporal bandwidths). They are both es-
timated using Equation 5, however, for estimating the 410

temporal bandwidth ℎm, d is equal to 1 and �̂ is the
circular standard deviation. For estimating the spatial
bandwidth ℎs, d is equal to 2 and �̂ = s1+s2

2 where s1and s2 are the standard deviations of the latitude and
the longitude coordinates respectively. 415

2. The adaptive kernel bandwidth (Abramson, 1982;
Brunsdon, 1995) is based on the idea of making the
value of ℎ vary between different regions according to
the local density. In particular, a wider bandwidth is
selected for regions with low density while a narrower
bandwidth selected for regions with high density. It is
usually achieved by the following steps. Firstly, com-
pute a pilot estimate of ŝ(t, c) (Equation 4) using the
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fixed bandwidth as described above in Equation 5. This
estimate is used to give an overall approximation of the
smoothed value of the data. Secondly, compute a local
bandwidth scalar, which is computed by:

bc =
√

g
ŝ(t, c)

where g is the geometric mean of ŝ(t, c1), ..., ŝ(t, cn),which is given by:

g =

( n
∏

i=1
ŝ(t, ci)

)1∕n

Finally, the adaptive local bandwidths are given by
ℎs(c) = ℎs ⋅ bc and ℎm(c) = ℎm ⋅ bc which can be used inEquation 4 to make the final estimation for tag t.

3. The leave one out kernel estimator (Bowman, 1984) is
based on the idea of selecting the kernel bandwidth es-
timator that minimizes the mean integrated square error
(MISE) (Seaman and Powell (1996)) given by:

MISE = 1
n

n
∑

i=1

(ŝ(t, ci) − p(t, ci))
2

p(t, ci)
(6)

where ŝ(t, ci) is the estimated density of tag t at the grid
cell ci after removing the cell ci from the data. p(t, ci) isthe probability of the PPMI weight of tag t at the grid
cell ci (i.e. the true density), which is computed as:

p(t, ci) =
PPMI(t, ci)

∑

c′∈C PPMI(t, c′)

And ŝ−i(t, ci) is computed here as:
∑nt
j=1j≠i PPMI(t, cj)Ks(Λlatij ,Λlonij )Km(Λmij )

∑n
j=1j≠iKs(Λlatij ,Λlonij )Km(Λmij )

(7)

The optimal bandwidthsℎs andℎm that minimize Equa-
tion 6 can be used to smooth the tag t distribution over420

all the spatiotemporal grid cells in Equation 4.

4. Spatiotemporal Modelling Using
Structured Environmental Data
There is a wide variety of structured scientific data that

can be used for modelling the environment. In this section,425

we give an overview of the structured datasets that we will
use in our experiments, and we explain how these datasets
are used to generate a feature vector for each spatiotemporal
cell c. We used the following external datasets as sources of
numerical features:430

• Monthly average of temperature, precipitation, solar ra-
diation, wind speed and water vapour pressure, all of
which are obtained from WorldClim5.

5http://worldclim.org

• Elevation, obtained from the Digital Elevation Model
over Europe (EU-DEM)6. 435

• Population, obtained from the European Population
Map 20067.

Several of the considered datasets have a resolution which is
finer than our 10km × 10km grid cells. To this end, we look
up the feature values at 100 locations, distributed uniformly 440

within the grid cell. To obtain a feature vector for the spa-
tiotemporal grid cell c representing these numerical features,
we first average these 100 values for each numerical feature
across the grid cell. Then we normalise these features values
using the standard z-score. 445

In addition, we used the following datasets as sources of
categorical features:

• Land cover type, obtained from CORINE Land Cover
20068. This dataset refers to land cover categories at
three levels of granularity: a top level with 5 classes, an 450

intermediate level with 15 classes and a detailed level
with 44 classes.

• Soil type, obtained from SoilGrids9, which classifies
locations into 116 types of soil.

The categorical features are represented as a vector, encod- 455

ing for each of the categories what percentage of the grid
cell (i.e. the average of the 100 locations) belongs to that
category.

Apart from the features from these external datasets, the
geographic coordinates and time stamp of the cell c are 460

clearly also important structured features, which should
be included in the feature vector describing a spatiotem-
poral cell. For the spatial features, each grid cell c
has been represented by the normalised coordinate values
norm(lat, c) = lat−min(latitude)

max(latitude)−min(latitude) and norm(lon, c) = 465

lon−min(longitude)
max(longitude)−min(longitude) where lat and lon are the lati-
tude and longitude coordinates of the centre of the grid
cell c respectively, and max(latitude), max(longitude),
min(latitude) and min(longitude) are the maximum and
minimum latitude and longitude over the study area. The 470

reason for normalising these features is to ensure that they
are within the same range as the other features. Note
that we have also tried projecting the latitude and longi-
tude coordinates into three-dimensional geographic coordi-
nates, but that gave worse results. Finally, the month m cor- 475

responding to the cell c is represented as the coordinates
(cos(�(m)), sin(�(m))) of that month, as before (see Figure
2).

We will use the notation vs(c) for the feature vector rep-resentation of cell c encoding all the above mentioned struc- 480

tured features.
6http://www.eea.europa.eu/data-and-maps/data/eu-dem
7http://data.europa.eu/89h/jrc-luisa-europopmap06
8http://www.eea.europa.eu/data-and-maps/data/

corine-land-cover-2006-raster-2
9https://www.soilgrids.org
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5. Spatiotemporal Embeddings
Our aim in this paper is to learn a low-dimensional vector

space embedding of a set of spatiotemporal cells C . This
representation will allow us to combine the textual infor-485

mation derived from Flickr with the numerical, categorical,
spatial, and temporal information in an efficient way. Thus
the ecological information can be effectively captured by the
predictive model. The proposed embeddings model has the
following objective function:490

J = (1−2�−2�)Jtags+�(Jnf+Jcat)+�(Jspatial+Jtemp) (8)
where �, � ∈ [0, 1] are parameters to control the impor-

tance of each component in the model with 2� + 2� < 1.
The components Jtags, Jnf, Jcat, Jspatial and Jtemp intuitivelyencode the information we have about the spatiotemporal
cells from the different sources. The objective function J495

thus encodes the available information in the form of an op-
timization problem. In particular, our goal is to learn vector
representations for the spatiotemporal cells which minimize
J .

Component Jtags will be used to constrain the representa-500

tion of the cells based on their textual description (i.e. Flickr
tags), Jnf will be used to constrain the representation of the
cells based on their numerical features, Jcat will impose the
constraint that cells belonging to the same category should
be close together in the space, Jspatial will be used to con-505

strain the representation of the cells based on their spatial
feature (i.e. the latitude and longitude coordinates), and Jtempwill be used to constrain the representation of the cells based
on their temporal feature (i.e. months of the year). The com-
ponents Jnf and Jcat share the same weight (�) as they have510

the same key importance in our model and a relatively simi-
lar number of features (i.e. similar impact on the embeddings
model). The components Jspatial and Jtemp share the same
weight (�) for the same reasons. However, the component
Jtags has a different weight as it involves a larger number of515

features, these features are of a different nature and their rel-
ative importance may also be quite different (e.g. the number
of occurrences of a single tag is likely to be less important
than the land cover class).
Tags based embedding. We now want to find a vector
vemb(c) ∈ V for each spatiotemporal grid cell c. The compo-
nent Jtags intuitively encodes the requirement that we want
spatiotemporal cells whose associated Flickr tag distribu-
tions are similar to be represented by similar vectors. This is
achieved by requiring that the scores KDE(tj , c) for each tag
tj can be predicted from the vector representation of the cell
c. To this end, we use a close variant of the GloVe model,
where tag occurrences are treated as context words of the
spatiotemporal cell. In particular, with each cell c we as-
sociate a vector vemb(c) and with each tag t we associate a
vector w̃t and a bias term b̃t, and consider the following ob-jective which is illustrated in Figure 3:

Jtags =
∑

c∈C

∑

tj∈T
(vemb(c) ⋅ w̃tj + b̃tj − KDE(tj , c))2

Figure 3: The geometric intuition of tags based embeddings.

Note how tags play the role of the context words in the GloVe 520

model, while instead of learning target word vectors we now
learn vectors for spatiotemporal cells. In contrast to GloVe,
our objective does not directly refer to co-occurrence statis-
tics, but instead uses the KDE(tj , c) scores.
Numerical features based embedding. Numerical features
can be treated similarly to the KDE(tj , c) scores. In particu-lar, for each numerical feature fk we consider a vector w̃fkand a bias term ̃bfk , and the following objective:

Jnf =
∑

c∈C

∑

fk∈NF
(vemb(c) ⋅ w̃fk + ̃bfk − score(fk, c))2

whereNF is the set of all numerical features and score(fk, c) 525

is the value of feature fk for cell c, after z-score normaliza-
tion.
Categorical features based embedding. For the categori-
cal features, we impose the constraint that cells belonging to
the same category should be close together in the space. In
particular, we represent each category type catl as a vector
wcatl , and consider the following objective:

Jcat =
∑

c∈C

∑

catl∈L
(vemb(c) −wcatl )

2

Spatial features based embedding. Latitude and longitude
coordinates can be incorporated in the same way as the nu-
merical features. However, we treat them as a separate con-
straint because this allows us to tune the importance of the
geographic location of a grid cell c, relative to the numerical
and categorical features, based on howwe choose the param-
eters � and �. Therefore, for sc ∈ {lat, lon}, we consider avector w̃sc and a bias term ̃bsc , and the following objective
to compute Jspatial:

∑

c∈C

∑

sc∈lat,lon
(vemb(c) ⋅ w̃sc + ̃bsc − norm(sc , c))2

Temporal features based embedding. We represent the
temporal features, specifically the months of the year, as
equidistant points on the unit circle (as shown in Figure 530

2). To encode temporal information in the embedding, we
assume that there is a linear transformation that maps the
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Figure 4: The spatiotemporal embeddings (SPATE) model.

vector representations of the spatiotemporal cells onto a 2-
dimensional plane, such that all cells from a given month are
(approximately) projected onto the vector representation of535

that month. This is similar to how we handle the spatial fea-
tures, where the two linear lat/lon constraints could also be
seen together as mapping the grid cells onto a 2-dimensional
plane such that the projection reflects their geographic loca-
tion. To formalize this constraint, we encode each month mi540

by a 2-dimensional vector w̃m representing the coordinates
(cos(�(m)), sin(�(m))) of mi on the temporal circle. We de-
fine a projection matrix P as a 2 × n matrix that maps the
spatiotemporal cell vector vemb(c) into 2-dimensional space
and a 2-dimensional bias term b̃m, and consider the follow-545

ing objective:

Jtemp =
∑

c∈C
||vemb(c).P + b̃m − w̃m||2

6. Experimental Evaluation
In this section we will formally evaluate our proposed

SPAtioTemporal Embeddings (SPATE)10 model. The full
model is illustrated in Figure 4. This figure shows how the550

Flickr tags representation from Section 3 are combined with
the structured information from Section 4 to represent the
spatiotemporal cells C that can be used to predict values at
un-sampled locations.

We will start this section by evaluating the bandwidth se-555

lection methods that described in Section 3.5 and choose the
best method for our problem. Then we will define our exper-
imental setting and the proposed baseline methods. Subse-
quently, we will introduce our experiments and results with

10The SPATE source code is available online at https://github.com/
shsabah84/SPATE-model.git.

a detailed discussion. Finally, we will qualitatively evaluate 560

our generated vectors.

6.1. Selecting the optimal bandwidth for each tag
We evaluate the performance of the considered bandwidth

selection methods from Section 3.5 in term of MISE (see
Equation 6) on a randomly selected sample of 100 cells for 565

each tag in TKL. For the leave-one-out kernel estimator
method, we considered the range {2, 1, 0.5, 0.25, 0.125,
0.05, 0.025, 0.0125, 0} in latitude/longitude degrees for the
spatial bandwidth ℎs value and the range {2�, �, �∕2, �∕6,
0} for the temporal bandwidth ℎm value. The choice of these 570

two ranges was found to be reasonable for most of the tags
based on a small set of initial experiments. Note that a spatial
bandwidth of value 0 would mean only temporal smoothing
is applied, and vice versa if the temporal bandwidth is set to
0. 575

The results are summarized in Figure 5. We found that
the fixed bandwidth selected by the rule-of-thumb method
works reasonably well for tags with a uni-modal distribution
(e.g. the name of a city). However, for tags with a multi-
modal distribution (e.g. supermarket, beach and rain), it 580

leads to a significant over-estimation of the bandwidth. The
adaptive kernel bandwidth method performs better than the
fixed bandwidth estimator in many cases, especially those
with multi-modal distribution, but it is computationally ex-
pensive. However, we found that the leave-one-out kernel 585

estimator method outperforms both of them. Therefore, in
the remaining experiments, we will use the spatial and tem-
poral bandwidths (ℎs and ℎm) estimated from the leave-one-
out kernel estimator method as the optimal bandwidths. In
particular, when applying KDE (see Equation 3), for each 590

tag we use the specific bandwidth parameters that were se-
lected with this method. In this way, we can choose the best
spatial and temporal bandwidths for each tag. In particular,
tags which refer to a very localised spatial area (e.g. tescoex-
tra) will be assigned a small bandwidth, whereas tags that 595

refer to a broader region (e.g. lakedistrictnationalpark) will
receive a larger bandwidth. Note that tags that refer to a spe-
cific event, the optimal bandwidth that is selected will often
be 0, reflecting the fact that smoothing in such cases would
hurt the performance. 600

6.2. Experimental Settings
In all experiments, we use Support Vector Machines

(SVMs) for classification problems and Support Vector Re-
gression (SVR) for regression problems. In both cases, we
used the SVMlight implementation11 Joachims (1998). We 605

also experimented with a multilayer perceptron (MLP), to
check whether using a different predictive model might af-
fect the results. The choice of SVM and MLP is motived by
the fact that these models are widely used for environmen-
tal modelling, including for predicting species occurrence 610

(Muñoz-Mas et al. (2017); Drake et al. (2006); Guo et al.
(2005)) and predicting climate features (Aghelpour et al.

11http://www.cs.cornell.edu/people/tj/svm_light/
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Figure 5: The average MISE of all the considered tags when
using the rule of thumb (ROT), the adaptive kernel bandwidth
(Adaptive), and the leave one out kernel estimator (LOO).

(2019); Salcedo-Sanz et al. (2016); Kashani and Dinpashoh
(2012); Radhika and Shashi (2009)).

For all experiments, we randomly split the set of spa-615

tiotemporal grid cells C into one-third for testing and two-
thirds for training and tuning. To evaluate the impact of
the training data size on the model performance, we exper-
imented with 1%, 10% and 100% of the training and tuning
set. Each time we hold out 10% of the considered set for tun-620

ing the parameters and use the rest for training. In fact, the
setting with a small amount of training data makes the prob-
lem more challenging and provides additional insight into
the performance of our proposed model.

To compute KL divergence, the smoothing parameter �625

was selected from {100, 1000, 10000} based on the tuning
data. Table 1 shows the 10 tags with highest KL divergence
weight resulting from these smoothing values. Clearly, us-
ing � = 100 gives a set of tags that are specifically related
to small geographic regions and/or particular times, while630

using � = 1000 gives a set of tags describing larger re-
gions. Using � = 10000 gives a set of more general tags or
even more general regions, as well as names of well known
cities. We select the top 100 000 tags from the ranking with
� = 1000where it gave us the best results based on initial ex-635

periments. However, for a grid cell c, we only consider those
tags t for which KDE(t|c) > 1

3 for computational reasons.
All embedding models are learned with an Adagrad op-

timizer, which is used to minimize the objective function
using 30 iterations and an initial learning rate of 0.5. The640

number of dimensions is chosen for each experiment from
{10, 50, 300} based on the tuning data. For the parameters
of our model in Equation 8, we considered values of � from
{0.01, 0.02, 0.04, 0.06, 0.08, 0.1} and we considered values
of � between 0 and 1 with an increment of 0.05. While we645

chose the best values of the parameters for each experiment
separately, based on the tuning data, we noticed that consis-
tently good results were obtained when using � = 0.04 and
� = 0.45. Note that we tune all parameters with respect to
the F1 score for the classification tasks and Spearman � for650

the regression tasks.

� = 100 � = 1000 � = 10000
struy islay cambridge
may gairloch bournemouth
tiree ashford chester

strathglass longleat york
march orkney cornwall

waterfordhalf2009 sywell cardiff
stmelliongolfclub braintree sheffield

bawdeswell snetterton lakedistrict
stkilda popham oxford

helmsdale dungeness norfolk

Table 1
Top 10 Flickr tags in terms of KL divergence.

6.3. Variants and Baseline Methods
For formal evaluation, we will compare our proposed

SPATE model with the following main baseline represen-
tations: 655

• STRUCTURED uses the feature vector vs(c) modelling
the structured information from Section 4.

• FLICKR uses the KDE-based feature vector vKDE(c)modelling Flickr tags from Section 3.4.
• STRUCTURED + FLICKR uses the combination of both 660

structured data and Flickr data by concatenating the
vectors vs(c) and vKDE(c).

To evaluate the impact of the spatiotemporal smoothing on
Flickr tag representation, we will consider the following
variants: 665

• FLICKR-NOKDE uses the PPMI-based feature vec-
tor vf (c) modelling Flickr tags from Section 3.2 (i.e.
without including the tag selection and spatiotemporal
smoothing steps).

• FLICKR(1BW) uses the KDE-based feature vector 670

modelling Flickr tags from Section 3.4. However, here
we select the value of the bandwidths ℎs and ℎm that
minimize the averageMISE over all the considered tags
when computingKDEweight (i.e. using the same band-
widths for all the tags). This variant will thus allow us 675

to assess the effectiveness of using tag-specific band-
width values.

6.4. Experimental Results
We consider two tasks to evaluate our proposed SPATE

model: predicting species distribution and predicting cli- 680

mate related features.
6.4.1. Predicting Species Distribution

For this task, we use ground truth data from the National
Biodiversity Network Atlas (NBN Atlas)12. The NBN is a
collaborative project committed to making biodiversity in- 685

formation available via the NBN Atlas. This dataset covers
12NBN Atlas occurrence download at http://nbnatlas.org. Accessed 19

April 2018.
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1% 10 % 100 %
Prec Recall F1 Prec Recall F1 Prec Recall F1

Structured 0.424 0.246 0.311 0.501 0.345 0.409 0.525 0.422 0.468
Flickr-noKDE 0.091 0.005 0.010 0.141 0.022 0.038 0.388 0.034 0.063
Flickr-1BW 0.400 0.342 0.369 0.469 0.406 0.435 0.494 0.415 0.451
Flickr 0.436 0.373 0.402 0.529 0.454 0.489 0.631 0.466 0.536
Structured + Flickr 0.448 0.384 0.414 0.536 0.465 0.498 0.629 0.474 0.541
SPATE 0.485 0.423 0.452 0.540 0.476 0.506 0.610 0.487 0.542

Table 2
Results for predicting the monthly distribution of 50 species across the UK and Ireland using SVM. The percentages
refer to the proportion of the training and tuning data set that was used.

1% 10 % 100 %
Prec Recall F1 Prec Recall F1 Prec Recall F1

Structured 0.443 0.313 0.367 0.557 0.323 0.409 0.628 0.388 0.48
SPATE 0.461 0.382 0.418 0.508 0.458 0.482 0.585 0.512 0.546

Table 3
Results for predicting the monthly distribution of 50 species across the UK and Ireland using MLP.

the UK and Ireland. We focused our evaluation on a random
sample of 50 birds, each of which has at least 1000 obser-
vations in the NBN Atlas. This restriction to species with
a sufficient number of observations is necessary to ensure690

that the ground truth is sufficiently reliable. Note that even
species with a large number of observations may sometimes
only occur in a few spatiotemporal cells. In NBNAtlas, each
species record contains a set of meta-data including the ob-
servation’s latitude, longitude and month, which is the infor-695

mation that we need in our experiments. For each of these 50
birds, we consider a binary classification problem, i.e. pre-
dicting whether or not the bird occurs in a particular cell (i.e.
whether a grid cell contains at least one observation in the
NBN Atlas data).700

The results are reported in Table 2 and Table 3, for the
SVM and MLP model respectively. The results are reported
in terms of macro-average precision, recall, and F1 score
over the 50 birds. However, note that all hyperparameters
have been tuned with respect to the F1 metric. Training the705

MLP model is only feasible with relatively low-dimensional
input representations. For this reason, we can only evaluate
it on the STRUCTURED and SPATE representations, but not
on the variants that include the bag-of-words representation.
Indeed, the fact that neural network models are unsuitable710

for dealing with high-dimensional inputs is one of the main
reasons why embedding models are used in practice.

Looking at the results from the SVM model, it can be
clearly seen that combining Flickr tags with the available
structured data leads to better results than using them sep-715

arately. Moreover, combining them in our proposed spa-
tiotemporal embeddings (SPATE) model leads to the best
results. It significantly outperforms all the considered base-
lines, especially for the setting with the least amount of train-
ing data. Furthermore, note that the proposed KDE based720

spatiotemporal smoothing of Flickr tags leads to substantial
improvements over the non-smoothed version in FLICKR-
NOKDE and smoothing each tag with different bandwidths

in Flickr consistently outperforms the method of smoothing
all the tags with the same bandwidth in FLICKR-1BW. We 725

also found the normalization of the spatiotemporal KDE in
Equation 3 to be critical to obtain good results. Based on the
tuning data, for the SVM model, we found a linear kernel to
be optimal when using Flickr data only and the combina-
tion of STRUCTURED + FLICKR, and a Gaussian kernel to 730

be optimal for the STRUCTURED, and SPATE models. For
the embedding model, we found that the best results were
obtained for 300 dimensions. We also found that the results
of MLP in Table 3 are broadly in line with that of SVM.

As an example, Figure 6 visually compares the predic- 735

tions that were made by the SVM classifier for the differ-
ent representations. This example focuses on a particular
bird, namely the Swift (Apus apus). The seasons in Fig-
ure 6 are defined as winter (December, January, February),
spring (March, April, May), summer (June, July, August) 740

and autumn (September, October, November). It can be
clearly seen from Figure 6 that the predictions made by us-
ing STRUCTURED only, FLICKR only, or STRUCTURED +
FLICKR are under-reported for winter and imbalanced (i.e.
overestimated in some regions and underestimated in an- 745

other) for the other seasons. However, SPATE leads to su-
perior predictions over all the seasons. To get further in-
sight into the performance of the considered representations,
Figure 7 shows the monthly average F1 score for the pre-
dictions made for this particular species. Although using 750

FLICKR outperforms using STRUCTURED and STRUCTURED
+ FLICKR improves the results, SPATE leads to the best
results over all months. Interestingly, for the months with
low numbers of occurrences, such as January and Novem-
ber, SPATE is the only model that made positive predic- 755

tions while other models predicted all negatives. This exam-
ple suggests that highly accurate distribution models can be
learned using any of the considered models when we have
sufficiently large numbers of occurrences as in the spring
and summer months. However, our proposed SPATE model 760
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(a) Structured data

(b) Flickr data

(c) Structured + Flickr data

(d) SPATE

(e) Ground truth data

Figure 6: Prediction of the seasonal distribution of Swift across the UK and Ireland using the SVM model with 1% of
the data for training/tuning.

still performs better in the months with very low numbers
of occurrences, as in the winter and autumn months. Ad-
ditionally, when we look at the prediction confidence score
of this species over the spatiotemporal grid cells, we found

that our proposed SPATE model makes much higher con- 765

fidence predictions than the other proposed baselines. As
an example, Figure 8 shows the prediction confidence score
obtained from different models for a particular location (lat-
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Figure 7: F1 score of predicting the monthly distribution of
Swift using SVM

.

Figure 8: Prediction confidence score for location coordinate
(54.815, -2.086) over the testing months using SVM. Jan, Oct,
Nov and Dec are not shown in the figure because the corre-
sponding cells are in the training set for that location. Note
that Swift has positive ground truth observations in that loca-
tion in April, May, June, July and August, and negative ground
truth observations in February, March and September.

itude= 54.815 and longitude= -2.086) over all the testing
months. Clearly, as can be seen in Figure 8 the predictions770

made by the SPATE model have very high confidence for
the correct predictions and very low confidence for the in-
correct predictions (see the incorrect prediction in August)
which further illustrates the strong performance of our pro-
posed model. Note that all the results reported in Figure 6,775

7, 8 are for the setting where only 1% of the training/tuning
data was used.
6.4.2. Predicting Climate Features

For this task, we consider five different regression prob-
lems: predicting the monthly average of precipitation, solar780

radiation, temperature, wind speed, and water vapour pres-
sure. For these experiments, we do not include any of these
climate features in the structured representations (and em-
beddings derived from them) as they serve here as ground
truths. The results of these experiments are reported in Ta-785

ble 4 and Table 5 using SVR and MLP respectively. The
results are presented in terms of mean absolute error (MAE)

and Spearman � correlation between the predicted and ac-
tual values for all spatiotemporal cells in the testing set. Note
that we tune all the parameters with respect to Spearman �. 790

The mean and standard deviation of each of those features
are shown in Table 6. Similar to the previous experiment,
we were able to use MLP on the STRUCTURED and SPATE
datasets only. Again, the results gained by both models are
broadly in line for these datasets. 795

We can see from the results of SVR that combining struc-
tured and Flickr data outperforms using them separately.
However, combining them using our proposed spatiotempo-
ral embeddings (SPATE) leads to a substantial improvement
over the baseline methods especially when we consider only 800

1% of the training/tuning data. Note that, for settings with
more training data, it is unsurprising that all methods per-
form well as climate features are strongly autocorrelated in
time and space.

In Figure 9, we visually illustrate the predictions made by 805

using the different representations (for the case of the SVR
model) for seasonal precipitation. The representations based
on structured data performworst while the SPATE represen-
tations are the best for all the seasons. While the overall dif-
ferences between the results for precipitation (especially in 810

term of Spearman � in Table 4) are small, clear differences
between their performance are still noticeable in Figure 9.
To get a clearer picture about the performance of eachmodel,
Figure 10 shows the monthly average MAE and Spearman
� for predicting the precipitation. Although FLICKR per- 815

forms better than STRUCTURED in terms of MAE, it per-
forms worse in term of Spearman �. The combination of
STRUCTURED + FLICKR performs in between them. Inter-
estingly, our proposed SPATE model has the best perfor-
mance in terms of MAE and Spearman � for all the months. 820

Looking at the prediction of a particular location (latitude=
55.264 and longitude= -4.784) over all the testing months,
we can see that the STRUCTURED model predictions do not
deviate too far from the mean value, which have not affected
the Spearman � score as much as MAE. The FLICKR model 825

makes more varied predictions, although they are still far
from the ground truth. The combination of STRUCTURED
+ FLICKR leads to more faithful predictions. However, the
SPATE model performs significantly better. Again, all the
results reported in Figure 9, 10, 11 are when using only 1% 830

of the training/tuning data.

6.5. Location Similarity
In this section, we qualitatively evaluate the nature of the

vectors generated by the SPATE model. Figure 12 and Fig-
ure 13 show the similaritymaps of a number of selected loca- 835

tions in July and January respectively. The selected locations
include cities of London, Dublin and Hull, the low popu-
lated but popular tourist areas of Snowdonia and Skye, which
are mountainous, and the tourist area of Roseland Heritage
Coast which is coastal and scenic, non-intensive agricultural 840

land with small villages. The similarity has been measured
according to the Euclidean distance between the vector rep-
resentation of the cell which the considered location belongs
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1% 10 % 100 %
MAE � MAE � MAE �

P
re
ci
pi
ta
ti
on

Structured 31.492 0.509 26.758 0.683 22.354 0.742
Flickr-noKDE 32.214 0.125 31.724 0.202 30.808 0.268
Flickr-1BW 28.750 0.538 23.492 0.697 22.865 0.725
Flickr 28.240 0.549 23.601 0.698 22.562 0.741
Structured + Flickr 27.385 0.562 22.999 0.711 20.780 0.773
SPATE 24.509 0.669 22.971 0.714 21.402 0.767

So
la
r
R
ad
ia
ti
on Structured 4867.2 0.776 2476.0 0.895 1083.1 0.947

Flickr-noKDE 5266.1 0.333 4603.9 0.386 4440.6 0.419
Flickr-1BW 2434.5 0.829 1621.6 0.895 1534.4 0.914
Flickr 2359.4 0.841 1575.9 0.901 1480.3 0.928
Structured + Flickr 2045.2 0.884 1076.4 0.950 936.5 0.973
SPATE 1415.3 0.907 1041.4 0.955 1030.6 0.960

W
in
d
Sp

ee
d

Structured 1.072 0.246 0.956 0.429 0.901 0.492
Flickr-noKDE 1.081 0.082 1.070 0.130 1.063 0.170
Flickr-1BW 1.099 0.217 0.963 0.418 0.897 0.493
Flickr 1.084 0.251 0.959 0.421 0.874 0.512
Structured + Flickr 1.001 0.347 0.938 0.456 0.873 0.522
SPATE 0.953 0.442 0.930 0.467 0.848 0.523

W
at
er

V
ap

P
re
ss
. Structured 0.193 0.586 0.154 0.699 0.126 0.760

Flickr-noKDE 0.234 0.110 0.226 0.250 0.225 0.279
Flickr-1BW 0.187 0.607 0.155 0.698 0.136 0.748
Flickr 0.186 0.612 0.152 0.707 0.134 0.752
Structured + Flickr 0.176 0.661 0.143 0.738 0.126 0.777
SPATE 0.135 0.752 0.122 0.771 0.119 0.779

T
em

pe
ra
tu
re

Structured 2.060 0.826 1.063 0.929 0.837 0.953
Flickr-noKDE 3.415 0.228 3.142 0.350 2.979 0.397
Flickr-1BW 1.653 0.849 1.372 0.888 1.074 0.919
Flickr 1.636 0.845 1.306 0.891 1.034 0.931
Structured + Flickr 1.302 0.907 1.054 0.932 0.823 0.961
SPATE 1.164 0.920 1.010 0.939 0.935 0.946

Table 4
Results for predicting the monthly average climate features using SVR.

1% 10 % 100 %
MAE � MAE � MAE �

P
re
ci
p Structured 23.713 0.682 19.904 0.776 17.137 0.809

SPATE 20.882 0.824 16.043 0.855 12.367 0.876

So
la
r

R
ad
. Structured 3957.6 0.678 2303.7 0.762 1379.7 0.832

SPATE 3866.1 0.742 1264.6 0.817 867.0 0.865

W
in
d

Sp
ee
d Structured 0.829 0.557 0.737 0.652 0.689 0.687

SPATE 0.889 0.818 0.706 0.854 0.545 0.879

W
at
er

V
ap Structured 0.143 0.735 0.115 0.798 0.093 0.830

SPATE 0.128 0.858 0.108 0.878 0.086 0.892

T
em

p Structured 1.667 0.832 1.353 0.858 1.063 0.875
SPATE 1.040 0.860 0.940 0.871 0.796 0.881

Table 5
Results for predicting the monthly average climate features using MLP.

to and the other cells using 300 vector dimensions.
As a general observation, in all cases, the maps do suc-845

ceed in highlighting regions that are very similar in several
respects to the respective selected location. Thus London
and Dublin are both similar to other major urban conurba-

tions such as Birmingham, Manchester, Glasgow, Newcas-
tle upon Tyne, Bristol, Cardiff and Belfast. They are least 850

similar to low populated, mountainous rural areas such as
the Highlands of Scotland and, in the case of London, the
west of Ireland. Note that Dublin, the capital of Ireland is
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(a) Structured data

(b) Flickr data

(c) Structured + Flickr data

(d) SPATE

(e) Ground truth data

Figure 9: Prediction of the seasonal precipitation across the UK and Ireland using the SVR model with 1% of the
data for training/tuning.

more similar to the rural west of Ireland, to which it is cul-
turally related, than is London, just as London, the capital of855

England, is more similar, than is Dublin, to the geographi-
cally much closer rural areas of East Anglia in England. This

latter distinction can be attributed to the general vocabulary
of Flickr which is more similar, in references to places and
activities, between regionally adjacent places. Hull is an in- 860

dustrial seaport and city. Similar locations in summer and
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Mean STDEV
Precipitation (mm) 94.750 44.037

Solar Radiation (kJ m−2day−1) 9243.9 5847.7
Wind Speed (m s−1) 4.750 1.454

Water Vapor Press (kPa) 0.897 0.302
Temperature (°C) 9.021 3.970

Table 6
Mean and Standard deviation of the climate data.

(a) Mean absolute error

(b) Spearman �
Figure 10: The monthly prediction results of precipitation us-
ing SVR.

winter are other commercial and industrial coastal locations
such as Liverpool, Newcastle upon Tyne, Bristol, Cardiff
and Southampton, along with other relatively highly pop-
ulated industrial inland regions such as Birmingham, Leeds865

and Manchester. It is most different from the west of Ire-
land and the highlands of Scotland which are mountainous
regions with low population and pastoral agriculture.

Differences between summer and winter are much less
marked than the differences between regions at the same870

times of the year, particularly for the cities. However, an
example of a seasonal city difference can be observed for
London, which is more different in the summer (July) from
relatively remote rural areas such as parts ofWales andCorn-
wall. In the latter regions (Wales and Cornwall) there might875

be higher levels of observations in summer of the natural
environment and of outdoor leisure activities when there
are more tourists than in winter. The nature of different

Figure 11: Monthly average value of predicting the amount
of precipitation for location coordinate (55.264, -4.784) over
the testing months using SVR. April, July, October, Novem-
ber, and December are not shown in the figure because the
corresponding cells are in the training set for that location.

types of tourist activity might also explain the pronounced
differences in summer between the mountainous but popu- 880

lar tourist area of Snowdonia and the also popular coastal
tourism areas of south-west Ireland and south-east England.
The Isle of Skye, while generally similar in summer andwin-
ter to other relatively low populated rural areas, has a greater
difference from the south-east of England in winter than in 885

summer. Speculatively, this might reflect the fact that, in
winter, Skye with its low indigenous population and very
much lower levels of tourism (in winter) will have relatively
low levels of contribution to social media than the more pop-
ulated areas of south-east England. 890

7. Conclusions and Future Work
In this paper, we have proposed a novel model for learning

vector space embeddings of spatiotemporal entities which is
able to integrate structured environmental information and
textual information from Flickr tags. Furthermore, to han- 895

dle the problem of Flickr data sparsity, we present a method
based on kernel density estimation to smooth the distribu-
tion of Flickr tags over space and time. For evaluation, we
have considered two experimental tasks. The first experi-
ment aimed to predict the monthly distribution of species 900

across the UK and Ireland, using observations from the Na-
tional Biodiversity Network Atlas as ground truth. In the
second experiment, we looked at predicting five climate re-
lated features.

The experimental results show that smoothing the dis- 905

tribution of Flickr tags leads to substantial improvements
in comparison with the non-smoothed version. Moreover,
combining Flickr tags with structured data consistently out-
performed using them separately. This strongly suggests
that Flickr can be a valuable supplement to more traditional 910

datasets. Notably, our proposed spatiotemporal embeddings
(SPATE) model provides an efficient integration of Flickr
tags with structured information that outperforms all the
considered baselines, especially when we considered very
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(a) London (b) Dublin

(c) Snowdonia (d) Skye

(e) Port of Hull (f) The Roseland Heritage Coast

Figure 12: Location’s similarity maps in July

small training datasets.915

There are a number of directions for future work. First,
we could learn a low dimensional vector space embedding
for each species. This can be done by encoding the avail-
able ecological and habitat information about the consid-

ered species as well as all Flickr tags that occur in pho- 920

tographs tagged by the species name. We can also con-
sider the textual and structured data about the considered
species from other resources such as the Encyclopedia of
Life. All these features would be integrated into a low di-
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(a) London (b) Dublin

(c) Snowdonia (d) Skye

(e) Port of Hull (f) The Roseland Heritage Coast

Figure 13: Location’s similarity maps in January

mensional vector space embedding representing this species925

which could then be used to predict or confirm species ob-
servation. Second, extending the same analysis to data col-
lected from other social media platforms such as Twitter, In-
stagram, and Wikipedia may alleviate the problem of data

sparsity and improve the quality of the prediction. We could 930

also consider additional scientific data sources, for example,
remote sensing and earth observation data. Any new dataset
can be added as an additional constraint in our embedding
model.
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