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Abstract

Serial sectioning is used in a number of areas in science as a means of viewing the internal features of a three-
dimensional object as a set of two-dimensional images. The sections are used to recreate three-dimensional computer
models of the original objects by constructing surfaces between associated contours on adjacent sections. This has
become a common technique for medical imaging, but is also used in a number of areas in the earth sciences, including

palaeontology. This paper addresses the correspondence problem, that of matching contours in adjacent sections prior
to constructing three-dimensional surfaces between them. The lack of a successful automatic approach to this stage of
the reconstruction process has until now hindered the exploitation of vector data consisting of vertices and edges,

derived by digitising sectional data. A new growing algorithm is proposed that uses both spatial information from the
object and user-supplied semantic information describing generic characteristics of specific types of phenomena. The
algorithm has been used to direct the correspondence aspects of reconstruction in a number of sectioned

palaeontological data sets. # 2001 Published by Elsevier Science Ltd.
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1. Introduction

Serial section reconstruction is now a commonly used

computer-based technique for medical imaging (Rhodes,
1991). There are two main types of reconstruction
algorithm, which can be defined by the type of data they

use. The first is the volume-based approach, which uses
a set of volume-elements (or voxels) as the basis of
reconstruction. In medical imaging, these voxels are

captured non-invasively using scanning equipment, such
as in computer-assisted tomography (CAT) or magnetic
resonance imaging (MRI). This approach is now widely
used in medical imaging (for example, Herman and Liu

(1979) and Lorensen and Cline (1987)) and other areas
of scientific visualisation (Elvins, 1992). In contrast, a
surface-based method uses vector data (vertices and

edges) as the basis for reconstruction. Rather than being
scanned, the data will have been captured from drawings
or photographs of two-dimensional sections, using a

device such as a digitising tablet. While this type of data
is rare in medicine, it is quite common in the earth
sciences, especially in palaeontology. With a surface-

based approach the object is sampled by a series of
parallel sections, on which the contours represent the
intersection between the object and the section. It is
possible to convert from vector to raster data format in

some cases, and then use a volume-based algorithm
(Jones and Chen, 1994) to carry out the three-dimen-
sional reconstruction.

Surface-based algorithms generally consist of two
stages:
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1. Correspondence: This determines the connectivity

between contours on adjacent sections, therefore
defining the underlying structure of the object.

2. Surface triangulation: Guided by the results of the

correspondence analysis, this second stage of the
algorithm constructs the three-dimensional surfaces
of the object.

This paper concentrates on the difficulties in deter-

mining a solution to the correspondence problem. The
shortcomings of existing correspondence techniques
have limited the development of surface-based methods

and have led to volume-based algorithms being used in
preference, where the type of data permits (Udapa and
Herman, 1989). There have been a number of previous

automatic solutions to the correspondence problem, but
none of these is capable of reconstructing objects with
disjoint components (Fig. 1), such as those found

commonly in palaeontology.
With most algorithms that use a voxel approach,

correspondence is determined implicitly by the relation-
ship between each cell in neighbouring sections. The

algorithm of Boissonnat (1988) uses vector data, but it
does not employ an explicit analysis of correspondence,

as it triangulates the whole slice between a pair of
sections simultaneously. The main problem with, not

using a correspondence algorithm is, that connectivity
between contours is decided by local, purely geometric
factors. Only with well-sampled objects that do not

contain holes, and where the sectioning has taken
place perpendicular to the main axis of the object, will
the algorithm work well. One of the main problems
is that there is no way of preventing connections

between contours in disjoint components, or guid-
ing non-straightforward correspondence situations
(see Fig. 2).

The three-dimensional Delaunay triangluation pro-
posed by Boissonnat has been developed further by
Geiger (1993). It has also been tested with palaeonto-

logical specimens and compared with the other recon-
struction methods (Herbert and Tough, 1995).
Investigations to date indicate that the approach works

well with palaeontological samples that are well sampled
and that do not exhibit significant change in contour
position between neighbouring sections.

The surface triangulation stage has been widely

developed and is extensively covered in the literature,
including Christiansen and Sederberg (1978), Fuchs
et al. (1977), Keppel (1975), Meyers (1994) and Tipper

(1976, 1977).
A new algorithm is proposed here, CorresGrow,

which uses both spatial and semantic information to

derive a correspondence graph for an object. The
algorithm uses a construction technique that grows the
components in an object individually rather than
considering every connection between a pair of contours

simultaneously, as with a global method. It is felt that
this type of algorithm is especially suitable for objects
that contain disjoint components and where complex

correspondence situations may exist.
Fig. 1. Contiguous and disjoint components.

Fig. 2. Simple and complex correspondence.
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2. Correspondence processes

2.1. Introduction

There have been a number of methods used for the

resolution of the correspondence problem, which can be
classified as follows:

1. Manual methods. Although in many cases a manual

solution has been used to direct surface triangulation
(for example, Christiansen and Sederberg, 1978;
Fuchs et al., 1977; Ganapathy and Dennehy, 1982),

this can be extremely time consuming for large data
sets and those in which complex branches or loops
may exist.

2. Local algorithms. The simplest form of automatic
computer-based approach reduces the correspon-
dence problem to consideration of individual pairs

of sections in the object. It calculates connectivity
between adjacent contours using a simple calculation,
such as centroid distance or overlap. Examples of this
approach include those of Ekoule et al. (1991) and

Wang and Aggarwal (1985). Haig et al. (1991)
combine centroid distance with topological informa-
tion to confirm that all the possible connections are

valid, before using contour overlap to define the
correspondence.

3. Global algorithms. All of the possible connections

between contours in an object are considered
simultaneously when determining the correspon-
dence solution, not just those lying between a single
pair of sections. Global methods use a graph-based

approach to calculate which edges should be
included, with algorithms such as those proposed
by Giertsen et al. (1990), Shinagawa and Kunii

(1991), Meyers et al. (1992) and Herbert et al. (1995).
There are a number of problems with this type of
approach, and they are discussed below.

4. Growing algorithms. These adopt a hierarchical
approach, attempting to locate the separate compo-
nents of an object, rather than individual links

between contours, before defining the overall struc-
ture of the correspondence solution. Previous solu-
tions using this approach have been suggested by
Soroka (1981) and Meyers et al. (1992), although

these had a number of limitations, which have been
overcome in the new implementation discussed in this
paper.

The four types of approaches use a variety of
information sources in compiling an underlying frame-

work for the subsequent surface reconstruction process.
Some of the information can be described as ‘top–
down’, with high-level information being provided

about the object. Manual methods rely completely on
this type of information, which would be provided by

the user. Local algorithms on the other hand use
information from the geometry of the object directly

and process it from the ‘bottom-up’.
Both the global and growing algorithms carry out

more information processing than the other two

methods. Of these, the growing algorithm is flexible as
it is possible to combine top-down and bottom-up
information sources, therefore making this method
potentially quite powerful.

2.2. Growing algorithms

Soroka (1981) proposed a growing algorithm, that

constructed generalised cylinders based on elliptical
cross-sections derived from the contour data. Meyers
et al. (1992) used this method to build elliptical cylinders

from the contours, before finding the connections
between them to construct the final object. There were
problems however with this style of growing algorithm,

given below, which prompted them to adopt the global
minimum spanning tree (MST) algorithm for the data
they were reconstructing:

* Contour ordering } The results were dependent on
the order in which the contours were specified and a
contour was considered for inclusion in a cylinder on

a first-come first-served basis.
* No backtracking } The lack of backtracking

facilities meant that errors made because the wrong

contour was chosen could not be corrected and that
these were then propagated through the construction
process.

However, the nature of the data reconstructed by
Meyers et al. (1992) meant that the global algorithm
limitations did not affect their results, as the shape being

modelled was tree-like in form.

2.3. Problems with global algorithms

In a previous paper (Herbert and Tough, 1995) a new
global graph-based correspondence algorithm was
proposed. It is based on an MST derived from a

candidate graph containing all possible edges between
adjacent contours. The procedure reduces this to the
final correspondence graph by selecting the edges with
the lowest weight until all the contours in the graph have

been included.
The algorithm proposed was distinguished from the

earlier MST approach by enabling the reconstruction of

those objects that were made of disjoint components.
This was facilitated by determining the topological
relationship between a pair of neighbouring contours

based on a surroundness tree (Haig et al., 1991). In cases
where a component is completely contained by another
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component, topologically invalid connections exist and
they are removed from the graph (Fig. 3).

Although, this additional work enabled the recon-
struction of a number of palaeontological specimens
that contained disjoint components, there were still

several fundamental problems:

1. Cyclic features. The algorithm was unable to find
cyclic features located in the object, (such as loops or

spirals), because the final graph must be a tree or a
number of disjoint trees. These types of features can
be found in many sectioned invertebrate palaeonto-

logical specimens. The proposed post-processing with
the MST algorithm was limited in this respect, as it
could only remove edges from the graph and not add

them.
2. Algorithm dependent. The new MST algorithm used

additional topological information about the rela-

tionship between pairs of neighbouring contours, but
the shape of the final correspondence graph was
governed by the MST process. The use of this form
of geometric algorithm will always limit the type of

object that can be determined, even after post-
processing.

3. Local decision-making. The MST algorithm proceeds

serially, picking the next most suitable edge from the

complete set of possible connections between adja-
cent contours, using a weight value determined by an

edge calculation. This process is described as global,
as it considers the complete set of edges in the graph,
but the choice of edge is still based only on

information calculated between a pair of adjacent
sections and therefore has little advantage over the
local algorithms.

These weaknesses in the global type of algorithm
prompted an investigation into another form of algo-
rithm, one that grows individual components of an

object, before joining them together to provide the
underlying skeleton of the object under reconstruction.

3. CorresGrow algorithm

CorresGrow is a growing algorithm which constructs
each component in an object separately, before deter-

mining the branches and links between them to give a
final correspondence graph. The algorithm is made up of
three stages: pre-processing, component growing and

branch handling (Fig. 4).
The pre-processing stage constructs the candidate

graph, which contains all possible connections between

contours in adjacent sections with a variety of weights
calculated using several metrics attached to each
connection. The information contained within the

candidate graph is then used for calculating a corre-
spondence solution. The information consists of two
types:

1. Spatial information is calculated directly from the
three-dimensional contours in each section. This is
the main source of information used for finding each

of the individual components and is processed
‘bottom-up’.

2. Semantic information is provided by the user as a set

of high level component descriptions. It does not
specify individual connections between pairs of
contours, but is an ordered list of labelled compo-

nents that should exist in the object being recon-
structed. As well as the label, each component also
has a series of parameters which describe both its
shape and its relationship to other components.

Fig. 3. Topologically valid and invalid edges.

Fig. 4. CorresGrow processes.
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Both types of information are used to calculate the
weights for each contour-to-contour connection, and

these are discussed further below.
Component growing is the main processing stage of

the algorithm, where a series of rules locate and grow

each of the listed components through the candidate
graph. The final branch handling stage constructs the
links between the different components grown during
the previous stage, primarily using the semantic in-

formation provided by the user. The use of both spatial
and semantic information means that the growing
algorithm can be less reliant on the methods used to

construct the correspondence graph.

3.1. Pre-processing

The pre-processing stage accumulates the information

to be used during the component growing and branch
handling stages. This involves the derivation of both the
spatial and semantic information (Fig. 5), from the raw
contour data and from user input, respectively. Finally,

before the growing process is started the topologically
invalid edges are identified and removed from the
candidate graph.

3.2. Spatial information

The spatial information is available at three levels and
is used to assign weight values between each pair of

contours on adjacent sections and also to remove edges
that exist between unmateable contours:

1. Contour characteristics } These describe each con-

tour’s position, shape and size. This is then used
to build the other types of spatial relationship
information.

2. Intra-sectional relationships } They describe the
correlation between contours on the same section
and are then used to determine the topological

validity of connections between contours on adjacent
sections.

3. Inter-sectional relationships } These describe the
connectivity between contours on adjacent sections.

This information is used directly at the growing stage

to determine which contours should be in each
component.

The CorresGrow algorithm uses five contour char-
acteristics: the centroid; area; major/minor axes; mini-

mum bounding rectangle (MBR) and the compactness
ratio. The centroid and major/minor axes for each
contour are calculated using the algorithm proposed by
Tough (1988).

The compactness ratio can be used as a measure of
shape, by comparing the contour’s area with the area of
a circle having the same perimeter (Unwin, 1981):

CompRatio ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
a

ac

� �s
;

where a is the area of the contour and ac the area of the
circle with the same perimeter as the contour.

The contour characteristics are used to identify the
relationships between adjacent contours in the same
section and in adjacent sections. A number of relation-

ship measures are used for each possible connection
between two contours and these give a comprehensive
set of values that can then be used by the component

growing stage. These values can be of three types:

1. Quantitative} A numerical value corresponding to a

measurement or to some function of measurements.
2. Rank order} A single integer value derived from the

comparison of all the quantitative values calculated
using each of the relationship measures, where they

all emanate from the same contour. Thus for any
contour in a section, the connections to contours in
the adjacent section can be placed in order of

preference, with a rank order value of 1 being given
the most suitable.

3. Boolean } Some relationship measures, such as the

contains measure described below, will return a true
or false value rather than a quantitative measure.

There are three relationship measures used to
calculate a value for intra-sectional relationships:

1. Position: This specifies the distance between a pair of
contours based on the centroids. It also calculates

approximate directional relationships according to

Fig. 5. CorresGrow pre-processing.
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whether a contour is above, below, left or right of
another contour on the section. It therefore returns

both a set of quantitative and a set of Boolean values.
2. Size: Provides a quantitative value, expressing the

difference in size between a pair of contours.

3. Contains: Provides a Boolean value, stating whether a
contour is contained inside another contour on the
section. This is used subsequently to determine the
topology between contours in adjacent sections.

There are 4 relationship measures used to calculate edge
values between contours on adjacent sections and they

are used during the component growing stage to
determine which contours occur in each component:

1. Distance/axes combination: This provides an indica-
tion of both change in position on the section and
change in shape:

eði; jÞ ¼ ðxi � xjÞ2 þ ðyi � yjÞ2

þ ðAi � AjÞ2 þ ðBi � BjÞ2;

where eði; jÞ is the edge between two contours i and j
and ðx; yÞ is the centroid and ðA;BÞ are the major

and minor axes.
2. Minimum bounding rectangle (MBR) overlap: This

relationship measure uses the change in contour

shape and position. The amount of overlap can be
expressed as a value between 0 and 1. It is 0 when
there is no overlap, and 1 when the contour’s MBR is
completely enclosed by the MBR of the other

contour (see Fig. 6).
3. Shape comparison: This relationship measure pro-

vides an indication of change in shape between a pair

of contours, based on their compactness ratios.
4. Topological validity: This is calculated by processing

the surroundness tree for each of the neighbouring

sections, using the contains intra-sectional relation-
ship. If a contour is contained by another contour,
then it is at a different, lower surroundness level to

that contour. By comparing the levels between

contours on adjacent sections, the validity of any
connection between a pair of contours can be

evaluated. Topological validity needs to be tested
for a combination of edges rather than just singly
(Fig. 7).

All three of the non-topological measures can be
combined and this reduces any weaknesses that a single
measure may have when matching a particular contour

combination. A candidate correspondence graph is
constructed from the Inter-sectional relationship mea-
sures and includes all edges between contours on

adjacent sections that have a Boolean value of true for
the topological validity measure. All of these edges are
then assigned the values from the other measures

and are now ready to be used for component grow-
ing. By having a number of edge relationship measures
it is possible to try different combinations and investi-

gate their effect upon the shape of the correspondence
graph.

3.3. Semantic information

In general terms, semantic information describes

relationships between the major features of the
object under construction. In the specific case of the
palaeontological reconstructions discussed later in

this paper, the semantic information is provided as a
set of descriptions of the major components of the
specimen.

This is currently in the form of a text file, which

contains a number of component labels, each of which
has a number of attributes. Each of the attributes help
determine the position of the component in the object

and its relationship to other components in the object.
For example, the following fragment determines seman-
tic information for the Pedicle valve component in a

Brachiopod object:

The label attribute provides the reference by which the

CorresGrow process can locate the semantic informa-
tion. Other attributes provide information about the
range of sections in which the component can appear, in
this case a PEDICLE component must appear in all of

the sections through the object.
The semantic information is used to drive the

component growing process by providing the set of

labelled components. It is also the main source ofFig. 6. MBR overlap.

@components = new object()

$components[0] -> label = PEDICLE;

$components[0] -> range = ALL;

$components[0] -> inside[0] = PEDICLE_INTERNAL;
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information in determining the actions that take place
during branch handling stage (see below).

3.4. Component growing

The component growing stage of the correspondence

algorithm takes each labelled component provided by
the user as semantic information and grows this through
the candidate graph.

Component growing is carried out using a four-rule
system (Fig. 8). Two of the rules are used to grow each
component through the sections and two are for conflict
cases where more than one component is a candidate to

use the same contour:

1. Start } Finds the first contour for each component
in the object.

2. Start-conflict } Decides which component should
use a disputed contour located by the start rule.

3. Extend } Allows the current component to grow to

a contour in the next section, until either the

component terminates or the last section in the
object is reached.

4. Extend conflict } This is used by the extend rule,

when the chosen contour in the next section is
already occupied by another component.

3.4.1. The start rule
The start rule will find the first contour for

each component in the list provided by the user. It does

this by examining each contour and deciding if it fits
the semantic characteristics for the labelled component.
Unlike previous algorithms this does not use a

‘first-come, first-served’ approach and the start rule will
allow the current component to consider both free and
already occupied contours. The fragment of code given

below is based on the Perl source code, as are the other
examples.

The current component keeps a record of the current

metric value of the edges that are being used to extend

Fig. 7. Invalid topological combination.

sub start()

{

foreach $component (@components) {

foreach $contour (@contours) {

if ($contour->semantic =~ $component->semantic) { # check semantic

if($contour->$component ! = NULL) { # contour not in a component

$component->first_contour = $contour; # add contour to component

&extend($component); # call extend rule

}

else {

&start_conflict($component); # already in a component

}

}

}

}

} # end start
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the component through to the next section. If the
contour is ‘free’, then the extend rule is used to

commence the construction of the component, but if
the contour is included within another contour, then the
start-conflict rule allows a comparison with the compo-

nent already using that contour.

3.4.2. The start-conflict rule

The start-conflict rule decides which of the two
components should be able to use the contour by
comparing the average edge weight (AEW) values when

each of the components are fully grown (see Fig. 9).
These values are calculated by determining the mean of
the rank order values for each edge of a component.

First, the existing component is removed from the
candidate correspondence graph, so that it does not
interfere with the growth of the new component. The

new component is then extended from the now
temporarily free start contour, with the use of the
extend and extend-conflict rules (see below). The AEW
of the component is then compared with the AEW of the

removed existing component.
The component with the lowest AEW is deemed the

most suitable and gains the right to use the contour. The

rejected component is passed back to the start rule and
the process recommences at the next contour in the
object. If the existing component is the most suitable,

the changes made during the extensions and conflicts of
the new component are reversed by copying the

candidate correspondence graph back as it was before
the comparison.

This challenge to existing components by a potential
new component has to be between those components

that do not have the same label, otherwise components
with the same structure would be produced by both new
and old components, because they have the same

semantic information.
If components have the same AEW, then the longest

component is included in the graph, but if they have the
same length, then the existing component stays in place.

The combination of start and start-conflict rules mean
that a labelled component may be superseded and have
to be regrown at any time during the component

growing process.

3.4.3. The extend rule

The extend rule allows the component to ‘grow’ into
the next section, by selecting the best suited contour for
inclusion. The rule uses the edge that has the lowest edge
weight (based on the rank order value), if the connecting

contour’s characteristics match the descriptive para-
meters in the current component’s label. If the contour is
already included in another component then the extend-

conflict rule is used to decide which of the two
components should use the contour. Once the current
component has successfully grown into the next section,

the extend rule will then look at contours in the
subsequent section. If no suitable contour is found for

sub start_conflict {

{

my ($new_component)=@_;

$contour = $component=>current_contour; # get current contour

$old_component=$contour->component; # assign old component

if ($old_component->labelhi $new_component->label) {

# only if not same semantic label

$contour->component=NULL; # remove existing component

$new_component->edge_rank=0;

&extend($new_component); # extend the new component

if ((($new_component->AEW < $old_component->AEW) ||

(($new_component->AEW==$old_component->AEW) &&

($new_component->length > $old_component->length))) {

$contour->component=new_component; # if new component is better fit

}

else {

$contour->component=$old_component; # if not, keep old component

}

}

} # end start_conflict
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the current component, then the growing process is
stopped for this component and then commenced for the

next labelled component (see Fig. 10).
As the extend-conflict rule may reject a connection to

the most suitable contour in the next section because

another component has a better claim to it already, the
next best alternative may have to be considered. It is
possible to envisage, in the worst case, that the least
suitable contour for the current component may be

chosen by the extend rule, where instead the component
should have been terminated in the preceding section.

To prevent this type of connection from being made,
only the more suitable possibilities are considered by the

growing process (the edges with the best rank order
values) and, if these are better placed in other
components, the current component is terminated.

3.4.4. The extend-conflict rule
The extend-conflict rule is called by the extend rule

when a component attempts to include a contour that

is already present in another component. The rule
will decide which one of the two components should
contain the contour and then determine how each

component should be grown from this point. If the
current component gains control of the contour,
the other component will have to recommence the

growing process from the contour it controls in the
preceding section. If the current component is

sub extend()

{

my ($component) = @_;

$component->edge_rank++; # increment the edge rank

$contour = $component->edge_rank->contour; # move to next section

if (($component->edge_rank < SEARCH_LIMIT)

&& ($contour->section = ~ LAST_SECTION)) {

if ($contour->component ! = NULL) {

&extend_conflict($contour,$component) # contour already used

} else {

$component->last_contour = $contour; # contour free and

$component->edge_rank = 0; # and added to component

&extend($component); # try to extend again

}

}

} # end extend

Fig. 8. CorresGrow growing process.

Fig. 9. CorresGrow start-conflict rule.
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unsuccessful, then it will have to attempt to use the next most
suitable contour in the same section as the conflict contour.

3.5. Branch handling

The branch handling stage of the CorresGrow

algorithm uses two relative parameters in the component
semantic information to determine the connectivity (or
lack of it) between the components. The types of

relationship are currently limited to two, namely those
of adjacent and inside. Adjacent components branch in
the traditional way, either by diverging or merging.

Inside components exist solely inside another compo-
nent and can only be connected if the internal
component is joined to the outer component (see
Fig. 11).

An adjacent relationship results in joining the start
contour of the second component with the first
component’s contour in the preceding section. The

Inside relationship currently handles only those con-
tours that ‘emerge’ from other components and results
in connecting the last contour of the second component

with the first component’s contour in the following
section.

It may be noted that components in the semantic

information that are not intended to be connected do
not have any relationship information, and are hence
not affected by the branch handling stage.

3.6. Completion of growing process

The growing process is completed when the complete

list of components has been traversed, even if there are
some contours not included in any component. This

allows the user to define a partial reconstruction that
includes only the major components. It is possible for

the user to create a generic label, which contains no

descriptive parameters and for this to be added to the
bottom of the list of labels. It will ensure that all the
contours will appear in the final correspondence graph,
even if this is in an unrecognised component with no

semantic information.

4. Palaeontological reconstructions

4.1. Introduction

The correspondence of a number of palaeontological
specimens has been determined using the CorresGrow

sub extend_conflict() {

$contour = @_[0];

$new_component = @_[1];

$old_component = $contour->component; # assign existing component

if ($old_component->previous_contour->edge_weight < =

$new_component->contour->edge_weight ) { # existing component uses

$new_component->edge_rank++; # contour

$contour = $component->previous_contour;

}

else { # new component has contour

$old_component->last_contour = $old_component->previous_contour;

&extend ($old_component); # try to extend existing component

$contour->component = $new_component; # to another contour on section

$new_component->edge_rank = 0;

}

} # end extend_conict

Fig. 10. CorresGrow extend rule.
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Fig. 11. Branch handling scenarios for CorresGrow.

Fig. 12. Digitised sections of Cirpa langi.
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algorithm. These have been mainly brachiopod speci-
mens, but has also included graptolites, corals and other

destructively sampled specimens. Most of the specimens
have been digitised from their section drawings or
sectional photographs.

The semantic information can be easily altered for
different specimens as it is held in a text file that is
independent of the CorresGrow algorithm itself. In the
future it will be possible to construct a library of

different component descriptions that can be used and
tested for different reconstructions.

The correspondence of the specimen presented below

was reconstructed using both CorresMST, a global-
based algorithm (Herbert et al., 1995), and CorresGrow.
Briefly, CorresMST does not use any semantic informa-

tion, but does use the same pre-processing stage as
CorresGrow, that builds the candidate graph and then
removes the topologically invalid edges.

4.2. Cirpa langi

This specimen, Cirpa langi, a rhynconellid brachiopod

was digitised from a set of published section drawings
(Ager, 1956). It is recorded as a set of 75 contours in 19
sections (see Fig. 12).

The CorresMST algorithm uses the minimum span-
ning tree algorithm (Corman et al., 1990) to reduce the
candidate graph after all topologically invalid edges

have been removed. This still leaves a single tree-like
graph (both the solid and dashed edges in Fig. 13),
which needs post-processing to remove edges that

connect disjoint components. The algorithm does locate
the major components (the pedicle valve contours 1–70
for example), but it is unable to remove some of these
incorrect edges (for example contours 50–52). Also

correct branch edges, that link different components,
were removed during the MST process (e.g., the
component that uses 63–66) and these cannot then be

re-inserted during the post-processing.
The CorresGrow algorithm differs mainly from the

CorresMST algorithm in that it exploits semantic

information in order to grow the components in the
order shown in the table of Fig. 14. The performance
scores in Fig. 14 show that the growing stage of the

algorithm attempted to start a component 837 times and
that 759 extensions were attempted.

During the growing stage the brachial component
initially starts at contour 17, but it is later displaced by

the first adjacent pedicle component and is subsequently
started at contour 20, its correct location. The AEW
score of 1.383 shows that a number of edges with a rank

order value of more than 1 were used in Fig. 14. An edge
that does not have a rank order value of 1 has been
selected after a conflict where the semantic information

has restricted the choice of contours for a component.
Objects with an overall AEW of near to 1 have not had

to rely heavily on the semantic information during the
component growing, but will still use it for branch

handling. A low AEW will also indicate a small number
of start and extend conflicts.

The correspondence solution was then used to guide

the surface triangulation algorithm in the construction
of the three-dimensional models (see Figs. 15 and 16)
(Herbert and Tough, 1995). As well as allowing
interactive inspection of three-dimensional images, the

model could also be used for morphometric analysis
(Slice, 1993) or evolutionary simulations.

5. Conclusions

CorresGrow can successfully reconstruct sectioned
palaeontological objects (Figs. 15 and 16) containing
disjoint components, using both spatial information

from the contour data and semantic information
provided by the user. This is in contrast to a global
MST algorithm, which can find the major components,

but cannot always determine correctly the connectivity
between them. There are a number of features in the
CorresGrow algorithm which render it advantageous for

reconstructing palaeontological specimens and other
earth science data.

Fig. 13. CorresMST correspondence graph for Cirpa langi.
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1. Backtracking } No component is fixed in position
until the growing stage is completed. The order in
which contours are grown is only significant when

component descriptors are relative to other contours

in already grown components. The conflict rules
allow previous decisions made by the growing
process to be challenged and changed.

2. Semantic information } This is user input informa-
tion at a high-level and does not define individual
connections between contours. It can be easily
changed, is entered only once and can be used with

a number of different algorithms. It is used during
both the component growing and branch handling
stages and is the sole source of information in the

latter stage.
3. Information driven } The shape of the correspon-

dence graph is governed more by the information

provided than by the nature of algorithm used. For
example, the MST algorithm will always produce a
tree-like structure made up of a single component,
whereas the result of a growing algorithm is

dependent only on the spatial and semantic informa-
tion provided.

Future work with the CorresGrow algorithm will
concentrate on combining the component growing and
branch handling stages. Rather than just constructing

single non-branching components, the growing process
will be able to identify branch points by examining
spatial and semantic information and then grow two or

more components from that point. Also to help with the
location of cyclic or spiral features, the growing process
could be extended to allow components to be extended
both across sections and also back through sections

which they have already passed.
Work continues with expanding the range of semantic

component labels, so that the reconstruction process can

tackle a wider range of objects. The CorresGrow
algorithm has also been tested on data without the use

Fig. 14. CorresGrow result for Cirpa langi.

Fig. 15. Reconstruction of Cirpa langi.

Fig. 16. Reconstruction of Cirpa langi.
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of semantic information and this can identify the major
components which in turn guides the user when defining

the component semantic information.
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