
A Persistent Homology Model of Street Network

Connectivity

Padraig Corcoran & Christopher B. Jones
School of Computer Science & Informatics

Cardiff University
Wales, UK.

August 20, 2021

Abstract

We propose a novel model of street network connectivity which uses
a method from the field of applied topology entitled persistent homology.
The output from this model is a pair of density functions which model the
relative strength and frequency of connected components and cycles in the
network. In this context, strength is a function of street type, such as mo-
torway or residential, with more significant street types providing greater
connectivity. The pair of density functions output from the model are
easily interpreted and provide novel insights into the connectivity prop-
erties of different street networks. We demonstrate the usefulness of this
model through an analysis of UK and USA city street networks. This
analysis identifies tangible similarities and differences in the connectivity
of different cities plus ways in which the connectivity of individual cities’
might be improved.

1 Introduction

Cities are important phenomena in our society. Currently more than half of
the world’s population live in urban areas with this percentage projected to
grow to two-thirds by 2050 (Ritchie, 2018). Furthermore, there is a strong posi-
tive correlation between a country’s degree of urbanization and Gross Domestic
Product (GDP) per capita (Henderson, 2003). A major activity in any city is
the transportation of people and goods. The efficiency of this activity is strongly
influenced by the quality of the underlying street network. As such, modelling
the quality of a city’s street network represents an important research problem
where the outputs from such models are commonly used to inform city plan-
ning (Labi et al., 2019). In practice the quality of a given street network is
difficult to formally define let alone measure. However, one important feature
of any high quality street network is a high level of connectivity. Tal and Handy
(2012) define street network connectivity as a measure of the quantity of the
connections in the network and in turn the directness and multiplicity of routes
within the network. It has been demonstrated both theoretically and empiri-
cally that street networks with a greater degree of connectivity exhibit greater
transportation efficiency (Knight and Marshall, 2015).
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Figure 1: A network containing two locations a and b is displayed in (a). One,
two and three connections are added between a and b in (b), (c) and (d) respec-
tively.

Existing models of street network connectivity are mainly based on summary
statistics of simple geometrical or topological features of the network. For exam-
ple, the mean number of intersections per square mile/kilometer. In this work
we propose a novel model of street network connectivity where connectivity is
modelled in terms of connected components and cycles in the network. These
features in turn model the existence and multiplicity of connections between
locations respectively. To illustrate this consider the simple network displayed
in Figure 1(a) which contains two locations a and b. The two locations form
two distinct connected components and therefore the connectivity between the
locations is poor. If a single edge is added between the locations to form a single
connected component, as illustrated in Figure 1(b), the connectivity between
the locations is greater than that in the previous figure. If a second edge is added
between the locations to form a cycle, as illustrated in Figure 1(c), the connec-
tivity is again greater. Finally, if a third edge is added between the locations
to form another cycle, as illustrated in Figure 1(d), the connectivity is again
greater. Therefore, if all edges provide equal connectivity, the connectivity of a
network can be modelled in terms of the number of connected components and
cycles in the network.

However, in the context of a street network all edges do not provide equal
connectivity. Instead, the strength of connectivity provided by an edge is a func-
tion of its semantics or type, which varies. For example, an edge corresponding
to a motorway provides greater connectivity than an edge corresponding to a
secondary street. Therefore, when modelling connectivity in terms of connected
components and cycles, it is necessary to consider the types of streets which
compose these features. To achieve this goal the model proposed in this work
uses a method from the field of applied topology entitled persistent homology
(Edelsbrunner and Harer, 2010). The output from this model is a pair of density
functions which model the relative frequency and strength of connected compo-
nents and cycles in the street network. These two density functions are easily
interpreted and provide novel insights into connectivity properties of the street
network in question.

The layout of this paper is as follows. Section 2 reviews related works on
modelling street network connectivity and applied topology. Section 3 describes
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the proposed model of street network connectivity. Section 4 demonstrates
the usefulness of this model with respect to interpreting and providing insight
into the connectivity properties of a given street network, recommending ways
to improve this connectivity, and identifying street networks with similar and
dissimilar connectivity properties. This analysis is performed with respect to
sets of UK and USA city street networks. Finally, section 5 draws conclusions
from this work and discusses possible directions for future research.

2 Related Works

In this section we review related works on modelling the connectivity of city
street networks. We focus exclusively on the problem of modelling intra city
connectivity as opposed to inter city connectivity. A review of works in the
latter category can be found in (Mansury and Shin, 2015). In this section we
also briefly mention some related works on applied topology.

Connectivity is a well studied concept in graph theory (Gross et al., 2013).
Since street networks are naturally modelled as graphs, graph theoretic mea-
sures of connectivity can easily be applied to street networks. Two commonly
used such measures are vertex- and edge-connectivity which equal the minimum
number of vertices and edges respectively whose removal disconnects the graph.
Other graph theoretic measures include alpha (α) which equals the number of
cycles in the graph divided by the maximum possible number of cycles, beta
(β) which equals the number of edges divided by the number of vertices, and
gamma (γ) which equals the number of edges divided by the maximum possible
number of edges (Weber, 2016). Despite the fact that these measures are com-
monly applied to street networks (Sahitya and Prasad, 2019), they are limited
by the fact that they do not consider the geometrical or spatial nature of street
networks. Consequently, many measures of connectivity have been proposed
specifically for street networks.

Dill (2004) defined the following set of street network connectivity measures
drawn from multiple fields: maximum city block length, maximum city block
size, city block density which equals the mean number of city blocks per square
mile/kilometer, street intersection density which equals the mean number of
intersections per square mile/kilometer, street density which equals the mean
total length of street segments per square mile/kilometer, connected node ratio
which equals the number of street intersections divided by the number of in-
tersections plus cul-de-sacs, link node ratio which equals the number of street
segments divided by the number of intersections and cul-de-sacs, grid pattern
which is a binary indicator of whether the street network exhibits a grid pattern
commonly associated with high connectivity, route directness which equals the
mean network distance divided by straight-line distance and effective walking
area which equals the mean percentage of land parcels within a specified network
distance of a given location.

The US Green Building Council proposed a street intersection density mea-
sure which is related to that defined by Dill (2004) but uses some heuristics when
counting the number of intersections (Stangl and Guinn, 2011). Specifically, in-
tersections leading to isolated areas and intersections in these areas are not
counted. Stangl and Guinn (2011) subsequently highlighted some limitations
with this measure and instead proposed a measure similar to route directness
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proposed by Dill (2004). Stangl (2012, 2019) later extended this measure by
integrating a number of heuristics to make the measure more robust.

Peponis et al. (2008) proposed two measures of street network connectivity
entitled metric reach and directional distance. Metric reach equals the mean
network length reachable from a given location in the network. Directional dis-
tance equals the mean number of direction changes required to navigate between
two locations in the network. In a related work, Ellis et al. (2016) evaluated a
number of street connectivity measures. This included a novel measure entitled
directional reach which equals metric reach proposed by Peponis et al. (2008)
with the addition of a constraint on the number of possible direction changes.
Directional reach is related to the concept of visual connectivity whereby loca-
tions which require fewer turns to navigate between are considered more con-
nected (Hajrasouliha and Yin, 2015).

Knight and Marshall (2015) evaluated three measures of street network con-
nectivity entitled intersection density, street density and connectivity index.
The first two measures are equal to those of the same name proposed by Dill
(2004). The connectivity index equals the number of street segments divided
by the number of intersections. The authors found all three measures to be
correlated with irrelevant features of area and geometry, and therefore not to
be reliable measures of connectivity.

Stangl (2015) examined a number of the city block based connectivity mea-
sures defined by Dill (2004). The author identified some limitations of these
measures and proposed an alternative block based connectivity measure. The
measure in question is entitled block section and equals the mean maximum
straight-line distance between any two points on the boundary of an area en-
closed by streets.

In this article we propose a novel model of street network connectivity based
on persistent homology. Feng and Porter (2020) previously used persistent ho-
mology to model street networks. However their model does not model connec-
tivity but instead models the shape of the areas enclosed by streets. There exist
a number of previous works which also considered the application of methods
from the field of applied topology to geographical data. Ahmed et al. (2014) pro-
posed a model for determining local differences between street networks using
persistent homology. This model is used to recognize changes in street networks
over time and to assess the quality of map construction algorithms. Dey et al.
(2017) proposed a model for inferring a street network from GPS data using
discrete Morse theory. Corcoran and Jones (2016, 2017, 2018) proposed models
of spatial temporal phenomena based on persistent homology. Corcoran (2019)
proposed a method for performing generalization of geographical data using
persistent homology.

3 Model of Street Network Connectivity

As described in the introduction to this article, we propose a novel model
of street network connectivity where connectivity is modelled in terms of the
relative strength and frequency of connected components and cycles. This is
achieved by applying a method from the field of applied topology entitled per-
sistent homology to the street network in question.

To motivate the use of this method consider the street network in Figure 2
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Figure 2: The street network for Manchester city is displayed where streets are
represented by black lines.

corresponding to Manchester city which forms a running example in this sec-
tion. Figures 3(a), 3(b), 3(c), 3(d), 3(e) and 3(f) display subsets of this network
containing only those streets with type equal to motorway, trunk, primary, sec-
ondary, tertiary and unclassified respectively. These are the six most significant
street types in our model ranked from most to least significant. These indi-
vidual networks have distinct topological features and in turn different levels
of connectivity. For example, the motorway network in Figure 3(a) consists of
one larger and two smaller connected components where the larger connected
component contains a single cycle. This combination of few connected compo-
nents and a cycle indicates a relatively high level of connectivity. The trunk
network in Figure 3(b) contains three connected components where the larger
connected component contains many cycles indicating a relatively high level of
connectivity. On the other hand, the secondary network in Figure 3(d) contains
many connected components with few cycles indicating a relatively low level of
connectivity.

The above connectivity analysis of each street type in isolation gives a poten-
tially misleading local perspective of the overall street network connectivity. For
example, although the secondary network has a relatively low level of connectiv-
ity when considered in isolation, when considered in the context of other street
types to which it is connected, it may have a relatively high level of connectivity.
That is, the many connected components in this network may be strongly con-
nected by streets of different types. Therefore, it is necessary to perform a more
global connectivity analysis which considers all street types jointly. A naive
solution would be to compute a simple union of all street types and perform a
connectivity analysis of the resulting network. However, this approach fails to
model street type which is an important feature of connectivity. For example,
despite the fact that the motorway network contains only a single cycle, this
single cycle can potentially provide greater connectivity than the large number
of cycles in the trunk network. In this work we propose a novel model of street
network connectivity which uses persistent homology to overcome this challenge
and jointly consider all street types in an appropriate manner.
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Figure 3: Figures (a), (b), (c), (d), (e) and (f) display subsets of the Manchester
street network in Figure 2 containing only those streets with type equal to
motorway, trunk, primary, secondary, tertiary and unclassified respectively.
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The proposed model contains the following four computational steps. In
the first step, a graph based representation of the input street network is con-
structed. In the second step, a representation of this graph entitled a filtration
is constructed where this representation encodes street type information. In the
third step, the persistent homology of this filtration is computed which returns
a pair of mathematical objects called persistence diagrams. The first persis-
tence diagram models the number and strength of connected components while
the second persistence diagram models the number and strength of cycles. In
the final step, these persistence diagrams are transformed into a corresponding
pair of density functions which can be easily interpreted. This contrasts with
existing models of street network connectivity, reviewed in the related works
section, which output a single value indicating the level of connectivity. The
density functions output from the proposed model provide greater information
and in turn insight into the connectivity of the street network in question.

In the following four subsections we describe each of the above four compu-
tational steps in more detail. Note that, the descriptions in these subsections
do not venture too deeply into the corresponding underlying mathematics. This
presentation is intended to make the content accessible to non-mathematicians
and more specifically those without a working knowledge of algebraic topology.
We advise a reader seeking a more indepth description to consult the corre-
sponding references in each subsection or the textbooks by Edelsbrunner and
Harer (2010) and Ghrist (2014).

3.1 Graph Construction

In this step a graph based representation of the input street network is con-
structed. Toward this goal, the corresponding street network data is obtained
from OpenStreetMap (OSM) which is a crowdsourcing project for geographi-
cal data (Boeing, 2017). The set of street types in OSM ordered from most
to least significant are motorway, motorway link, trunk, trunk link, primary,
primary link, secondary, secondary link, tertiary, tertiary link, unclassified and
residential. This ordering is specified by OSM on the OSM wiki which also
contains a short description of each street type 1. A street type containing link
in its title refers to a type of street which has a short length and connects two
streets. For the purposes of this work, all streets of such a type are assigned
their corresponding parent type. For example, a street of type motorway link
is assigned the type motorway. Given this, we define the set T to be the set of
OSM street types less those which contain link in their title.

Given OSM data corresponding to the input street network, we represent
the street network as an edge labelled undirected graph G = (V,E, L : E → T ),
where V is the set of vertices corresponding to road intersections and dead-ends,
E is the set of edges corresponding to street segments connecting these vertices,
and L is a mapping from edges to the street type of the corresponding road
segment (Corcoran and Mooney, 2013). The graph representation corresponding
to the Manchester street network is displayed in Figure 2 where street segments
and hence graph edges are represented by black lines. Figures 3(a), 3(b), 3(c),
3(d), 3(e) and 3(f) display subgraphs of this street network containing only
those edges with type equal to motorway, trunk, primary, secondary, tertiary

1https://wiki.openstreetmap.org/wiki/Key:highway
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and unclassified respectively.

3.2 Filtration Construction

Given a graph representation G = (V,E, L : E → T ) of the input street network,
in this step we construct a filtration of G which is a representation that encodes
street type information.

A filtration of G is a sequence of n+ 1 graphs G0, G1, . . . , Gn which satisfy
Equation 1 where ⊆ is the subgraph relation. Toward constructing a filtration
of graph G, we first define a filter function f : E → R in Equation 2. This
function maps each edge in G to a real value where edges corresponding to
more significant street types are mapped to smaller values.

∅ = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G (1)

f(e) =



1.0 L(e) = motorway

2.0 L(e) = trunk

3.0 L(e) = primary

4.0 L(e) = secondary

5.0 L(e) = tertiary

6.0 L(e) = unclassified

7.0 L(e) = residential

(2)

Let E denote the set of subsets of E, and G denote the set of subgraphs of
G. Let S : E → G denote the map from a subset of E to the corresponding
edge induced subgraph. That is, a graph containing only that subset of edges
plus all adjacent vertices. For example, the subgraphs S({e : e ∈ E,L(e) =
motorway}) and S({e : e ∈ E,L(e) = trunk}) corresponding to the Manchester
street network are displayed in Figures 3(a) and 3(b) respectively.

Let C : R → G be the map defined in Equation 3 which returns sub-level
sets of G which are subgraphs of G. For example, the subgraphs C(1), C(2),
C(3), C(4), C(5) and C(6) corresponding to the Manchester street network are
displayed in Figures 4(a), 4(b), 4(c), 4(d), 4(e) and 4(f) respectively. Given
the map C, we define a filtration of G to be the sequence of n + 1 graphs
G0, G1, . . . , Gn where Gi = C(i). The first five graphs in this filtration for
the Manchester street network are the null graph followed by the subgraphs
displayed in Figures 4(a), 4(b), 4(c), 4(d), 4(e) and 4(f) respectively.

C(a) = S({e : e ∈ E, f(e) ≤ a}) (3)

The above filtration definition has the property that edges corresponding to
more significant street types appear earlier and persist for longer in the sequence
of graphs. For example, edges corresponding to motorways appear in G1 and
persist for n graphs of the sequence. On the other hand, edges corresponding
to primary appear in G3 and persist for n− 2 graphs of the sequence.

3.3 Persistent Homology Computation

As stated in the motivation at the beginning of this section, we wish to model
street network connectivity in terms of connected components and cycles while
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Figure 4: The subgraphs C(1), C(2), C(3), C(4), C(5) and C(6) corresponding
to the Manchester street network of Figure 2 are displayed in (a), (b), (c), (d),
(e) and (f) respectively.
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considering that more significant streets provide a greater level of connectivity.
We achieve this by computing the persistent homology of the filtration described
in the previous subsection. Broadly speaking, this computation will model the
existence and strength of connected components and cycles in the network. More
specifically, persistent homology computes a pair of mathematical objects enti-
tled persistence diagrams. A persistence diagram is a multiset of pairs of points
in the extended real line (R∪∞) which satisfy the condition that p < q for each
element (p, q) (Edelsbrunner and Harer, 2010). One of the persistence diagrams
models the existence of connected components in the filtration. Specifically, an
element (p, q) in this persistence diagram indicates that a connected component
appeared and subsequently disappeared at the graphs Gp and Gq respectively
in the filtration. The other persistence diagram models the existence of cycles
in the filtration. Specifically, an element (p, q) in this persistence diagram in-
dicates that a cycle appeared and subsequently disappeared at the graphs Gp

and Gq respectively in the filtration. If a connected component disappears it is
because it has merged with another connected component. As explained below,
in this study cycles always persist to the end of the entire filtration; if a cycle
merges with another cycle it will result in a further cycle in addition to itself.
Note that, for a given element (p, q) in a persistence diagram, the value q − p
is known as the persistence of the element in question. The persistence can be
regarded as the lifetime of the respective connected component or cycle which
first appears at duration or ‘time’ point p and disappears at time point q. In
the literature on persistence diagrams p and q are also referred to as points of
birth and death of the respective connected component or cycle.

If two connected components merge causing exactly one of them to disap-
pear, the one which appeared latest in the filtration is the one which disappears.
This is called the elder rule (Otter et al., 2017). If a connected component or
cycle appears at graph Gp in the filtration but does not subsequently disappear
it is represented by an element (p,∞). In this work we replace all elements of
the form (p,∞) with (p, u) where u is an upper bound. We use a value of 8 for
this upper bound which is a valid upper bound because G7 is the final element
in the filtration. Note that, performing such a replacement is a commonly used
approach for dealing with the challenges a value of ∞ presents (Adams et al.,
2017). Since the filtration in this work is constructed by only adding edges,
any cycles which appear will not disappear. Therefore, the second value of all
elements in the cycle persistence diagram will have a value equal to u.

The utility of these two persistence diagrams can be understood by consid-
ering that connected components and cycles which appear earlier and persist for
longer are connected by more significant streets and in turn are more strongly
connected. We first consider the case of connected components. The fewer num-
ber of connected components which persist for longer, the more well connected
the corresponding street network is. To illustrate this, consider again the filtra-
tion displayed in Figure 4 for the Manchester street network. The network in
Figure 4(a) contains three connected components. However these become con-
nected to other components in the next graph of the filtration in Figure 4(b) and
in turn these connections persist for a large fraction of the filtration indicating
a high level of connectivity between the connected components in question. In
contrast, if components that appear early in filtration do not quickly become
connected by other streets, this indicates a poorer level of connectivity, reflected
by a larger number of components which persist for longer. We next consider the
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case of cycles. The greater number of cycles which persist for longer, the more
well connected the corresponding street network is. To illustrate this, consider
again the filtration displayed in Figure 4 for the Manchester street network. A
large number of cycles appear early in the filtration in Figure 4(b) and hence
persist for a larger fraction of the filtration, as (unlike connected components)
once they appear they cannot subsequently disappear. This indicates that these
cycles provide a high level of connectivity. A large number of cycles also appear
later in the filtration in Figures 4(e) and in turn persist for a small fraction of
the filtration. This indicates that these particular cycles provide relatively less
connectivity.

The persistence diagrams corresponding to connected components and cycles
for the Manchester street network are displayed in Figures 5(a) and 5(b) respec-
tively. Appearance and disappearance values are represented by the horizontal
and vertical axes respectively. Many of the elements in these persistence dia-
grams are equal and therefore for the purpose of visualization a small amount
of Gaussian noise has been added to each element. The above figures are a
very standard way to visualize persistence diagrams apart from the addition of
Gaussian noise. However the persistence diagrams in this work contain many
elements making them difficult to interpret. For example, the persistence di-
agrams in Figures 5(a) and 5(b) contain 258 and 9,899 elements respectively,
most of which cannot be distinguished visually.

To overcome this difficulty we propose an alternative representation of per-
sistence diagrams entitled persistence densities which can be more easily inter-
preted. Let [1, 7] denote the closed integer interval between 1 and 7 and let [0, 1]
denote the closed real interval between 0 and 1. Given a persistence diagram
D, the corresponding persistence density is the map τ : [1, 7]→ [0, 1] defined in
Equation 4 where |D| denotes the number of elements in D (i.e. the number of
connected components or cycles).

τ(i) =
|{(p, q) : (p, q) ∈ D, q − p = i}|

|D|
(4)

Figures 6(a) and 6(b) display the connected component and cycle persis-
tence densities respectively for the Manchester street network represented using
histograms. The x-axis in these histograms represents the interval between ap-
pearance and disappearance, i.e. the period of persistence. The y-axis in these
histograms represents the corresponding density of these persistence values as
defined by Equation 4. These histograms model the relative frequency of differ-
ent persistence values and can be easily interpreted. For example, one can see in
Figure 6(a) that for the street network in question, most connected components
have a persistence value of one.

The proposed persistence density representation is similar to the persistence
image representation proposed by Adams et al. (2017). Broadly speaking, a per-
sistence image is an image representation of a persistence diagram where pixel
values equal a weighted sum of nearby elements. After much experimentation,
the authors decided to use the proposed persistence density representation in-
stead of the persistence image representation for the following reasons. Firstly,
the authors found it difficult to visually differentiate between different persis-
tence images because most contain peaks at the same set of locations where
the heights of these peaks are in many cases not significantly different. On the

11



(a) (b)

Figure 5: The persistence diagrams corresponding to connected components
and cycles for the Manchester street network of Figure 2 are displayed in (a)
and (b) respectively. Appearance and disappearance values are represented by
the horizontal and vertical axes respectively.

other hand, since persistence densities are visualized using histograms it is much
easier to visually differentiate between them. Secondly, the persistence image
representation requires that a scale or smoothing parameter value be specified.
It is not clear how best to select this parameter value. On the other hand, the
persistent density representation does not require any parameter values to be
specified.

To facilitate the application of data mining methods, it is useful to define
a distance or metric between different street networks represented using the
proposed model. There exists a number of distance measures on the space of
persistence diagrams such as the Bottleneck and Wasserstein distances (Edels-
brunner and Harer, 2010). However these distances are biased with respect to
the number of elements with significant persistence in the corresponding per-
sistence diagrams. That is, any two persistence diagrams having significantly
different numbers of elements with significant persistence will generally have a
large corresponding distance. Since larger cities will have graph representations
with a greater number of edges, their corresponding persistence diagrams will
have a corresponding greater number of elements with significant persistence.
This in turn results in a bias where cities with similar sized street networks are
determined to be more similar. This is undesirable because we would prefer a
distance measure which is a function of street network connectivity alone. To
overcome this challenge we instead use the Wasserstein distance on the space of
persistence densities (Peyré et al., 2019). Intuitively, this distance measures the
cost of transforming one density function into another. Since the density func-
tion is normalized such that its codomain sums to 1.0, this provides a distance
measure which is unbiased with respect to street network size.

4 City Connectivity Analysis

This work proposes a novel model of street network connectivity. The usefulness
of any model can only be defined with respect to performing a given task. In
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(a) (b)

Figure 6: The connected component and cycle persistence densities for the
Manchester street network are displayed in (a) and (b) respectively. The vertical
axis represents density values while the horizontal axis represents the interval
between appearance and disappearance (the persistence value).

this section we demonstrate the usefulness of the proposed model with respect
to performing the tasks of interpreting and providing insight into the connec-
tivity properties of a given street network, recommending ways to improve this
connectivity, and identifying street networks with similar and dissimilar con-
nectivity properties. We perform these tasks with respect to the set of UK city
street networks and a subset of USA city street networks.

The remainder of this section is structured as follows. In section 4.1 we
present details of the UK and USA street networks considered and the process
used to construct these networks. In section 4.2 we demonstrate the usefulness of
the proposed model with respect to performing the downstream tasks mentioned
above.

4.1 Street Networks

The first set of street networks we considered is a set of street networks cor-
responding to all UK cities for which there are 66. All UK cities have official
boundaries 2. However, we found these boundaries to be inconsistent with re-
spect to what they contained. For example, some city boundaries contain the
corresponding suburban street network while others do not. This is a conse-
quence of the fact that many city boundaries were defined before the street
network in question fully developed and are a function of political influences.
To overcome this challenge, for each UK city we selected a location in the city
center and extracted the street network within a ten kilometers bounding box
centred at this location. We found this approach to consistently return the
desired street network.

The second set of street networks we considered is a set of street networks
corresponding to a subset of USA cities. In order to have a representative sample
of cities we used the subset of cities proposed by Angel and Blei (2016). In this
work the authors used a random stratified sampling procedure to select a subset

2https://data.gov.uk/dataset/7879ab82-2863-401e-8a29-a56e264d2182/

major-towns-and-cities-december-2015-boundaries
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(a) (b)

Figure 7: The street networks for the UK cities of Cardiff and Birmingham are
displayed in (a) and (b) respectively where street segments are represented by
black lines.

of 40 cities from the set of all 242 USA cities that had populations of 100,000
or more in the year 2000. We defined the boundary of each city to be the
boundary of the corresponding Metropolitan Statistical Area (MSA) in which
it is contained (Arribas-Bel and Sanz-Gracia, 2014). MSAs are defined by the
United States Office of Management and Budget (OMB) as core areas containing
a substantial population nucleus, together with adjacent communities having a
high degree of economic and social integration with that core 3.

The street networks for both the UK and USA cities were obtained from
OpenStreetMap, which is a crowdsourcing project for geographical data, using
the OSMNX software library (Boeing, 2017). Tables 1 and 2 display the names of
the UK cities and USA MSAs respectively plus the number of vertices and edges
in the corresponding graph representations. Figures 2, 7(a) and 7(b) display
the street networks for the UK cities of Manchester, Cardiff and Birmingham
respectively. Figures 8(a) and 8(b) display the street networks for the USA
MSAs of Boston-Cambridge-Newton, MA-NH and Columbia, SC respectively.

4.2 Analysis

The analysis of the connected component and cycle persistence densities for a
given street network provides insight into its connectivity properties. A con-
nected component persistence density which is more skewed to the left indicates
a greater level of connectivity. Specifically, such skewness indicates that most el-
ements in the corresponding persistence diagram have smaller persistence. That
is, most parts of the street network get connected earlier in the filtration where
these connections correspond to more significant streets. On the other hand,
a cycle persistence density which is more skewed to the right also indicates a
greater level of connectivity. Specifically, such skewness indicates that most el-
ements in the corresponding persistence diagram have larger persistence. That

3https://www.census.gov/programs-surveys/metro-micro/about.html
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City |V | |E| City |V | |E|
Aberdeen 9,348 11,870 Liverpool 31,743 39,405
Armagh 2,112 2,624 London 46,878 61,858
Bangor 3,301 3,937 Manchester 44,780 55,325
Bath 8,782 10,117 Newcastle 29,719 35,326

Belfast 18,286 21,884 Newport 10,610 12,523
Birmingham 37,797 46,776 Newry 3,623 4,270

Bradford 30,804 36,468 Norwich 12,902 14,875
Brighton 6,564 8,616 Nottingham 23,364 27,382
Bristol 23,236 27,922 Oxford 7,573 8,851

Cambridge 7,884 9,096 Perth 2,999 3,556
Canterbury 6,185 7,245 Peterborough 10,174 11,594

Cardiff 14,970 17,951 Plymouth 10,038 11,926
Carlisle 4,421 5,218 Portsmouth 13,631 16,309

Chelmsford 6,322 7,508 Preston 13,636 15,978
Chester 9,224 10,844 Ripon 2,081 2,509

Chichester 5,206 6,142 St Albans 12,919 15,513
Coventry 13,502 16,132 St Asaph 6,084 7,094

Derby 12,482 14,471 St Davids 335 410
Derry 5,200 5,983 Salford 40,974 50,474

Dundee 7,276 9,039 Salisbury 2,864 3,386
Durham 11,581 13,505 Sheffield 22,081 26,950

Edinburgh 15,055 18,505 Southampton 18,306 21,020
Ely 3,284 3,631 Stirling 5,563 6,593

Exeter 8,299 9,658 Stoke-on-Trent 16,465 19,700
Glasgow 30,266 38,512 Sunderland 18,727 22,716

Gloucester 10,529 12,083 Swansea 10,352 12,342
Hereford 3,637 4,246 Truro 3,193 3,808
Inverness 4,792 5,455 Wakefield 20,568 23,725

Hull 14,151 16,322 Wells 3,655 4,286
Lancaster 5,081 6,241 Westminster 46,938 61,863

Leeds 29,393 35,470 Winchester 5,792 6,640
Leicester 18,604 22,358 Wolverhampton 25,229 30,387
Lichfield 11,079 12,832 Worcester 7,810 9,049
Lincoln 7,995 9,251 York 7,724 8,780
Lisburn 11,002 13,111

Table 1: This table displays the names of the 66 UK cities considered plus the
number of vertices (|V |) and edges (|E|) in the corresponding graph represen-
tations.
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Metropolitan Statistical Area |V | |E|
New York-Newark-Jersey City, NY-NJ-PA 414,171 58,777

Los Angeles-Long Beach-Anaheim, CA 256,499 358,592
Chicago-Naperville-Elgin, IL-IN-WI 263,540 383,581

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 190,291 272,286
Miami-Fort Lauderdale-Pompano Beach, FL 163,900 242,164

Dallas-Fort Worth-Arlington, TX 303,428 430,668
Boston-Cambridge-Newton, MA-NH 167,664 231,761

Washington-Arlington-Alexandria, DC-VA-MD-WV 232,169 303,521
Detroit-Warren-Dearborn, MI 156,080 225,515

Houston-The Woodlands-Sugar Land, TX 263,633 368,016
Salt Lake City, UT 41,084 55,026

San Francisco-Oakland-Berkeley, CA 81,789 111,203
Cleveland-Elyria, OH 56,504 79,345

Pittsburgh, PA 118,614 158,033
Portland-Vancouver-Hillsboro, OR-WA 97,364 127,851

Virginia Beach-Norfolk-Newport News, VA-NC 58,522 77,547
Sacramento-Roseville-Folsom, CA 89,105 116,801

Kansas City, MO-KS 118,997 165,857
Columbus, OH 79,508 109,027

Austin-Round Rock-Georgetown, TX 85,495 11,5397
Hartford-East Hartford-Middletown, CT 41,484 56,222

El Paso, TX 35,911 52,111
Omaha-Council Bluffs, NE-IA 50,696 74,427

Albuquerque, NM 56,353 76,762
Grand Rapids-Kentwood, MI 42,099 56,527

Columbia, SC 51,325 66,669
Des Moines-West Des Moines, IA 31,969 46,063

Spokane-Spokane Valley, WA 26,906 37,749
Pensacola-Ferry Pass-Brent, FL 27,426 36,640

Jackson, MS 44,356 56,669
Shreveport-Bossier City, LA 26,585 35,514

Asheville, NC 39,766 46,531
Tallahassee, FL 21,230 27,989

Manchester-Nashua, NH 17,062 24,275
Portland-South Portland, ME 37,028 46,736

Norwich-New London, CT 11,621 15,340
Kennewick-Richland, WA 14,413 19,493

Greensboro-High Point, NC 38,629 49,717
Pueblo, CO 10,141 14,281
Tyler, TX 11,887 16,275

Table 2: This table displays the names of 40 USA Metropolitan Statistical Areas
considered plus the number of vertices (|V |) and edges (|E|) in the corresponding
graph representations.
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(a) (b)

Figure 8: The street networks for the USA MSAs of Boston-Cambridge-Newton,
MA-NH and Columbia, SC are displayed in (a) and (b) respectively where street
segments are represented by black lines.

is, different parts of the street network get connected by multiple paths that cre-
ate cycles (i.e. circuits), earlier in the filtration where these paths correspond
to more significant streets.

To illustrate the insights which this analysis can provide with respect to
street network connectivity properties consider the connected component and
cycle persistence densities for the UK cities of Cardiff, Manchester and Birming-
ham displayed in Figure 10. The connected component persistence densities for
Manchester and Birmingham are more skewed to the left than that of Cardiff.
Notably, Manchester and Birmingham both have significantly more connected
components with a persistence value of 1. This indicates that Cardiff has a
number of areas which are not connected by significant streets. Therefore, the
connectivity of Cardiff could be improved by connecting these areas by such
streets. The cycle persistence densities for Manchester and Birmingham are
more skewed to the right than that of Cardiff indicating higher levels of con-
nectivity. Notably, both Manchester and Birmingham have significantly more
cycles with persistence values of 6 and 7. This is a consequence of the fact
that, unlike Cardiff, both Manchester and Birmingham are both inland cities
with significant roads surrounding them. This fact is illustrated in Figure 9
which displays the set of streets with type equal to motorway or trunk for the
cities of Cardiff, Manchester and Birmingham. Motorway or trunk are the most
significant street types and we can see that Manchester and Birmingham each
contain more cycles formed from these types than Cardiff.

To contrast the above analysis with that which can be achieved using tradi-
tional models of street network connectivity consider Table 3 which displays the
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(a) (b) (c)

Figure 9: The set of streets with type equal to motorway or trunk for the
cities of Cardiff, Manchester and Birmingham are displayed in (a), (b) and (c)
respectively.

intersection density for each UK city. The intersection density for a given street
network equals the mean number of street network intersections per square
kilometer. This is a commonly used model of street network connectivity where
greater density is considered to indicate greater connectivity (Dill, 2004). The
intersection densities for the cities of Cardiff, Manchester and Birmingham are
101, 311 and 263 respectively. The model therefore indicates that Manchester
has the greatest connectivity while Cardiff has the worst. However, the model
does not provide any insight for how to improve connectivity beyond increasing
the number of intersections. For example, it does not indicate what types of
streets should be added to increase intersection density or between which areas
these streets should be constructed.

For the UK and USA street networks we computed the pairwise Wasserstein
distances between the corresponding sets of connected component and cycle per-
sistence densities. Using these distances, we subsequently performed hierarchical
single-linkage clustering of the UK and USA street networks to obtain dendro-
gram representations (Everitt et al., 2011). Figures 11(a) and 11(b) display the
dendrograms for the UK street networks with respect to connected component
and cycle persistence densities respectively. Figures 12(a) and 12(b) display the
dendrograms for the USA street networks with respect to connected compo-
nent and cycle persistence densities respectively. Examining these dendrograms
allows us to systematically determine cities that have more- or less-similar con-
nectivity properties. To further assist in this analysis, for each set of pairwise
distances we computed a corresponding representation of each city as a point
in R2 using the t-SNE manifold learning technique (Maaten and Hinton, 2008).
Figures 13(a) and 13(b) display the t-SNE representations for the UK street
networks with respect to connected component and cycle persistence densities
respectively. Figures 14(a) and 14(b) display the t-SNE representations for the
USA street networks with respect to connected component and cycle persistence
densities respectively.

To evaluate the stability of the above dendrograms and t-SNE representa-
tions with respect to the choice of Wasserstein distance, we recomputed these
representations using the energy distance (Rizzo and Székely, 2016). Figures
15(a) and 15(b) display the dendrogram representations in question for the UK
street networks with respect to connected component and cycle persistence den-

18



City Intersection City Intersection
Density Density

Aberdeen 68 Liverpool 223
Armagh 15 London 354
Bangor 22 Manchester 311
Bath 56 Newcastle 198

Belfast 124 Newport 71
Birmingham 263 Newry 24

Bradford 203 Norwich 82
Brighton 50 Nottingham 152
Bristol 157 Oxford 48

Cambridge 50 Perth 20
Canterbury 40 Peterborough 64

Cardiff 101 Plymouth 67
Carlisle 29 Portsmouth 91

Chelmsford 42 Preston 89
Chester 60 Ripon 14

Chichester 35 St Albans 89
Coventry 91 St Asaph 39

Derby 81 St Davids 3
Derry 34 Salford 286

Dundee 51 Salisbury 20
Durham 76 Sheffield 152

Edinburgh 104 Southampton 117
Ely 21 Stirling 36

Exeter 53 Stoke-on-Trent 112
Glasgow 219 Sunderland 129

Gloucester 65 Swansea 68
Hereford 23 Truro 21
Inverness 29 Wakefield 134

Hull 90 Wells 23
Lancaster 35 Westminster 354

Leeds 198 Winchester 36
Leicester 126 Wolverhampton 172
Lichfield 72 Worcester 51
Lincoln 50 York 48
Lisburn 73

Table 3: The intersection density for each UK city street network where in-
tersection density equals the mean number of street network intersections per
square kilometer.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: The connected component persistence densities for the Cardiff,
Manchester and Birmingham street networks are displayed in (a), (c) and (e)
respectively. The cycle persistence densities for the Cardiff, Manchester and
Birmingham street networks are displayed in (b), (d) and (f) respectively.
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(a) (b)

Figure 11: Dendrograms for the connected-component and cycle persistence
diagrams for the UK street networks are displayed in (a) and (b) respectively.
Pairwise distances computed using the Wasserstein distance.

sities respectively. Figures 16(a) and 16(b) display the t-SNE representations
in question for the UK street networks with respect to connected component
and cycle persistence densities respectively. Comparing the dendrograms and
t-SNE representations computed using the Wasserstein and energy distances we
see that they are quite similar. For example, comparing dendrograms in Figures
11(a) and 15(a) we see that in both cases the distance between the St. Davids
and Armagh street networks is determined to be relatively large.

Examining the dendrograms and t-SNE manifolds, we can identify cities
which have similar and dissimilar persistence densities. For example, Birm-
ingham and Liverpool have similar connected component persistence densities
which are displayed in Figure 17. Both these persistence densities are heavily
skewed to the left and, as discussed above, this indicates a high level of connec-
tivity. This can be attributed to the fact that both are major UK cities with a
large number of significant connecting streets. The connected component per-
sistence densities for Armagh and Brighton are displayed in Figure 18. Both
these cities have dissimilar connected component persistence densities to that
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(a) (b)

Figure 12: Dendrograms for the connected-component and cycle persistence
diagrams for the USA street networks are displayed in (a) and (b) respectively.
Pairwise distances computed using the Wasserstein distance.
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(a) (b)

Figure 13: t-SNE representation of each UK street network as a point in R2

with respect to connected component and cycle persistence densities are dis-
played in (a) and (b) respectively. Pairwise distances were computed using the
Wasserstein distance.

(a) (b)

Figure 14: t-SNE representation of each USA street network as a point in
R2 with respect to connected component and cycle persistence densities are
displayed in (a) and (b) respectively. Pairwise distances were computed using
the Wasserstein distance.
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(a) (b)

Figure 15: Dendrograms for connected component and cycle persistence dia-
grams for the UK street networks are displayed in (a) and (b) respectively.
Pairwise distances were computed using the energy distance.
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(a) (b)

Figure 16: t-SNE representation of each UK street network as a point in R2 with
respect to connected component and cycle persistence densities are displayed in
(a) and (b) respectively. Pairwise distances were computed using the energy
distance.

of Birmingham and Liverpool. Specifically, they are more skewed to the right.
This can be attributed to the fact that both are smaller less significant cities
with a lower number of significant connecting streets. In fact, Armagh is an
extremely small city and this is reflected in the relative size of its graph repre-
sentation displayed in Table 1. This analysis indicates that the connectivity of
Armagh and Brighton could be improved by adding more significant connecting
streets.

In order to compare the connectivity of the UK and USA street networks
we computed the mean connected component and cycle persistence densities for
the corresponding sets of street networks. These mean persistence densities are
displayed in Figure 19. The mean UK connected component persistence density

(a) (b)

Figure 17: The connected component persistence densities for the Birmingham
and Liverpool street networks are displayed in (a) and (b) respectively.
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(a) (b)

Figure 18: The connected component persistence densities for the Armagh and
Brighton street networks are displayed in (a) and (b) respectively.

is more skewed to the left than that corresponding to the USA. Furthermore, the
mean UK cycle persistence density is more skewed to the right than that corre-
sponding to the USA. These two facts indicate that, on average the UK street
networks have a greater level of connectivity than the USA street networks.

As discussed in section 4.1, in many cases the boundary of a city is ambigu-
ous and difficult to define. To determine if the proposed model of connectivity
is sensitive to the choice of city boundary we computed the connected compo-
nent and cycle persistence densities for the city of Manchester for three different
boundaries. Specifically, we considered boundaries corresponding to the 3.33,
6.67 and 10 kilometer bounding boxes centred at the city center. Figure 20
displays the connected component and cycle persistence densities correspond-
ing to each of these bounding boxes. We can see that the persistence densities
corresponding to the 6.67 and 10 kilometer bounding boxes are very similar.
However, the persistence densities corresponding to the 3.33 kilometer bound-
ing box are quite distinct. This result demonstrates that when attempting to
model the connectivity of a given city, the proposed model is sensitive to the
choice of corresponding boundary and therefore care must be taken when defin-
ing this. Note that, most models of street network connectivity also exhibit
this sensitivity. For example, the intersection density values corresponding to
the above bounding boxes are 494, 360, and 311 respectively. That is, as the
bounding box increases the intersection density decreases. This is evident from
viewing the Manchester city street network in Figure 2 where we see that the
density of streets is greatest in the city center.

We extended the above experiment to the set of all UK cities by computing
the mean persistence densities for these cities for 3.33, 6.67 and 10 kilometer
bounding boxes. These persistence densities are displayed in Figure 21. We see
that as the bounding box size increases the mean connected component persis-
tence density becomes slightly more skewed to the left indicating a greater level
of connectivity. Furthermore, we see that as the bounding box size increases
the mean cycle persistence density becomes more skewed to the right, also indi-
cating a greater level of connectivity. Both these results are expected because
more significant street types and in turn connections generally exist outside the
center of a city. This analysis provides a form of validation for the proposed
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(a) (b)

(c) (d)

Figure 19: The mean connected component and cycle persistence densities for
the set of UK cities are displayed in (a) and (b) respectively. The mean con-
nected component and cycle persistence densities for the set of USA cities are
displayed in (c) and (d) respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 20: The Manchester street network corresponding to a 3,333 meter
bounding box is displayed in (a) while the corresponding connected compo-
nent and cycle persistence densities are displayed in (b) and (c) respectively.
The Manchester street network corresponding to a 6,667 meter bounding box is
displayed in (d) while the corresponding connected component and cycle persis-
tence densities are displayed in (e) and (f) respectively. The Manchester street
network corresponding to a 10,000 meter bounding box is displayed in (g) while
the corresponding connected component and cycle persistence densities are dis-
played in (h) and (i) respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 21: The mean connected component persistence density for the set of
UK cities for 3.33, 6.67 and 10 kilometer bounding boxes are displayed in (a)
and (b) and (c) respectively. The mean cycle persistence density for the set of
UK cities for 3.33, 6.67 and 10 kilometer bounding boxes are displayed in (d)
and (e) and (f) respectively.

model of street network connectivity.

5 Conclusions

In this article we propose a novel model of street network connectivity which
is distinct from existing models in a number of ways. Firstly, in the proposed
model connectivity is modelled in terms of the relative strength and frequency
of connected components and cycles in the network. In existing models connec-
tivity is generally modelled in terms of summary statistics of simple geometrical
or topological features of the network. Secondly, the proposed model considers
the type of different streets and different levels of connectivity they provide.
The authors are unaware of any existing models of connectivity which consider
such information. Finally, the proposed model does not represent connectivity
using a single number. Instead connectivity is represented using a richer repre-
sentation, specifically a set of persistence densities, which can be used to gain
novel insights into the connectivity properties of different cities. Despite being a
somewhat more complex representation, persistence densities can still be easily
interpreted. This is particularly important given that the planning practice has
traditionally relied on connectivity measures that can be intuitively understood
and/or easily applied (Stangl and Guinn, 2011).

Despite the above achievements, the proposed model of connectivity has
some limitations which provide opportunities for future research. Firstly, when
attempting to model the connectivity of a given city, the proposed model is
sensitive to the choice of corresponding boundary. One potential solution to
this issue would be to not pick a single boundary but consider all possible
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boundaries using some form of multi-dimensional persistent homology (Carls-
son et al., 2009). Another approach is to provide more consistent methods of
defining region types with regard for example to their inclusion or otherwise
of outlying suburban residential areas and measures of population density and
of employment (Arribas-Bel and Sanz-Gracia, 2014). Secondly, the proposed
model is solely a function of the corresponding street network. However, in
reality connectivity is a function of many other factors including population
size and spatial distribution (Mansury and Shin, 2015). For example, if a large
percentage of the city population live in the suburbs but work in the city center
then the importance of connectivity between these two types of region must be
weighted more highly.
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