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Modelling Topological Features of Swarm
Behaviour in Space and Time with Persistence

Landscapes
Padraig Corcoran and Christopher B. Jones

Abstract—This paper presents a model of swarm behaviour
that encodes the spatial-temporal characteristics of topological
features such as holes and connected components. Specifically,
the persistence of topological features with respect to time are
computed using zig-zag persistent homology. This information
is in turn modelled as a persistence landscape which forms a
normed vector space and facilitates the application of statistical
and data mining techniques. Validation of the proposed model
is performed using a real data set corresponding to a swarm of
fish. It is demonstrated that the proposed model may be used to
perform retrieval and clustering of swarm behaviour in terms
of topological features. In fact, it is discovered that clustering
returns clusters corresponding to the swarm behaviours of flock,
torus and disordered. These are the most frequently occurring
types of behaviour exhibited by swarms in general.

Index Terms—Swarm Behaviour, Topology, Spatial-Temporal,
Persistence Landscape

I. INTRODUCTION

A swarm is defined as a set of agents moving in close spatial
proximity to each other. The set of agents may be robots [1] or
animals of a single type, such as birds, fish or humans [2]. It
has been demonstrated that swarms can accomplish complex
tasks such as foraging [3], building complex structures [4]
and navigation [5]. Furthermore, swarms can accomplish such
tasks in a manner that is flexible, robust and scalable [6].
Given these attractive properties, developing accurate models
of swarm behaviour is an active area of research.

To date a number of models of swarm behaviour have
been proposed. For example, Tunstrøm et al. [7] proposed
to model swarm behaviour in terms of rotation order and
polarization which measure the angular momentum and align-
ment of the agents respectively. Current models of swarm
behaviour typically consider metric properties of the swarm
such as the mean orientation of the agents. If one assumes
the swarm to be samples from a topological space, one can
infer this space using, for example, kernel density estimation.
The topological features of this space, and in turn those of
the swarm, can then be modelled. A fundamental approach
to modelling the topological features of a topological space
is to compute its corresponding Betti numbers. The pth Betti
number of a topological space intuitively equals the number
of p-dimensional holes which it contains. Note that the 0th

Betti number of a topological space equals the number of
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path-connected components it contains [8]. To illustrate this
approach to modelling swarm behaviour consider the swarm
of 300 Golden Shiner fish illustrated in Fig. 1(a) [7]. The fish
in question are swimming in a shallow pool and therefore their
positions can be specified using only the x and y Cartesian
coordinates while ignoring the z Cartesian coordinate. The
topological space in question is therefore embedded in R2.
This space appears to have a single path-connected component
containing a single one dimensional hole. That is, the 0th and
1st Betti numbers of this topological space are both equal to
1. Topological features, such as path-connected components
or holes, which persist over longer periods of time are usually
considered of greater significance than those which persist over
shorter periods [9]. Therefore when modelling the topological
features of a swarm it is necessary to model the persistence
of such features with respect to time.

This paper proposes a model of swarm behaviour that
encodes the spatial-temporal characteristics of those topolog-
ical features corresponding to Betti numbers. Specifically, the
persistence of these topological features with respect to time
are computed using zig-zag persistent homology. This gives
a set of intervals representing the periods of existence of the
topological features in question. These sets of intervals are
subsequently converted into a normed vector space represen-
tation known as a persistence landscape. This space facilitates
the application of statistical and data mining techniques. Vali-
dation of the model is performed using data corresponding to
the swarm of fish introduced above. It is demonstrated that the
proposed model can be used to perform retrieval and clustering
of swarm behaviour in terms of topological features. The
research presented here is an extension of previous work of
the authors [10]; a greater discussion of the problem, literature
review and evaluation of the proposed model is provided in
the current article.

The remainder of this paper is structured as follows. Section
II reviews related works on modelling swarm behaviour and
topological features. Section III describes the proposed model
of swarm behaviour in detail. Section IV presents a validation
of the model. Finally section V draws conclusions from this
research and discusses possible future research directions.

II. RELATED WORKS

This related works section is divided into two parts. Section
II-A reviews related works on modelling swarm behaviour
while II-B reviews related works on modelling the topological
features of a topological space.
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Fig. 1. A swarm of 300 fish is illustrated in (a) where each individual fish is represented by a red dot. The Kernel Density Estimation (KDE) fh of the
swarm is illustrated in (b). The simplicial complex of the upper-level set f−1

h [a,∞) is illustrated in (c). The grid of points corresponding to this simplicial
complex is of size 100× 100. The bandwidth h and threshold a of the upper-level set are equal to 0.23 and 1.25 respectively.

A. Modelling Swarm Behaviour

There exists an extensive literature of works which attempt
to model the spatial-temporal characteristics of agents [11],
[12]. In this section only that subset of works where the agents
form a swarm are considered; that is, the agents move in close
spatial proximity to each other. Of these works only the most
relevant are reviewed and an interested reader is directed to
the review article by Vicsek et al. [13] for a more extensive
overview. Ballerini et al. [14] analysed the behaviour of a
swarm of birds and discovered that agent interaction could not
be modelled in terms of distance in the Cartesian coordinate
space. Instead each agent was found to interact with on average
a fixed number of neighbours. Two commonly used models of
swarm behaviour are rotation order and polarization which
measure the angular momentum and alignment of the agents
respectively [7]. These models only consider swarm behaviour
at a specific instance in time. In order to model the temporal
features of swarm behaviour, Tunstrøm et al. [7] proposed to
model how rotation order and polarization vary as a function
of time. Couzin et al. [2] used rotation order and polarization
to validate a proposed model of swarm behaviour. Berger et
al. [15] proposed a method for classifying swarm behaviour
as torus, flock or disordered which are the most common
behaviours exhibited by swarms. A behaviour of type torus
occurs when the agents form a torus in three dimensions or
annulus in two dimensions and move in a common circular
motion. A behaviour of type flock occurs when the agents form
a compact cluster and move in a common direction. Finally,
a behaviour of type disordered occurs when the agents do not
form a particular shape and their motion appears to be random.

Topaz et al. [16] proposed to model swarm behaviour by
computing the Betti numbers corresponding to the swarm
in question independently at each time step. These Betti
numbers are subsequently plotted as a function of time. The
authors found this approach to reveal characteristics of swarm
behaviour not captured by other models that do not consider
topological features. However this model does not consider
the persistence with respect to time of those topological
features corresponding to the Betti numbers. For example,
consider the 0th Betti number which corresponds to the number
of path-connected components. The model by Topaz et al.
[16] computes the number of connected components at each

time step but it does not compute when these components
first appeared and subsequently disappeared. It also does not
compute if the connected components at different times are
in fact the same or different connected components. In this
paper a novel model of swarm behaviour that overcomes this
limitation is proposed.

B. Modelling Topological Features

A number of models of topological relations between re-
gions have been proposed within the GIS community [17].
The two most highly cited are the Intersection Model (IM) by
Egenhofer [18] and Region Connection Calculus (RCC) by
Randell et al. [19]. The IM is based on point set topology.
The RCC is also based on point set topology but in addition
provides a logic for reasoning. A number of works extended
the above models to consider the temporal aspects of topo-
logical relations [20]. Egenhofer et al. [21] describe a model
for reasoning about how topological relations between regions
change over time. This model defines a partial order over
relations which is in turn used to define a measure of similarity
between different relations. The authors argue that this may be
used to predict changes in such relations. Liu et al. [22], [23]
proposed a closely related model which considers complex re-
gions containing multiple path-connected components. Jiang et
al. [24] present a tree model to represent topological relations
and the temporal changes in such relations. Worboys et al.
[25] proposed a method for detecting changes in topological
features exhibited in triangulations corresponding to geosensor
networks. The authors presented further developments in [26],
[27].

The above models could potentially be used to model the
topology of swarm behaviour but there are some significant
differences relative to that proposed in this article. These mod-
els focus on modelling topological relations between regions
and detecting changes in topological features. They are not
concerned with modelling and analysing the persistence of
topological features such as holes. Also these models assume
that change over time is continuous [23] and when regions
are represented by triangulations that change at each time
step involves the addition or deletion of a single triangle [24].
Given this assumption, all of the above models consider a logic
based approach where at each time step a set of conditions is
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checked and used to infer changes in topological relations. In
principle a very large number of changes could occur and
need to be checked for. It is possible therefore that some
will fail to be detected. The authors of [24] acknowledge that
their experimental implementation did not detect all changes in
topological features, though of course further rules could have
been added. The model of swarm behaviour proposed in this
article is formulated in terms of computing zig-zag persistent
homology. This approach is algebraic, as opposed to logic,
based. The zig-zag persistent homology may be computed
exactly; therefore the method is correct and does not fail to
detect changes in topological features. The approach presented
here is similar to that of Worboys et al. [25] in that we
also generate a triangulation (a simplicial complex), but here
the triangulations are used to compute the zig-zag persistent
homology, rather than computing changes with respect to the
insertion and deletion of individual triangles. Notably, our
use of persistence landscape leads to a normed vector space
representation of topological features that facilitates spatial-
temporal analysis.

III. MODEL OF SWARM BEHAVIOUR

The proposed model of swarm behaviour consists of the
following three computational steps. Firstly the topological
space in which the agents lie is inferred at each time step using
Kernel Density Estimation (KDE). Next the persistence of
topological features with respect to time is computed using zig-
zag persistent homology [28]. This gives a set of intervals rep-
resenting the periods of existence of the topological features
in question. Finally these sets of intervals are converted into
a normed vector space representation known as a persistence
landscape. This space facilitates the application of statistical
and data mining techniques [29], [30].

The following subsections describe each of these steps.
Specifically, section III-A describes how the topological space
is inferred. Section III-B briefly reviews homology theory
which is used in the computation of the zig-zag persistent
homology which is in turn described in section III-C. Section
III-D describes how the output of this computation is converted
into a persistence landscape representation.

A. Inferring the Topological Space

In this section we describe how the topological space in
which the agents lie is inferred. It is necessary to represent this
space using the combinatorial representation of a simplicial
complex because this is what the zig-zag persistent homology
computation requires as input. A simplicial complex K is a
collection of finite size subsets of a universal set where for
each element σ of K all subsets of σ are elements of K. An
element σ of K is called a p-simplex if |σ| = p + 1 where
|.| is the set size function. A simplex τ is a face of another
simplex σ if τ ⊂ σ. The intersection of any two elements of
K is either the empty set or a face of both elements [31].

As stated previously, it is assumed the agents are samples
from a topological space. When attempting to infer this space
it is necessary to do so in a manner that is robust to noise.
In the context of modelling swarm behaviour noise equals a

minority of agents whose behaviour differs from that of the
majority. A consequence of such noise is the introduction of
topological artefacts. For example, consider Fig. 2(a) which
displays the same swarm as that displayed in Fig. 1(a) but at
a slightly later time. The topological features of the space at
this time are similar to that of Fig. 1(a). However a single
agent lies in the centre of the large path-connected component
and in turn forms an additional path-connected component.
Since this component is the consequence of the behaviour of
a single agent, it is reasonable to classify it as topological
noise.

There are a number of methods for clustering points ro-
bustly, notably DBSCAN [32]. There are also several methods
for modelling the boundary of a set of points (e.g. [33]).
Some of those methods might be applicable here, but with
a view both to achieving robustness and to ensuring that holes
are represented we use an approach which draws from recent
works in the area of robust topological inference [34], [35],
[36].

In the proposed model the following approach is employed.
A Kernel Density Estimation (KDE) of agent locations is com-
puted using a Gaussian kernel with bandwidth equal to h [37].
Let fh denote this estimation. The upper-level set f−1h [a,∞)
of this estimation can be considered a robust estimate of the
topological space provided the threshold a is appropriately set.
That is, the locations of those agents which can be considered
to be noise will have a low density estimation. These locations
will therefore not be represented in the inferred topological
space. This upper-level set is subsequently represented using
a simplicial complex which is denoted K.

In the case of the topological space being embedded in
the ambient space R2, as is the case for the swarm of fish
described above, one only needs to construct a simplicial
complex containing simplices of dimension less than or equal
to two. In this case the simplicial complex K is constructed
using the following approach. Firstly, the density for a grid
of points over R2 is estimated. For each of these points a
corresponding 0-simplex is included in K if the density at
that point is greater than the threshold a. For each pair of 0-
simplices which are vertically, horizontally or main diagonally
adjacent with respect to the grid, a corresponding 1-simplex
is included in K. For each triple of 0-simplices where all
subsets of pairs are vertically, horizontally or main diagonally
adjacent, a corresponding 2-simplex is included in K. This
construction produces a valid simplicial complex. Figure 3
illustrates this construction for a small grid where all points
have a density greater than the threshold a.

Consider again the swarm illustrated in Fig. 1(a) and Fig.
2(a). The KDEs corresponding to this swarm are illustrated in
Fig. 1(b) and Fig. 1(b) respectively. The simplicial complexes
of the upper-level sets of these KDEs are illustrated in Fig. 1(c)
and Fig. 2(c) respectively. Each simplicial complex contains a
single path-connected component and a single one dimensional
hole. They therefore accurately model the topological features
of the swarm in a robust manner.
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Fig. 2. A swarm of 300 fish is illustrated in (a) where each individual fish is represented by a red dot. The Kernel Density Estimation (KDE) fh of the
swarm is illustrated in (b). The simplicial complex of the upper-level set f−1

h [a,∞) is illustrated in (c). The grid of points corresponding to this simplicial
complex is of size 100× 100. The bandwidth h and threshold a of the upper-level set are equal to 0.23 and 1.25 respectively.

Fig. 3. For a grid of dimensions 2 × 4 a corresponding simplicial complex
is illustrated where red dots represent 0-simplices, blue lines represent 1-
simplices and green triangles represent 2-simplices.

B. Homology Theory

As discussed in the introduction to this article, a commonly
used method to model the topology features of a topological
space is to compute its corresponding Betti numbers. In this
section we formally define the term Betti numbers. We also
describe how the Betti numbers of a topological space are
inferred from its corresponding simplicial complex represen-
tation.

Let K be a simplicial complex. A p-chain on K is defined
in Equation 1 where each σi ∈ K is a p-simplex and each λi
is an element in a specified field. The set of p-chains forms a
group called a chain group Cp(K). The boundary map ∂p is a
map from a p-simplex to the sum of its (p− 1)-simplex faces
as defined in Equation 2. Here [v1, . . . , v̂i, . . . , vp+1] is the
(p−1)-simplex obtained by deleting the 0-simplex vi from the
p-simplex [v1, . . . , vp+1]. This map is distributive and extends
to the chain groups giving the sequence of chain groups in
Equation 3. This sequence of groups is called a chain complex
and is denoted C∗.

c =
∑

λiσi (1)

∂pσ =

p+1∑
i=1

[v1, . . . , v̂i, . . . , vp+1] (2)

. . . −→ Cp+1(K)
∂p+1−−−→ Cp(K)

∂p−→ Cp−1(K) −→ . . . (3)

A p-chain c ∈ Cp(K) is a p-boundary if there exists
a d ∈ Cp+1(K) where c = ∂d. Alternatively, it is a p-
cycle if ∂c = 0. The sets of all p-boundaries and p-cycles

form corresponding groups which are denoted Bp(K) and
Zp(K) respectively. Each of these groups is a subgroup
of Cp(K). As a consequence of the fact ∂p+1∂p = 0 it
can be proved that Bp(K) ⊆ Zp(K). The quotient group
Hp(K) = Zp(K)/Bp(K) is called the p-homology group of
K and its rank is called the pth Betti-number. As described in
the introduction to this article, the pth Betti-number intuitively
equals the number of p-dimensional holes in the simplicial
complex K. For a given simplicial complex there exists a
number of methods for computing the corresponding Betti
numbers [38], [8].

C. Zig-Zag Persistent Homology

In the interests of modelling swarm behaviour we wish
to compute the persistence with respect to time of those
topological features corresponding to the Betti numbers. This
is accomplished by computing the zig-zag persistent homology
of the sequence of simplicial complexes corresponding to the
swarm in question. The approach is now described and its use
is subsequently motivated.

Consider the sequence of simplicial complexes K in Equa-
tion 4 which is a zig-zag diagram [28]. Each map ↔ in this
equation equals either a forward inclusion map → or a back-
ward inclusion map←. Forward and backward inclusion maps
represent the addition and removal respectively of simplices.
A zig-zag diagram induces the sequence of homology groups
which is defined in Equation 5 and is known as a zig-zag
module.

K : K1 ↔ K2 ↔ · · · ↔ Kn (4)

Hp(K) : Hp(K1)↔ Hp(K2)↔ · · · ↔ Hp(Kn) (5)

A zig-zag module can be decomposed into a direct sum of
interval modules I[b,d] [39]. The zig-zag persistent homology
of the zig-zag diagram K for dimension p is denoted Persp(K)
and is defined by Equation 6. It is the multiset of intervals [b, d]
corresponding to the set of interval summands I[b,d] of Hp(K).
Each interval [b, d] in Persp(K) represents the persistence of a
topological feature which appears at time b and persists until
time d when it disappears. The topological features in question
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are path-connected components in the case of Pers0(K) and
one dimensional holes in the case of Pers1(K). The total
persistence Pers(K) of a zig-zag diagram K is equal to the
collection of Persp(K) for each dimension p [39].

Persp(K) = {[bj , dj ]|j ∈ J} (6)

When modelling the topological features of swarm be-
haviour, in most cases, one knows the agent locations at
a sequence of discrete time steps. The corresponding se-
quence of simplicial complexes may not have the property
that between each consecutive pair of simplicial complexes
a forward or backward inclusion map exists. That is, the
map between a consecutive pair of simplicial complexes may
involve both the removal and addition of simplices. One
cannot therefore compute the zig-zag persistent homology of
such a sequence. To overcome this challenge, between each
pair of consecutive simplicial complexes in the sequence an
intermediate simplicial complex corresponding to the union
of the simplicial complexes in question is introduced. This
resulting sequence of simplicial complexes gives the zig-zag
diagram K of Equation 7 for which the zig-zag persistent
homology may be computed. This computation is performed
using the method of Carlsson et al. [39] which is implemented
in the Dionysus software library.

K : K1 → (K1 ∪ K2)← K2 → (K2 ∪ K3)← K3 . . .Kn (7)

To help illustrate the theory presented above, the following
are some of the consequences of this formulation. If a hole
(path-connected component) in Ki intersects a single hole
(path-connected component) in Ki+1 then the hole (path-
connected component) in question persists from i until i+ 1.
However if multiple holes (path-connected components) in Ki

intersect a single hole (path-connected component) Ki+1 all
of the holes (path-connected components) in question die at
i + 1 apart from the hole (path-connected component) which
appeared first.

D. Persistence Landscape

Recall that a total persistence Pers(K) equals the collection
of Persp(K). We wish to convert this to a representation facili-
tating the application of statistical and data mining techniques.
The most commonly used representation toward achieving this
objective is the persistence diagram. This representation maps
each interval in a given Persp(K) to its endpoints [30]. A
persistence diagram may be equipped with a metric, such as
the Wasserstein or bottleneck metrics, to give a metric space
[40]. However such a space does not facilitate many useful
vector space operations, such as computing a mean [30]. One
may compute the Fréchet mean using the above metrics but
this may not be unique [41].

To overcome this limitation a representation which forms
a normed vector space is used. This representation is known
as a persistence landscape and is computed as follows [29].
First for a given interval [a, b] a corresponding piecewise linear
function f[a,b] : R→ [0,∞] is defined using Equation 8.

f[b,d] =


0, if x /∈ [b, d]

x− b, if x ∈ [b, b+d
2 ]

−x+ d, if x ∈ ( b+d
2 , d]

(8)

For a given zig-zag persistent homology Persp(K), which
contains a multi-set of intervals, a corresponding persistence
landscape is defined to be the sequence of functions λk : R→
[0,∞] where λk(x) is the k-th largest value in the multi-set of
intervals at x. The persistence landscape is a function space
which forms a normed vector space. In this work we use the
L2 norm which is defined in Equation 9 [42]. Using this norm
one can compute the distance between two landscapes λ and
λ′ using Equation 10.

‖λ‖2 =

[ ∞∑
k=1

∫
|λk|2dt

] 1
2

(9)

‖λ− λ′‖2 =

[ ∞∑
k=1

∫
|λk − λ′k|2dt

] 1
2

(10)

In order to form a normed vector space over Pers(K)
we adapt the following approach. As just discussed, each
Persp(K) in Pers(K) forms an individual normed vector space.
Let us denote this vector space Lp. We take the direct sum of
these spaces and equip the direct sum norm to form a new
normed vector space [43]. Specifically let λp be a vector in
the space Lp. The norm in question is given by Equation 11
where m is the maximum dimension considered which in our
case is 1.

‖(λ0, . . . , λm)‖2 =

( m∑
p=0

‖λp‖22
) 1

2

(11)

IV. EXPERIMENTS

This section describes a set of experiments performed
toward evaluating the proposed model of swarm behaviour.
In section IV-A the data used within these experiments is
described. In section IV-B the accuracy of the proposed model
with respect to computing the total persistence Pers(K) is eval-
uated. Finally sections IV-C and IV-D describe experiments
which evaluate the ability of the proposed model to perform
clustering and retrieval of swarm behaviour respectively.

A. Data

In all experiments presented, the data used corresponds to a
swarm of 300 Golden Shiner fish and was described briefly in
the introduction of this article [7]. The fish are swimming in
a shallow pool (2.1m × 1.2m, water depth 5cm). They were
filmed for a duration of 56 minutes at a frame rate of 30
Hz and this framerate was down-sampled to a frame rate of
3 Hz. The pose (position and orientation) of each individual
fish was tracked using a computer vision algorithm, details of
which are described in [7]. Examples of the swarm in question
at two different time steps are illustrated in Figure 1(a) and
Figure 2(a). Here a time step equals a particular instant of
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time. Given a frame rate of 3 Hz, the time duration between
two consecutive time steps is 0.333 seconds.

Due to the time required to manually create ground truth
data and computational complexity constraints, the entire
dataset was not used in any of the experiments presented.
Specifically the first 700 time steps were used to evaluate the
accuracy of the model. On the other hand, time steps 1 to
3,010 were used to evaluate the ability of the proposed model
to perform clustering and retrieval of swarm behaviour. Here,
in the context of clustering and retrieval, a temporal window
of 10 consecutive time steps was considered to give a total of
3,000 distinct but overlapping temporal windows. A temporal
window of 10 consecutive time steps corresponds to a time
duration of 3 seconds. From visually inspecting the data it was
noted that most topological features exhibited by the swarm
did not persist for a duration longer than this. Therefore this
duration was determined to be sufficiently long to model the
persistence of topological features.

As discussed in section III-A the simplicial complex Ki

at each time step i is computed using a grid of points.
The size of this grid influences the resolution of topological
features modelled. To aid the manual interpretation of the
model output, a 10× 10 grid was employed when evaluating
the accuracy of the model in section IV-B. To allow topological
features to be modelled at a finer resolution, a 100× 100 grid
was employed when evaluating the ability of the model to
perform clustering and retrieval of swarm behaviour in sections
IV-C and IV-D respectively.

Two additional model parameters which required specifica-
tion were the bandwidth h of the Kernel Density Estimation
fh and the threshold a of the upper-level set f−1h [a,∞) (see
section III-A). These parameters were specified such that
the resulting upper-level set visually appeared to consistently
accurately infer the topological space in question. Specifically
the values used in all experiments were h = 0.23 and
a = 1.25. Clearly there is a subjective element in this choice
and alternative values may give different results.

B. Model Accuracy

Here we describe an experiment to determine how ac-
curately our model computes the total persistence Pers(K).
Recall from section III-C that Pers(K) is the collection of
Persp(K) where each Persp(K) is in turn a multiset of inter-
vals indicating the persistence of path-connected components
for p = 0 and one dimensional holes for p = 1. Given
that Pers(K) is subsequently transformed into a persistence
landscape representation, this represents an appropriate means
to evaluate the accuracy of the proposed model.

We considered a temporal window of swarm behaviour
of 700 consecutive time steps. By visually examining the
corresponding sequence of simplicial complexes and deter-
mining the persistence of path-connected components and one
dimensional holes, a ground truth Pers(K) was constructed.
To illustrate this process consider the sequence of simplicial
complexes displayed in Figure 4 corresponding to a temporal
window of 8 consecutive time steps. By visually inspecting this
sequence it is evident that Pers0(K) contains the intervals [1, 8]

and [6, 7]. That is, a single path-connected component persists
over the entire temporal window and never actually disappears.
While a second path-connected component appears at time
step six and disappears at time step seven; this path-connected
component is represented by a single 0-simplex in Figure 4(f).
Similarly, by visually inspecting this sequence it is evident that
Pers1(K) contains the intervals [2, 3] and [5, 6]. The ground
truth Pers0(K) and Pers1(K) corresponding to the temporal
window containing 700 consecutive time steps contained 5
and 10 intervals respectively. The lengths of these intervals
were (700, 1, 2, 4, 1) and (1, 2, 3, 1, 3, 2, 4, 2, 3, 2) respectively.
The accuracy of Pers(K) computed by the proposed model
with respect to this ground truth was quantified in terms of
precision and recall. It was found that 100% precision and
100% recall were achieved. This result validates the accuracy
of the proposed model and is not surprising given that the
method employed for computing zig-zag persistent homology
is provably correct [39].

C. Clustering

This section presents a set of experiments which demon-
strate that the proposed model can discover frequently occur-
ring types of swarm behaviour in an automated manner. This
is achieved by performing clustering of swarm behaviours. To
perform this clustering the K-medoids data clustering method
was employed [44]. Here the individual data points to be
clustered correspond to 3,000 persistence landscape represen-
tations of swarm behaviour; one for each of the 3,000 temporal
windows considered. K-medoids is an iterative method which
iteratively determines K clusters by assigning each cluster
a corresponding cluster centre, which is represented by an
existing data point, such that the distance between each data
point in that cluster and the cluster centre in question is
minimized. As input the K-medoids algorithm takes a matrix
of pairwise distances between data points. These distances are
computed using the norm of Equation 11 and represent the
pairwise similarity of swarm behaviour.

As a first experiment, clustering of swarm behaviour was
performed using K-medoids with K=2. Figure 5 illustrates the
cluster centres obtained. Recall swarm behaviour is modelled
over a temporal window of length equal to 10 consecutive
time steps. The left images of Figure 5(a) and 5(b) display the
swarm at the midpoint of this window for each of the cluster
centres. The centre and right images of Figure 5(a) and 5(b)
illustrate the corresponding persistence diagrams of Pers0(K)
and Pers1(K) respectively. Recall that a persistence diagram
is constructed by mapping the intervals in question to their
endpoints. For example, if a point exists at coordinates (1,9)
in the persistence diagram of Pers0(K) this indicates that a
path-connected component appeared at time 1 and disappeared
at time 9. Similarly, if a point exists at coordinates (2,7) in
the persistence diagram of Pers1(K) this indicates that a one
dimensional hole appeared at time 2 and disappeared at time
7. Points which lie closer to the diagonal of a persistence
diagram do not persist for a significant period and therefore
are considered less significant topological features. In our
figures the diagonal of a persistence diagram is represented
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Fig. 4. A sequence of eight simplicial complexes are displayed in (a)-(h) where red dots represent 0-simplices, blue lines represent 1-simplices and green
triangles represent 2-simplices. The grid of points corresponding to each simplicial complex is of size 10× 10.

by a blue line. Note that clustering was not directly applied to
persistence diagrams but instead to corresponding persistence
landscape representations.

Examining the persistence diagrams corresponding to a
cluster centre reveals information regarding the set of swarm
behaviours belonging to that cluster. Let us examine the
persistence diagrams in Figure 5(a) corresponding to the first
cluster centre. The persistence diagram of Pers0(K) contains
a single point at coordinates (0,10) indicating that a single
path-connected component persisted over the entire temporal
window. The persistence diagram of Pers1(K) contains no
points indicating that no one dimensional holes existed during
the temporal window. Next let us examine the persistence
diagrams in Figure 5(b) corresponding to the second cluster
centre. The persistence diagram of Pers0(K) contains a point at
coordinates (0,10) indicating that a path-connected component
persisted over the entire temporal window. It also contains
three points closer to the diagonal indicating that three path-
connected components appeared only briefly and did not
persist for a significant period. The exact times they appeared
and disappeared can be determined from the diagram. The
persistence diagram of Pers1(K) contains four points. These
points are of varying distances away from the diagonal. The
holes in question did not persist over the entire temporal
window. From the above discussion it is evident that the
clusters obtained using K-medoids for K=2 correspond to
distinct swarm behaviours.

As a second experiment, clustering of swarm behaviour
was performed using K-medoids with K=3. Relative to the
previous clustering result, obtained using K-medoids with
K=2, the same two cluster centres were obtained along with
an additional cluster centre which is illustrated in Figure 6.
For this cluster centre the persistence diagram of Pers0(K)
contains a single point at coordinates (0,10) indicating that a
single path-connected component persisted over the entire tem-
poral window. The persistence diagram of Pers1(K) contains

a point at coordinates (0,10) indicating that a hole persisted
over the entire temporal window. This persistence diagram
also contains a point close to the diagonal. It is evident that
the additional cluster obtained using K-medoids for K=3, as
opposed to K=2, corresponds to an additional distinct swarm
behaviour. For clusters obtained using K-medoids with K
greater than 3, it was found that the additional clusters did
not correspond to additional distinct swarm behaviours.

As discussed in the related works section of this article,
flock, torus and disordered are considered the most frequently
occurring types of behaviour exhibited by swarms. Examining
the three clusters of behaviour obtained using our model we
see that they in fact correspond specifically to these three
types of behaviour. That is, a flock behaviour corresponds
to a single path-connected component which persists for the
entire duration. This behaviour is represented by the cluster
in Figure 5(a). A disordered behaviour corresponds to a
random number of path-connected components and a random
number of holes where these features persist for a random
duration. This behaviour is represented by the cluster in Figure
5(b). Finally, a torus behaviour corresponds to a single path-
connected component with a single hole which persists for the
entire duration. This behaviour is represented by the cluster in
Figure 6. As such, our model was able to discover these three
types of behaviour in an unsupervised manner.

D. Retrieval

This section describes a set of experiments which demon-
strate that the proposed model may be used to perform retrieval
of swarm behaviour with similar topological features to a given
query swarm behaviour. Specifically, given one of the 3,000
swarm behaviours considered, the goal was to retrieve the
most similar behaviours other than the query. Swarm behaviour
was modelled using a persistence landscape representation and
the similarity between two swarm behaviours was determined
using the norm of Equation 11.
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(a)

(b)

Fig. 5. The individual cluster centres obtained from clustering swarm behaviour with K=2 are illustrated in (a) and (b). The left image in each sub-figure
displays the corresponding swarm at the midpoint of the temporal window over which behaviour is modelled. The centre and right images in each sub-figure
illustrate the corresponding persistence diagrams of Pers0(K) and Pers1(K) respectively.

Fig. 6. The additional cluster centre obtained from clustering swarm behaviour with K=3 is illustrated. The left image displays the corresponding swarm
at the midpoint of the temporal window over which behaviour is modelled. The centre and right images illustrate the corresponding persistence diagrams of
Pers0(K) and Pers1(K) respectively.

For a query consisting of the swarm behaviour illustrated in
Figure 5(a) the corresponding most and second most similar
swarm behaviours, other than the query itself, are illustrated in
Figure 7(a) and Figure 7(b) respectively. It is evident that the
retrieved swarm behaviours are similar to that of the query.
That is, in all three cases the swarm forms a single path-
connected component with no holes which persists over the
entire temporal window.

For a query consisting of the swarm behaviour illustrated
in Figure 6 the corresponding most and second most similar
swarm behaviours, other than the query itself, are illustrated
in Figure 8(a) and Figure 8(b) respectively. Again it is evident
that the retrieved swarm behaviours are similar to that of the
query. That is, in all three cases the swarm forms a single path-
connected component which persists over the entire temporal
window. This component in turn contains one hole which
persists over the entire temporal window and a another hole

which persists over a small portion of the temporal window.

V. CONCLUSIONS

This article presents a model of swarm behaviour which en-
codes spatial-temporal characteristics of topological features.
To the authors’ knowledge, this represents the first model of
its kind. The experimental results presented demonstrate the
proposed model may be used to perform the data mining tasks
of clustering and retrieval of swarm behaviour in terms of
topological features.

The authors believe that there exists much scope for future
research and development. The following are some possible
future research directions. The proposed model characterises
topological features with respect to persistence over time.
A possible research direction would be to characterize such
features jointly with respect to both persistence over time and
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(a)

(b)

Fig. 7. For the swarm behaviour illustrated in Figure 5(a) the corresponding most and second most similar swarm behaviours are illustrated in (a) and (b)
respectively.

(a)

(b)

Fig. 8. For the swarm behaviour illustrated in Figure 6 the corresponding most and second most similar swarm behaviours are illustrated in (a) and (b)
respectively.
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scale using multi-dimensional persistent homology [45]. For
the purpose of this article we didn’t consider such an approach
due to the fact that multi-dimensional persistent homology is
still a developing research space and as a consequence the
available tools are less mature.

In our experiments clustering of swarm behaviour was
performed using the K-medoids method which requires the
number of clusters to be specified. A possible research di-
rection would be to employ an alternative method, such as
DBSCAN, which does not have this requirement. A further
issue is the selection of the KDE bandwidth, threshold and
the grid resolution, all of which affect the distinction here
between noise and signal. It would be possible to learn suitable
values given manually annotated training data that explicitly
identified significant and noise components. The proposed
model only considers the topology of a swarm with respect
to the locations of the agents in question. Considering the
topology of a swarm with respect to additional dimensions,
such as agent orientation, may provide a more accurate model.
Finally, the proposed model uses a persistence landscape
representation of persistence diagrams. Considering alternative
representations, such as the persistence image by Adams et al.
[40], is a possible research direction

The model proposed in this article has many potential appli-
cations other than modelling swarm behaviour. For example,
the model could be employed to model the topological aspects
of events in sensor networks.
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