
City Model Enrichment

PhilipD. Smart, JonathanA. Quinn and ChristopherB. Jones

School of Computer Science and Informatics,
Queen’s Buildings,
Cardiff University,

5, The Parade,
Cardiff,

United Kingdom
{p.smart, j.a.quinn, c.b.jones}@cs.cf.ac.uk

Abstract

The combination of mobile communications technology with location and orien-
tation aware digital cameras has introduced increasing interest in the exploita-
tion of 3D city models for applications such as augmented reality and automated
image captioning. The effectiveness of such applications is, at present, severely
limited by the often poor quality of semantic annotation of the 3D models.
In this paper, we show how freely available sources of geo-referenced Web 2.0
information can be used for automated enrichment of 3D city models. Point-
referenced names of prominent buildings and landmarks mined from Wikipedia
articles and from the OpenStreetMaps digital map and Geonames gazetteer
have been matched to the 2D ground plan geometry of a 3D city model. In
order to address the ambiguities that arise in the associations between these
sources and the city model, we present procedures to merge potentially related
buildings and implement fuzzy matching between reference points and build-
ing polygons. An experimental evaluation demonstrates the effectiveness of the
presented methods.

Keywords: Internet/Web, Geometry, Georeferencing, Registration,
Modelling, Retrieval

1. Introduction

The availability of 3D models of urban landscape has been improving recently
with many models now appearing on open access web sites in addition to the
professionally constructed models that might be commissioned for example by
city planners. There are several motivations for the production of these models.
Historically their main uses have been to assist in visualising landscapes that
may be subject to planning and development, in creating virtual tours and games
that again are based primarily on visualisation, and for modelling path loss for
radio-communications network planning. More recently, with the proliferation
of mobile phones and digital cameras, there is increasing interest in the use
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of 3D models to assist in providing detailed information about an individual’s
immediate environment through the use of augmented reality (AR) techniques.
Using thse techniques, the information and geometry of nearby features can be
overlaid on live video or still images of the environment. It has also been shown
that enriched models of the landscape can be used to assist in captioning photos,
as was demonstrated in the Tripod project (Hall et al., 2009; Smart et al., 2009).

A characteristic of some of the recent applications of 3D models is that their
effectiveness depends not so much on visualisation, but upon good quality an-
notation and attribution of the features of the model so that this information
can be associated with images displayed or described to the user. In practice
however most of the 3D models currently available are relatively poorly at-
tributed, semantically. It is this paucity of semantic annotation of 3D models
that motivates the work presented in this paper.

An obvious way to improve the descriptive data associated with 3D models
is to inherit the data associated with 2D city (or other large scale) plans from
which they may be been partially derived, or to match them with such plans.
Most of the detailed 2D topographic data that includes building outlines come
from national mapping agencies and are typically associated with address data.
The nature of this address data can of course vary but it is commonly the case
that it does not include the identity of the commercial and public agencies that
use the buildings, or indeed all of the names of public and cultural buildings,
such as museums, castles and churches, that they may represent. There is a
need therefore to link to other, additional, sources of semantics. Here we focus
upon freely-accessible resources in which descriptors of buildings are associated
with geo-references that enable the descriptors to be linked to the corresponding
buildings. A prime source of such knowledge is Wikipedia in which there is a
large number of geo-referenced articles about buildings, places and other land-
marks. Other Web 2.0 resources that we employ are OpenStreetMap and the
Geonames gazetteer. It may be noted that information from such sources can
itself be ambiguous, as the geo-references can hold various spatial relationships
to the features to which they refer. Thus there is a need for methods to resolve
these ambiguities.

In this paper we address the target problem of enriching the semantic attri-
bution of 3D models using data mined from Web 2.0 sources. The intention is
that the derived attributes will be stored alongside the 3D geometry. It is no-
table that not all 3D modelling formats support such data. The Keyhole Markup
Language (KML) along with most 3D computer graphics formats (VRML, 3D
studio Max etc) is only intended to represent 3D objects for visualisation pro-
poses, with no support for detailed semantics of building parts. In contrast,
the more recent standard of CityGML (Kolbe et al., 2005) provides an urban
landscape ontology that is suitable for representing the geometry of a city model
alongside thematic attributes about each building and their parts. Examples
of previous work on adding thematic knowledge to 3D models are provided
by Kumke (2003) and Hoegner et al. (2007), in which 3D models are matched
to facts in underlying official municipal and cadastral datasets. However, to the
best of our knowledge, no previous work has attempted automatic enrichment
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of a 3D city model (in any format) from freely available Web 2.0 information
sources.

The paper is organised as follows. In Section 2 we review relevant literature
regarding the inheritance of associated semantic data attributes. We also refer
to examples of previous work concerned with mining geo-referenced information
from the web. In Section 3 we introduce the city model used as an example
in this work, and briefly discuss its generation. In Section 4, we describe web-
mining methods for the retrieval and attribution of building data, with the
aim of producing a highly detailed, accurate, and annotated 3D city model. In
Section 5, we evaluate the automated joining algorithm and the accuracy of the
semantic enrichment. Finally, in Section 6, we draw conclusions from this work,
and discuss future research.

2. Background

There have been considerable efforts to create semantically enriched 3D mod-
els. For example Ross et al. (2009) describe the integration of data from multi-
ple sources, including 2D digital map data and terrain models, to create a 3D
city model of Potsdam to support processes of urban land management. Sim-
ilarly Döllner et al. (2006) emphasised the importance of integrating multiple
sources of data, in particular semantics in addition to the geometry, to create
virtual city models for urban planning. Some aspects of semantic enrichment
have focused on the essentially 3D aspects of city models such as the repre-
sentation of the floors of buildings which will facilitate linking of address data
(such as of commercial companies) that may relate to specific parts of the build-
ings (Döllner et al., 2005) and the representation of facades, in combination with
other associated data (Kumke et al., 2007). Directly linked to issues of data in-
tegration and semantic enrichment of 3D models has been the exploitation and
development of data modelling initiatives from the domain of geographical infor-
mation systems, resulting in the CityGML (Kolbe et al., 2005) XML vocabulary
(itself an application schema of the Geographical Markup Language GML3) and
from the domain of building information models (BIM), resulting in the Industry
Foundation Classes (IFC) model (Döllner and Hagedorn, 2007). These models
provide support for detailed modelling of urban and building structures and
provide support for naming and describing building features with information
of the sort that may be inherited from 2D digital maps or mined from Web 2.0
sources as described here. The potential of ontologies to support interoperabil-
ity between 3D urban models has been highlighted by Métral et al. (2009), who
show how ontologies can assist in matching concept terms in an application of
3D city models to personal travel planning.

Most work to date on integration of data for 3D city models has employed
conventional data sources that are fairly well structured and derive from com-
mercial and public service agencies. The work that we present here differs in its
emphasis upon the use of freely available Web 2.0 information sources. A no-
table recent example of a similar interest in exploiting such data for generation
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of 3D city models is that of Neubauer et al. (2009), who demonstrate the inte-
gration of 2D digital map data including building outlines, roads, land use areas
and points of interest from OpenStreetMaps with digital elevation data from the
SRTM model. In their work they extruded the OSM building plans with default
height values. It should also be pointed out that the focus of the work that we
present here is upon the use of Web 2.0 sources that provide essentially 2D
data that can be used to enrich the description of 3D models, particularly with
familiar or culturally significant names of buildings and landmarks. We do not
address here issues of use of such data to provide actual 3D information.

The idea of matching spatial datasets in order to integrate the best aspects
of each or to transfer properties of one dataset to another is well established
in the field of GIS and is referred to as conflation, most examples of which re-
fer to 2D datasets (e.g. (Samal et al., 1994)). The problem encountered here
of matching a 3D model to a 2D map can be reduced to the 2D problem by
projecting the building boundaries of the 3D model to the horizontal plane. A
variety of techniques have been described to perform the matching of geometry
between representations including statistical methods based on mutual informa-
tion concepts of communication theory (Walter and Fritsch, 1999) and Bayesian
maximum likelihood methods (Jones et al., 1999). The use of Web 2.0 resources
to discover and link geographically-referenced information has received increas-
ing attention in recent years, though its use to enhance digital map datasets is
not well established. An example of linking RDF (semantic web linked data)
versions of Wikipedia (DBPedia), Geonames and Flickr is provided in (Schenk
et al., 2009), though it was not applied there to enhance other geo-spatial digital
models. An example of linking geo-referenced Wikipedia articles to the content
of maps on a location-aware mobile application is found in (Baldauf and Simon,
2010).

3. City Model Generation

In this section, we introduce the city model used for the enrichment process.
While various georeferenced city models exist, for example in Google Earth, the
current accuracy of many of these models, their placement, and level of detail
can vary greatly. Manual registration of such models with accurate 2D ground
plans can be very time consuming. In addition, some popular modelling lan-
guages used to describe city models, notably KML, do not include any detailed
semantic attribution about buildings and their parts. Thus, we use the method
described in (Quinn et al., 2009), to combine detailed 3D models with accu-
rate 2D city ground plans. In order to make associations between 3D model
geometry and the 2D map data and web resources that contain the required
semantics, it is necessary to make logical connections between the 2D and 3D
geometry and to transfer to the 3D models some of the logical segmentation of
the 2D models that corresponds to the presence of individually addressed, or
otherwise named, entities - as illustrated in Figure 1. However, while there are
many, detailed, hand designed 3D building models available, such models are
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(a)

(b)
(C)

(d)

Figure 1: 3D scene registered with 2D ground plan data. Also illustrating how names of
places from Web 2.0 sources can be integrated into the 3D model once they are associated to
an underlaying 2D ground plan. (a) St. Stephan (church), (b) Obere Pfarre (place of worship),
(c) Klosterbrau (pub), (d) Battingerhaus (attraction), 3D model is shown positioned above
the 2D ground plan for visualisation purposes.

not always robustly structured in that they may suffer from geometric and topo-
logical inconsistencies, non-affine transformations, and unknowns due to a lack
of design intent knowledge. The city model is generated through the combina-
tion of multiple commonly available datasets of the city of Bamberg, Germany.
These sources are: A 2D city ground plan, a set of high-quality triangulated 3D
models of various cultural or significant parts of a city, a digital elevation model
(DEM) of the area, and satellite imagery of the city.

The 2D city ground plan data-set, P , is a set of M buildings in the DHDN
/ Gauss Kruger Zone 4 projection, where each building is represented as a
single, planar, polygon pi, and P : {p1, · · · , pM} ⊂ R2. The dataset P in this
work is typical for that available from a city or council for planning applications
development, and is assumed to be the most accurate representation of the
ground plans of the buildings within the city. The 3D data-set consists of
arbitrary groups of buildings from within the city. Each group is assumed to be
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modelled as a set of polygons in R3, which may be either connected or disjoint,
i.e. no assumption is made regarding which polygons belong to which buildings,
or any internal segmentation within a building. The quality of the geometry is
not assumed to be good; the topology of the scene is entirely arbitrary, holes
may exist, polygons may intersect, be incorrectly aligned, etc. Each scene is
therefore treated as the sort of data typically available from user-contributed
services such as Google 3D Warehouse, being generally created by hand and not
assumed to be created by a professional designer.

The combination of the 2D and 3D models results in a well-segmented
set of buildings that conforms to the building segmentation determined by
the accurate 2D ground plan dataset P , which is very important for the se-
mantic enrichment discussed in Section 4. The set of buildings is defined as
B : {b1, · · · , bm} ⊂ R3, forming part of the enriched city model C. In order
to produce an accurate model of a city, the buildings Bi in the city model C
must be projected onto a terrain model. The digital elevation model used in
this work consists of a set of height values, registered to the DHDN / Gauss
Kruger Zone 4 projection. Note that no internal building geometry has been
incorporated into this model.

4. Semantic Enrichment

In this section we show how to enhance the city model C with thematic
information about each building (where available). The techniques developed
are general and applicable to any city model which has been registered to some
real world coordinate system. To find thematic information for buildings bi,
the polygons pi ∈ P (in the 2D ground-plan) are matched to point referenced
places (or buildings) in Wikipedia, OpenStreetMaps and the free web gazetteer
(a directory of place names with thematic attributes and spatial locations) Geon-
ames. Any found information can then be added to each building bi and, as the
3D model is registered with the 2D model, enfused into the final enriched 3D
model.

Information from geo-referenced Wikipedia articles is extracted as RDF (The
Resource Description Framework) triples by the DBpedia project and exposed
through a public API. Wikipedia articles are then accessed using the SPARQL
RDF query langauge, and stored locally in a Postgres spatial database. Infor-
mation from Geonames is pre-extracted from their Restful API and again stored
in a local Postgres spatial database. OSM locations were taken from Points of
Interest OSM extracts in Shapefile format, and again converted to and stored
in a local Postgres spatial database.

The complete semantic enrichment process is illustrated is Figure 2. In
overview, the 2D ground plan is preprocessed to join component building parts
together, and remove non-building parts i.e. walls. This new joined ground plan
is then fed into either the baseline fuzzy mapping technique or prominent build-
ing fuzzy mapping technique which, in essence, associates locations from OSM,
Geonames and Wikipedia to buildings in the 2D ground plan. This mapping is
transferred to the 3D model and a semantically enriched 3D model is produced
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Figure 2: A flow diagram showing the complete semantic enrichment process. From input of
the 3D model, 2D ground plan and store of locations, to output of a semantically enriched 3D
model in a Postgres spatial database

(Stored in a Postgres spatial database),where of interest this information could
then later be used to produce a semantically enriched model in CityGML format
- although such work is outside the scope of this paper. Each of these processes
is described in more detail in the sections to follow.

4.1. Preprocessing the Ground Plan

The Bamberg 2D ground plan P has 3665 unique building objects. How-
ever, as indicated earlier, often buildings that represent a semantically distinct
entity, are segmented into a number of different building polygons. For exam-
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a)

b) c)

Figure 3: Various models of the Alte Hofhaltung building: a) Detailed 3D model, b) Top
down orthographic projection, c) A set of buildings in the 2D ground plan P , all of which
represent a part of the building

ple, Figure 3 shows both the orthographic top down projection of the 3D model
that represents the Alte Hofhaltung (illustrating its 2D footprint), and the set
of buildings polygons from the ground plan P that represent the same building
entity. Each of these building polygons should be linked to the same informa-
tion resource. This situation is characteristic of the ground plan. Consequently,
a preprocessing method that groups together segmented buildings is required,
such that during linking from point referenced information sources to buildings
in P , the correct extents of these semantically distinct buildings are mapped
onto.

In this section we develop a general preprocessing method for building group-
ing based on building connectivity and distance. The method groups buildings
without addresses (shown in yellow in the 2D ground plan in Figure 3) to those
buildings with addresses (shown in blue in Figure 3) under the assumption
that buildings with an unique address should be preserved, and only joined to
those closely connected buildings without addresses. The grouping forms a new
ground plan Pjoin based on connectivity (preserving address boundaries) and
address similarity.

4.1.1. Preprocessing Implementation

Building parts without addresses denoted Baddr− (where Baddr− ⊂ P ) are
joined to buildings with addresses denoted Baddr (where Baddr ⊂ {P\Baddr−})
by considering building connection, creating the joined set Pjoin. The result of
preprocessing is to merge or union the geometry of individual building polygons
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without addresses, with those building polygons with addresses, ideally in a
way such that the resulting 2D building outline is a better representation of
the corresponding building outline of the registered 3D buildings (generated as
described in section 3).

Joining Buildings by Connection. Distance (building proximity) and connec-
tivity are the principle heuristics used to join buildings. That is, buildings are
joined based on which are connected, how close they are to each other and the
degree of connection. The first step involves finding all paths between each
building bi ∈ Baddr− (without address) to each building gi ∈ Baddr (with ad-
dress) using a function denoted CountHops.

CountHops counts the number of hops from the input building bi to each
connected building gi. A hop is a traversal from one building to an adjacent
building with which it shares the whole or part of a boundary edge. Figure
4 illustrates the number of hops between the building with ID 3136 and the
nearest connected buildings from Baddr. Each complete set of hops (a path)
identifies a connected addressed building.

At this stage the path with least hops is not chosen for grouping. To illustrate
why, note that in the example in Figure 4, building 3136 is only 2 hops from
building 1379, whereas it is 3 hops from its more obvious grouping to building
1378. Hence, once all possible paths (a set denote Ps) have been generated for a
building bi, two measures for each path are evaluated and optimised. The first is
a measure of connectedness between each of the buildings in a path. That is the
mean length (m) of the intersecting (shared) edges (a function denoted El). The
second measure is the total of the Euclidean distances between centroids of each
adjacent unaddressed building in the path, plus the distances from centroids to
neighbouring edges of the addressed building gi (termed path length, a function
denoted Pl). Examples of both measures are shown in Figure 5.

For each path Pci ∈ Ps, the total intersection length and centroid distance
is computed. We then seek to find solutions that minimise the total centroid
distance and maximise the total intersection length. The optimum solution is
chosen by maximising the average mean function Best(Pci) as applied to all
candidates Pci in the set of all possible paths Ps.

Best(Pci) =
2(1− Pl(Pci)) + El(Pci)

3
(1)

Pl is maximised in function Best, and Pl has twice the weighting of El as,
during empirical evaluation, it was discovered best to favour smaller path lengths
over larger edge intersection lengths. As an example, in Figure 4 building 1378
was joined to building 3136.

Once a best solution is obtained using the function Best, the start building
bi and end building gi are stored as a tuple {bi, gi} and added to the join stack
JS. This process is repeated for all starting buildings bi, and once all buildings
bi have been joined to a building gi, the join stack JS is traversed and the
polygonal geometries of each building tuple {bi, gi} are merged. This operation
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Figure 4: All possible paths (including each hop) between the building 3136 and buildings
with address information (in blue)

Figure 5: Example intersection length and centroid distance
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Figure 6: Polygons representing buildings connected through polygons representing city walls
(in yellow)

Figure 7: Example city walls from the 3D model C

creates the set Pjoin of joined buildings. Thus Pjoin then contains the identities
of addressed buildings, the corresponding geometry of which has been updated
to include the associated previously unaddressed building objects with which
they have been merged.

4.1.2. Improving Building Joining

As shown in Figure 6, some buildings are joined through city walls - ex-
amples of city walls from the 3D model are shown in Figure 7. One option for
improvement when joining buildings is to omit hops across city walls, which
can have the effect of joining buildings that should not be directly connected.
However, in order to prevent this the system must be capable of first identifying
polygons that represent city walls.

As wall objects are non-compact elongated shapes, shape description vectors
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(S(bi)) for each building shape bi in Pjoin are constructed based on the notions of
elongation and compactness. However these two descriptors are scale invariant
and, on their own, are not enough to distinguish between elongated wall shapes
and elongated building shapes. Hence a third descriptor is introduced into
S(bi) based on object area which helps to distinguish elongated non-compact
buildings, as they have much larger area than walls. Each shape descriptor is
now described, followed by a definition of the final shape description vector.

The elongation measure of a shape bi with polygonal boundary is defined
in (Stojmenović and Žunić, 2008) as:

ε(bi) =

∑
1≤i≤n |ei|+

√(∑
1≤i≤n |ei|cos(2αi)

)2
+
(∑

1≤i≤n |ei|sin(2αi)
)2

∑
1≤i≤n |ei| −

√(∑
1≤i≤n |ei|cos(2αi)

)2
+
(∑

1≤i≤n |ei|sin(2αi)
)2

where ei (1 ≤ i ≤ n) are edges of the boundary of buildings bi, and αi (1 ≤ i ≤ n)
are angles between the edges ei and the x-axis. Given a shape bi of perimeter
P and area A, the compactness measure for shape bi is defined as (see for
example (Lee et al., 2004)):

C(bi) =
P 2

A

A shape description vector S(bi) of a building bi is then defined by its elongation
measure, compactness measure and area:

S(bi) =

 ε
C
A


In order to create a classifier for walls, a training set of 20 walls, 20 terraced

buildings, 20 small building parts and 20 large building shapes was taken from
P (0.016% of all building shapes), and their shape vectors stored as the set
Ls. Example training polygons representing walls, and those representing large
prominent buildings e.g. places of worship, museums etc. and terraced buildings
are shown in Figure 8

During building joining, a shape description vector is generated for each
start building bi and connected building gi, and matched against each of the
shapes li in the set of learned shape descriptors Ls using the cosine similarity
measure, which produces a value in [-1,1], where the highest value is taken as
the closest match:

similarity(bi/gi, li) =
S(bi) · S(li)

||S(bi)|| ||S(li)||

If a shape bi is classified as a wall, the algorithm moves on to the next start
building bi ∈ Baddr− . If the shape gi is classified as a wall, the algorithm will
not consider it a possible hop and hence will ignore it as a possible join path.
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Figure 8: Example wall (left) and building (right) shapes

4.1.3. Preprocessing output

After running the complete preprocessing steps over the input ground plan
P , a new ground plan Pjoin is created as shown in Figure 9. One immediate
observation is that most ‘wall’ shapes have been removed, as they were not con-
sidered start buildings bi. In addition any building without address that was not
physically connected to buildings with addresses is also not contained in Pjoin

. Removing walls and non-connected buildings helps to remove noise from the
ground plan, making matching points in v more robust as shown in the evalua-
tion section. Algorithm 1 describes the complete pre-processing algorithm.

4.2. Matching Issues

Matching building polygons bi ∈ Pjoin to point referenced locations from
each of the three sources ranges in complexity from simple containment queries
(point in polygon checking), to non-trivial cases that involve mapping a single
point referenced location to a number of spatially disjoint buildings. These
cases, in order of increasing complexity, are now described. From this point
onward, the complete set of point referenced building locations ν from Wikipedia
/ DBpedia (W ), Geonames (G) and Open Street Maps (O) is defined as:

ν = {W,G,O}

Case 1 - Direct Containment. In the simplest case, point referenced locations of
buildings in ν lie directly inside a polygon bi. Hence, a simple point in polygon
match is applicable, see for example the Cathedral de Bamberg example in
Figure 10(a).
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Figure 9: The final joined ground plan Pjoin

Case 2 - One to One Matching. Point referenced locations of buildings in ν do
not always lie inside a polygon bi in P as in case 1. Figure 10(b) shows how the
Alte Hofhaltung Wikipedia article has been geo-referenced outside of its actual
building polygon.

Case 3 - One to Many Matching. In a slight alteration to case 2, certain lo-
cations in ν can refer to a number of separate buildings. Figure 10(c) shows a
Wikipedia reference that refers to a block of 17 separate buildings referred to
as part of Small Venice, a former Fischer settlement on the eastern bank of the
river Regnitz in Bamberg.

Case 4 - One to One With Many Disjoint Buildings. A single building location
in ν may map to more than one disjoint building bi in P that belongs to the
same set of buildings. For example, University of Bamberg is comprised of 4
spatially disjoint buildings in this area of the city, see Figure 10(d).

Outcomes:. Case 1 is easy to solve with a point in polygon check. Clearly
it is possible that, even though the point location is contained inside a single
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Algorithm 1 Preprocess()

1: Let JS be the join stack, which is a set of building tuples e.g. the building
without address, and the best connected building with address

2: Let shapeVectors[] be the training set of shape vectors representing walls,
terraced buildings, small buildings and large buildings

3: Let P be the set of polygons in the 2D ground plan
4: for Polygon b ∈ P do
5: if b does not have an address then
6: match b to set of shapeVectors using cosine similarity measure
7: if b is not classified as a wall shape then
8: Let allHops[] = countHops(b, P , shapeVectors)
9: if sizeof(allHops) == 1 then

10: add b and last connected polygon entry in allHops[1] to JS
11: else
12: Let bestHop = compute best chain by choosing the best chain from

allHops[] using the function Best (function 1)
13: add b and last connected polygon entry in bestHop to JS
14: end if
15: end if
16: end if
17: end for
18: Join building geometries in JS

building, it actually maps to more than one building. However, our approach
aims to be conservative, where the precision of mapping is more important than
recall. In other words, we would rather map to one correct building, than map
to many buildings where only a subset are correct. Case 2 could be solved by
finding the nearest (in terms of Euclidean distance) building, however in some
cases, the nearest building may not always be the correct building - see Figure
11, where building 126 is closer than its correct mapping, building 151. Cases
3 and 4 are, with the information we have, non-trivial. Case 3 would require
associating 17 buildings to the same Wikipedia article, while not associating
any of the other, often still connected, buildings. An obvious approach here
would be to use the registered 3D model to consider occlusion. However, from
manual investigation it appears users do not themselves consider occlusion when
tagging articles in Wikipedia, or when adding locations in Open Street Maps or
Geonames i.e. some references are to occluded buildings, hence this approach
would not apply to all cases. Case 4 is a specialisation of case 3, which also
requires associating a number of nearby buildings to a single Wikipedia article,
but here each member of the spatially disjoint set of buildings is semantically
part of the same building entity (i.e. the set of buildings is referred to by a
single name).

In this paper we develop two fuzzy mapping functions that associate, to
a certain degree, each georeferenced information source (the points in ν) with
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Algorithm 2 countHops(Polygon buildingPolygon, GroundPlan P , ShapeVec-
tors shapeVectors[])

1: Let allHops[] be the set of all possible join paths
2: METHOD count(Polygon buildingPolygon, currentHops[], VisitedPoly-

gons[])
3: for Polygon b ∈ P do
4: if b is not in visitedPolygons then
5: if b intersects with buildingPolygon then
6: match b to set of shapeVectors using cosine similarity measure
7: if b is not classified as a wall shape then
8: if p has an address then
9: add b to currentHops

10: add currentHops to allHops[]
11: else
12: add b to currentHops[]
13: add b to visitedPolygons[]
14: count(p, currentHops, visitedPolygons)
15: end if
16: end if
17: end if
18: end if
19: end for
20: END METHOD
21: return allHops[]
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Alte Hofhaltung
 (Bamberg)

Catedral de Bamberg

Klein-Venedig 
(Bamberg)

Otto-Friedrich-
Universität Bamberg

a) b)

c) d)

Figure 10: Example mappings between Wikipedia georeferenced articles and buildings in P

buildings in the 2D ground plan Pjoin. By using a fuzzy mapping we hope to
overcome some of the issues previously described. The fuzzy mapping functions
are described in the sections to follow.

4.3. Fuzzy Mapping Function

In this section we describe the process of linking points in ν to building
polygons bi in Pjoin using one of two different fuzzy mapping functions. Once
linked to the joined 2D ground plan, this information can be added to the
registered 3D city model C.

Here we use the notion of fuzzy relations (Zadeh, 1965) to map locations
to buildings. More specifically, we use a fuzzy relation R : ν × P 7→ [0,1]
to map points from ν to buildings in P , where the degree of truth in [0,1] to
which the mapping holds is determined using two fuzzy mapping functions R
as described in sections 4.3.1 and 4.3.2. The fuzzy relation R forms a new
fuzzy set Ω, which is a list containing element and membership degree pairs; Ω
={{x, y},R1}, {{x, y},R2}, . . . , {{x, y},Rnm}, where x is a point from the set
ν, y is a building from the set P , n is the size of the ν and m the size of P , and
R is their membership degree in [0,1], e.g {{Cathedral de Bamberg, 1191},1},
{{Alte Hofhaltung, 479},0.9}, {{Alte Hofhaltung, 495},0.87}}.
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Figure 11: Possible inaccuracies of nearest building match (St. Jakob). The dotted lines
represent example distances between the Wikipedia location for St. Jakob and some of the
buildings in the ground plan P

4.3.1. Baseline Fuzzy Mapping

The Euclidean distance, d, from point locations in ν to building bi polygons
in Pjoin is based on the distance from the point to either the nearest edge of
the building or to the nearest vertex of the building, depending on which is
closer. The baseline fuzzy relationship R between a point pi from the set ν,
and building bi from the set Pjoin is then computed using a normalised distance
measure in [0,1]. That is, by normalising the computed distance d against the
maximal distance between the point p and all buildings bi in Pjoin :

R(p, b) = 1−
(
d(p, b)

dmax(p)

)
dmax(p) = maxbi∈Pjoin

(d(p, bi))

Relations closer to 1 represent better mappings. All directly contained points
(points that lie inside building polygons) have a distance of 0 and hence a degree
of membership R of 1.

Considering multiple evidence across sources: . Many points in ν may link
to the same building in Pjoin. A many-to-one linking can be added as extra
evidence for the fuzzy relation R. For example, Figure 12 shows both the
Wikipedia point reference and Open Street Maps point reference to the same
building (building 151 or St. Jakob’s church).
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Figure 12: Improving matching by considering multiple evidence (St. Jakob). The dotted
lines represent example distances between each location and some of the buildings in the
ground plan Pjoin

Consequently, the normalised distance fuzzy relationship function is ex-
tended to include mappings that consider more than one identical point refer-
ence. To identify identical point references in ν, standard and alternative names
of each article or POI are matched, using a combined soundex and edit distance
fuzzy string similarity measure. Sets of identical references ν1 = · · · = νn are
then removed from ν and added to a new set ν= as tuples t = {ν1, · · · , νn}
where, for the set ν= , n ≥ 2. For simplicity, we also assume from this point
onward that remaining elements of ν are actually tuples t but with only one
element i.e. n = 1. Hence the total combined set of point references V is then
formed from entries in ν and entries in ν= e.g. V = ν= ∪ ν.

Once V has been established, membership degrees R in Ω relating point
references in V to buildings in Pjoin are computed using the normalised mean
distance between each evidence point νi in a tuple ti in V (where 0 < i < |ti|),
and each building. More formally, the relation R is computed for a tuple t in
V and a building b in Pjoin as:

R(t, b) = 1−
(
d(vi, b) + · · ·+ d(vn, b)

dmax(t)× n

)
, where n ≥ 1

Where in this case dmax is used to find the maximum distance between the
mean distance of points in a tuple t and all buildings bi in Pjoin e.g.

dmax(t) = maxbi∈Pjoin

(
d(v1, bi) + · · ·+ d(vn, bi)

n

)
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An element membership degree pair {{x, y},R} is then added to the set Ω for
each tuple ti and building bi by taking the computed degree as the element R,
the point vi with minimum distance as element x, and the building bi as the
element y.

Finally, the fuzzy relation function R(t, b) can be further improved by in-
troducing a common sense heuristic that point references in V will not be over
100m from the building(s) they refer to. Hence the final baseline function Rb

returns a membership degree of 0 for all those buildings outside a 100 metre
radius from the minimum distance point vn in a tuple tj :

dt(t, b) =
d(v1, b) + · · ·+ d(vn, b)

n

Rb(t, b) =

{
1−

(
dt(t,b)
dmax(t)

)
if dt(t, b) < 100

0 otherwise
(2)

where n ≥ 1.

4.3.2. Prominent Building Fuzzy Mapping

We have also developed an alternative fuzzy membership function which
boosts degrees of membership for prominent building shapes. A building classi-
fier was built to detect prominent buildings. Again we build a shape description
vector S for a sample set of buildings from the ground plan Pjoin, based on
the building’s elongation ε (see (Stojmenović and Žunić, 2008)), compactness C
(see, for example (Lee et al., 2004)) and area A (scale). More formally, a shape
description for a building bi is the vector:

S =

 ε
C
A


Shape vectors were learnt for 20 buildings in the ground plan that represented
walls, 20 that represented terraced or small buildings and 20 that represented
large prominent buildings (0.016% of all buildings in Pjoin). The set of learned
shapes were added to the training set Lv. The cosine similarity measure was
used to match and classify shape vectors for new building shapes against those
in Lv.

The new fuzzy membership function denoted Ralt(t, b) is then a function of
both distance and building shape. More formally, for a tuple t in V and building
b in P :

Ralt(t, b) =


W

(
dt(t,b)

dmax(t)

)2

Wmax(t)
if Pb(b) = true(

dt(t,b)
dmax(t)

)2

Wmax(t)
if Pb(b) = false

(3)

where dt(t, b) < 100, and n ≥ 1. Note that if dt(t, b) ≥ 100, Ralt(t, b) = 0.
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Pb(b) is a function that takes a building bi and determines if it is a prominent
building by matching its shape description vector against the set of learned
shape vectors Lv (as discussed previously). Wmax is the maximum value (for
normalisation) taken from the mean distance of a tuple of points t from V and all
buildings bi in Pjoin squared and multiplied with a weighting W if the building
bi is a prominent building. Algorithm 3 describes the matching algorithm with
reference to Equations 2 and 3.

Algorithm 3 ProduceMapping()

1: Let Pjoin be the set of polygons in the 2D ground plan
2: Let ν be the set of point locations from OSM, Geonames and Wikipedia
3: construct the set v= of tuples of identical point locations
4: Let Ω be the set of fuzzy mappings
5: for location tuples t ∈ ν= do
6: for Polygons b ∈ Pjoin do
7: Let D be a set of {polygon,location,distance} tuples
8: for location v in t do
9: if v lies inside b then

10: add the tuple {v,b,0} to the set of tuples D
11: else
12: Let distance = the minimum distance between b and v
13: add the tuple {v,b,distance} to the set of tuples D
14: end if
15: end for
16: Let Davg = compute average distance for the set D and add new tuple

{v,b,avgDistance}
17: Let maxD = the maximum distance between location v and all Polygons

b ∈ Pjoin

18: if the desired output is the baseline mapping then
19: compute the normalised baseline fuzzy relations for Dall using Equa-

tion 2 and add them to the final set of mappings Ω
20: end if
21: if the desired output is the alternative mapping then
22: compute the normalised baseline fuzzy relations for D using Equation

3 and add them to the final set of mappings Ω
23: end if
24: end for
25: end for
26: return Ω

5. Evaluation

In this section, we give an experimental evaluation of the semantic enrich-
ment technique by firstly analysing the accuracy of the building joining pre-
processing technique, and then by comparing the accuracy of location-building
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mappings produced by the automated semantic enrichment process with a set
of assumed accurate location-building mappings produced by a human expert
(see Sections 5.1 and 5.2).

5.1. Evaluation of Automated Building Joining
As a first step in evaluating the semantic enrichment process, we analyse the

accuracy of the automated building joining procedure by comparing it against
groupings defined by a human expert. The human expert was given the original
ground plan P and asked to join buildings that they thought part of the same
building entity. In this way we can compare the expert grouped buildings against
the machine grouped buildings in Pjoin.

For each expert building group, the number of building groups identified
by the machine to cover the same set of buildings was determined. A building
agreement ratio BA is then calculated for each individual expert building group-
ing as ratio of the number of machine groups per human group e.g. BA = 1

NM ,
where NM is the number of machine groups. If the number of machine groups
used to group a certain set of buildings is the same as the number of human
groups then BA = 1. If for example there were two machine groups used to
represent one expert grouping, then BA = 0.5. The graph in Figure 13 shows
BA ratio ranges on the x-axis against matching percentages on the y-axis. Each
ratio is bucketed into intervals of 0.1 from [0,1), with a final bucket representing
the range [1,1] - to show exact matches.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$" !#,-$" !#+-!#," !#*-!#+" !#)-!#*" !#(-!#)" !#'-!#(" !#&-!#'" !#%-!#&" !#$-!#%" !#!-!#$"

Building Agreement (BA) ratio ranges

Ag
re

em
en

t p
er

ce
nt

ag
e

Figure 13: Evaluation of the accuracy of automated building grouping

As shown the machine and expert groupings have a high exact agreement
(BA = 1) of 48%, thus 24 out of the total 50 expert groups were exact matches.
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However, the percentage drops from ratios of 0.6 to 0.0 for the remaining 52%
of building groupings. That is, the remaining 26 expert groups were represented
on average by 1.6 up to 10 machine groups. Despite this relatively high number
of exact ratio agreements, the number of low ratio agreements is a concern. In
understanding this, the human expert did not try to group buildings to ad-
dressed buildings, instead using only local knowledge to group buildings. Thus
the human expert has often grouped buildings with separate addresses - build-
ings that would not be grouped by the automatic, address preserving, machine
grouping method.

5.2. Semantic Enrichment Mapping Accuracy

We evaluate both standard and alternative fuzzy relations applied to the
grouped ground plan Pjoin along with the original ground plan P . The original
ground plan P is used to see whether building grouping removed noise and
increased the accuracy of the linking process. The four different outputs of the
system are then:

1. Matching buildings in Pjoin to point referenced locations using the alter-
native (Prominent) fuzzy membership relation

2. Standard matching of buildings in Pjoin to point referenced locations using
the standard fuzzy membership relation

3. Matching of buildings in P to point referenced locations using the alter-
native (Prominent) membership fuzzy relation

4. Standard matching of buildings in P to point referenced locations using
the standard fuzzy membership relation

For the area of Bamberg, the set V has 53 tuples with only one evidence
location v, and 10 tuples with evidence from multiple sources i.e. vi where
i > 1 . After applying both standard and alternative fuzzy mappings over the
set Pjoin, the fuzzy set Ω holds mappings between places referenced by articles
in Wikipedia, or entries in Geonames and Open Street Maps, and buildings in
Pjoin. For evaluation, we compare the results of the mapping after applying
different thresholds on the fuzzy relationship R, with manual mappings held in
a set ψ as defined by a local expert.

For comparison, we first partition the sets Ω and ψ such that each partition
ωi of Ω represents information about a single unique reference v in V , and simi-
larly for each partition φi of ψ. For each identical partition ωi and ψi (identical
in that they are about the same reference v in V ) we then compute the following
measures for both baseline (standard) and alternative fuzzy relation functions
at different threshold levels of R. The first (represented by the columns in Fig-
ure 14) is a measure of the number of exact matches between the machine and
expert output. That is, how many of the locations have been mapped exactly
onto the same number of buildings as the human expert, without mapping onto
other incorrect buildings. The second (represented by the line graph in Figure
14) shows the average (for all v) per threshold level of a combined measure C of
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Figure 14: Comparison of the baseline (standard) and prominent fuzzy membership functions

mapping accuracy for each unique point location v. More formally, C is defined
as:

C(v) =
3(1−NFP (v)) + (1−NOP (v)) + 2(NA(v))

6
Agreement A is a count of the number of buildings correctly matched in

the machine output with those from the expert output. Agreement is then
normalised (NA) by dividing A by the total number of buildings in the expert
output for that partition φ. Normalised False Positives (NFP ) is the count
of the number of buildings linked to point references in the machine output
that are not contained in the human output, divided by the total number of
machine buildings in ωi. Normalised Omitted Positives (NOP ) is the count of
the number of buildings linked in the expert output that are not contained in
the machine output, divided by the number of buildings in φ. Weightings are
introduced such that priority is placed on maximising agreement and minimising
machine false positives NFP . This is because, it is assumed better to not match
all buildings in the machine output to the expert output and have a low number
of machine false positives, than match to all buildings in the expert output
but also many others not in the expert output - giving erroneous linkage from
buildings to point reference information sources

The maximum score for the prominent (0.6043) fuzzy mappings for the orig-
inal ground plan P occurs at a low threshold of 0.0. At this threshold the
average percentage of FP is 0.93, which equates to 118 buildings (for each lo-
cation on average) being mapped to a location that is not in the expert output.
The maximum score of 0.6261 for the standard fuzzy mapping for the original
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ground plan P occurs at a higher threshold of 0.7. This is an improvement over
the prominent mapping, however this still equates to 8 buildings (for each loca-
tion on average) being mapped to a location that is not in the expert output.
The prominent fuzzy mapping shows a far higher accuracy when considering
only exact matches. An exact match percentage of 0.02 starts at a relatively
low threshold of 0.1, and continues to improve until hitting a peak of 0.3 at a
threshold of 0.9.

The accuracy trend of both standard and prominent fuzzy mappings to build-
ings in the original ground plan P are below those for mapping to the grouped
ground plan Pjoin. Furthermore, the maximum combined score for each is
roughly 0.1 (10%) lower than the maximum combined score for each fuzzy map-
ping method over the grouped ground plan. This lower level of accuracy helps
justify the need to group buildings together, in addition to the initial require-
ment of better matching 3D building footprints. Grouping sets of buildings
together helps to remove noise created by large groups of small buildings that
have an adverse effect on the normalised distance measure.

Both the prominent and standard fuzzy mappings over the grouped ground
plan Pjoin follow a general trend where increasing the threshold increases the
combined measure. This is largely attributed to the sizeable decrease in average
FP (from approximately 46 to 0.2) for these thresholds compared to compar-
atively smaller increase of average OP (from 1.8 to 3.4), and small decrease
of average A. However, all fuzzy mappings see decreases in combined measure
beyond a 0.85-0.9 threshold. At these thresholds the average FP does not drop
much, but the average OP is still increasing and the average A is still decreas-
ing. The prominent fuzzy mapping has a marginally better maximum combined
measure of 0.704 at a threshold of 0.9, compared to the maximum combined
measure of 0.701 at a threshold of 0.85 for the standard mapping. Furthermore,
at this threshold the prominent mapping has a 0.4 (40%) exact match success
rate, compared to a maximum of 0.3 (30%) for the standard mapping. Indeed
the prominent mapping over both P and Pjoin provides a far better exact match
rate than the standard mapping. At the best threshold for the prominent map-
ping, the average number of NFP is 0.18, which equates to a relatively low
0.29 extra buildings being mapped in the machine output. The average NOP
is 0.37 or an average 3.29 buildings in the expert output that were not in the
machine output, this is an increase from the best value of 0.14 (1.8 buildings)
at a threshold of 0.0. However, as previously stated, we prioritise minimising
the average NFP over the average NOP .

Consequently, to achieve the best mappings between location and buildings
the alternative mapping Ralt at a threshold of 0.9 over the buildings in Pjoin

should be used. As a result, buildings in Pjoin are then linked to information
sources and output as an enriched ground plan PE . Buildings in the 3D city
model C that are registered to the ground plan PE inherit the corresponding
linkage to information sources.
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6. Conclusions and Future Work

In this paper we have presented methods to assist in improvement of the
semantic annotation of city models. The main contribution of this paper is
the semantic enrichment from geo-referenced Web 2.0 sources. The presented
semantic enrichment procedures exploit georeferenced information from three
Web 2.0 sources: Wikipedia, Geonames and OpenStreetMap. Matching the
georefenced point locations from these sources to the geometry of the buildings
in the registered 3D model has entailed several challenges. These relate to the
facts that: some individual buildings in the 2D plan may not have address data;
the source point references may be either inside or simply near to the buildings
to which they refer; the references may refer to a single building object or to sev-
eral; and the different sources may have different perhaps conflicting locations
for the point references. These problems have been addressed through a mix of
methods that include merging unaddressed buildings with adjacent addressed
buildings, using various heuristics to make this a sensible process; and the de-
velopment of a fuzzy matching technique that takes account of the proximity
of multiple point references from the different sources and the identification of
potentially important building geometry that can be expected to have been re-
ferred to by name in the Web 2.0 sources. The evaluation of the procedures,
using expert knowledge, has demonstrated that they provide what should be a
useful contribution to automation of the semantic annotation problem.

Further work regarding semantic enrichment will focus on improving the
reliability of the methods, for example through the use of machine learning
approaches to the linking of georeferences to buildings, and the extraction of
finer level semantic annotations relating to the structure of individual build-
ings, such as towers and wings of buildings as well as notable features such as
historic doors, windows and clocks. Other work will focus on development and
generalisation of the model registration process.
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