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Qualitative spatial representation and reasoning are techniques for modeling and ma-
nipulating objects and relationships in space. Finding ways for defining the complete
and sound (physically plausible) set of relationships between spatial objects is a pre-
requisite for the development and realization of qualitative representation and reasoning
formalisms. Establishing the set of sound relationships is a complicated task especially
when complex objects are considered. Hence, current approaches to qualitative repre-
sentation and reasoning are limited to handling simple spatial objects. In this paper, we
introduce a constraint-based approach to qualitative representation of topological rela-
tionships by defining a set of general soundness rules. The rules reduce the combinatorial
set of relations produced by the method to the complete and physically possible ones.
The rules are general and apply to objects of arbitrary complexity and together with the
representation and reasoning formalism form a theory for qualitative space.

1. Introduction

Development of representation models for qualitative spatial relationships is
an important research topic of interest to many application domains including,
Artificial Intelligence, image processing and physical and engineering applications
and Geographic Information Systems '»23#*. The need for a mathematical basis
to under-pin such representation formalisms is two-folds: to provide precise un-
ambiguous definitions of relations and to facilitate a straightforward mapping into
implementation algorithms or spatial query languages. Also, a formal theory for the
representation of spatial relations provides the essential basis for spatial reasoning



in spatial information systems.

Two main criteria for classification of representation formalisms are: complete-
ness, which is the ability of the formalism to represent all possible spatial rela-
tionship of interest in the domain studied and soundness, which is the ability of
the formalism to define only physically possible relationships. The definition of a
complete and sound set of spatial relationships is a pre-requisite for devising any
reasoning mechanisms over such representation schemes. Composition of spatial
relationships is the process of deriving the possible relation(s) between any pair of
objects A and C given the relationships Ry (A, B) and R(B, C). Non-deterministic
results may occur which are usually expressed as a disjunction of possible relations,
thus consequently, requiring the knowledge of the set of all possible relationships
between the objects in the domain studied.

The problem is significant, especially in domains where objects of arbitrary com-
plexity are considered and ontologies for spatial relations are not readily available.
Deriving the sound set of spatial relationships has so far been limited to using visual
reasoning where no guarantee of completeness can be established or, in few works
5 by proposing sets of rules for specific object representations. The later method is
limited, as new rules need to be devised every time a new object type or shape is
considered.

In this paper a constraint-based approach, proposed in earlier work 6, to the rep-
resentation of spatial relationships between objects of arbitrary complexity is first
introduced. The complete set of topological relationships is derivable by the method.
The method is then used as a basis for the development of general soundness rules
and constraints. The constraints are used to extract the physically possible set of
relationships from the complete set. The automation of the above procedure is novel
and provides new possibilities for the application of spatial reasoning formalisms in
large spatial databases.

The rest of the paper is structured as follows. Section 2 provide an overview of
the dimensions of the problem. Related work is presented in section 3. In section 4,
the representation method is introduced and examples are provided to demonstrate
its applicability to complex spatial objects. Soundness rules are given in section 5
which are then mapped to constraints that can be applied on the representation
method. A method for calculating the number of sound spatial relations is also
introduced, followed by conclusions and a view of future work in section 6.

2. Problem Definition

Qualitative spatial representation and reasoning (QSRR) is an application of the
general field of qualitative modeling, where the main goal is to model the state and
behaviour of a given system. In a qualitative space, the states to be modeled are
the spatial objects and their inter-relationships, and the behaviour is either static
or dynamic.

In the case of static behaviour, a space containing a set of three or more spatial
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Figure 1: The possible states of transition between the various relations in the case
of two simple regions.
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Figure 2: Different sets of spatial relations for characterising representation models.

objects is studied to identify the possible or feasible set of relationships between
those objects. The basic problem in this case is the composition of spatial rela-
tions stated as follows: given a relation R; between objects A and B and a relation
R, between objects B and C, find the corresponding set of possible relations be-
tween objects A and C. For example, if contains(A, B) and overlaps(B,(C), it
should be concluded that the relations between A and C' is either contain(A, C) or
overlap(A, C).

In the case of dynamic behaviour, the model needs to compute the possible
sequence of transitions between different states (or spatial relations). For example,
figure 1 is a model of the sequence of transition of relations between two simple
regions.

A basic requirement for a QSRR model to be complete and sound is to represent
all the possible states (i.e. spatial relations) and to exclude any non-feasible ones.
In this paper, this problem is addressed with spatial objects of arbitrary complexity
and dimension. The approach is also valid in any space dimension.

Let AT be the set of sound relations between a pair of spatial objects, as shown
in figure 2. AT is a finite set. If Ay represents the (infinite) set of all invalid or
non-sound states that can be modeled, then A = A1 U Ay is the set of all states
that can be modeled.



The set AT is the complete (all) and sound (physically possible) set of rela-
tions between the two objects. Different categories of representation model can be
identified.

1. An invalid representation model is a model which represents only invalid or
non-sound relations. In figure 2, the set F is the set of invalid relations, where
F¢ At and F C A.

2. A sound, but incomplete model represents relations set M in figure 2, where
M1 - A+, M1 ¢ AO and M1 ;é A+.

3. A partially sound model represents relations set M in figure 2, where My C
AT and Ms C Ag.

4. A complete but not sound model represents relations set C' in figure 2, where
AT C C and C C A,.

5. A complete and sound model represents relations set I, where I = At and
I¢ Ap.

A QSRR formalism strives to be complete and sound. The above taxonomy is
used in the following section to characterise the various approaches proposed in the
literature

3. Related Work

Two main approaches can be classified for modeling spatial relations. One starts
by identifying the set of sound relations in the domain studied and then model
the relations using constraints that define the different distinct states. The other
approach starts by identifying the set of constraints that govern the space studied
and use them to define the states or relations using those constraints. We denote
the first approach a relation-driven approach and the second approach a constraint-
driven approach. The first approach is sound, but with no guarantee of completeness
and the second approach aims to achieve completeness but does not guarantee
soundness.

This paper is primarily concerned with topological relations. The spatial domain
is rich with various possible types, dimensions and shapes of spatial objects. A
vast number of possible relations may exist between those objects. It is therefore
practically impossible for the relation-driven approaches to claim completeness. The
model in this case can be represented by the set M; in figure 2, where M; is much
smaller than A™.

A primary method in this category is due to Randell et al 7. Eight relations
between simple convex regions are axiomatised using the concept of connection. At-
tempts have been made to extend the formalism by introducing different taxonomies
of relationships between concave regions ® and regions with in-determined bound-

aries °. The power of this logic-based formalism was investigated in '° and '':!2



using different variations of doughnut-shaped regions. Bennett et al '* used this
connection logic to describe qualitative geometry. However, it was noted in '* that
the region connection method is limited to studying objects of similar dimension
and can’t handle objects with different dimensions. Theorem proving techniques
were used for reasoning (static behaviour modeling) on the defined axioms. The
difficulties and complexity of such task are reported by Cohn in '°.

In the constraint-driven approach, an object is represented in terms of the set
of its components, and relationships are the result of the combinatorial intersection
of those components. These group of approaches generally aim to satisfy complete-
ness, but not soundness. The degree of completeness is dependent on the modeling
strategy adopted for space and relations.

An intersection-based approach was proposed by Egenhofer et al %17 where
point-set topology was used for the definition of the components of two simple
regions as interior (A°), boundary (6A) and exterior (A~). Spatial relationships
between the regions considered are the result of the exhaustive combinatorial in-
tersection of their components (2° = 512 possible relationships in this case). Only
eight relations between the regions are possible. Special rules were introduced to
reduce the combinatorial set and eliminate the non-sound relations. A set of 11
rules were used to reason about the relations between the regions. The rules are,
however, specific and could be applied only between simple regions.

Various extensions of this approach has been proposed to represent relationships
between lines ®, between regions with holes '® and between regions with indeter-
mined boundaries '°. Clemintini and De Felice 2° have further extended the later
model to handle complex objects with broad boundaries, where they identified 56
possible relations in this case.

All the identified sets of relations above can be categorised as set My in figure
2. Egenhofer’s approach and the various extensions thereof are limited, as specific
soundness rules have to be devised to eliminate invalid relations on a case by case
basis and whenever a new type of object is considered. Furthermore, the reasoning
rules proposed were limited to the case of simple convex regions only.

Hence, while the constraint-driven approach guarantee completeness, it does not
provide for soundness of representation, and the relation-driven approach is sound
but not complete. Note that if the domain is restricted to a set of simple (regular)
shapes then both approaches can be made complete and unique with respect to
representation.

In a previous work %, we proposed an intersection model that generealised the
representation of objects and spatial relations. It was shown how the model can
apply to objects with arbitrary complexity and to model their static behaviour.
The model was extended to handle orientation and proximity relations 2122, The
approach represents relations set C in figure 2. Although complete and general, the
model had to assume that the set of sound relations between any of the considered
objects were pre-defined.

The only practical method for reducing the set C' to the complete and sound



set AT is to devise general soundness rules that are applicable on spatial relations
between any type of spatial objects. This paper addresses this problem by studying
the characteristics of the underlying qualitative space as explained below.

4. The Representation Approach

The first part of the paper addresses the problem of qualitative representation of
objects with arbitrary spatial complexity and their topological relationships. The
representation methodology is first described and examples are used to demonstrate
how relationships between objects of random complexity can be represented.

4.1. The General Representation

Objects of interest and their embedding space are divided into components ac-
cording to a required resolution. The connectivity of those components is explicitly
represented. Spatial relations are represented by the intersection of object compo-
nents 23 in a similar fashion to that described in 2* but with no restriction on object
components to consist only of two parts (boundary and interior).

4.1.1. The Underlying Representation of Object Topology

Let S be the space in which the object is embedded. The object and its embedding
space are assumed to be dense and connected. The embedding space is also assumed
to be infinite. The object and its embedding space are decomposed into components
which reflects the objects and space topology such that,

1. No overlap exists between any of the representative components.
2. The union of the components is equal to the embedding space.

The topology of the object and the embedding space can then be described by
a matrix whose elements represent the connectivity relations between its compo-
nents. This matrix shall be denoted adjacency matriz. In figure 3(a) a possible
decomposition of a concave shaped object (for example an island with a bay) and
its embedding space is shown and in 3(b) the adjacency matrix for its components
is presented. The object is represented by two components a linear component x;
(the shore line of the island) and an areal component z, and the rest of its em-
bedding space is represented by a finite areal component x3 (representing the bay
of the island) and infinite areal component xo representing the surrounding area.
The fact that two components are connected is represented by a (1) in the adja-
cency matrix and by a (0) otherwise. Since connectivity is a symmetric relation,
the resulting matrix will be symmetric around the diagonal. Hence, only half the
matrix is sufficient for the representation of the object’s topology and the matrix
can be collapsed to the structure in figure 3(c). In the decomposition strategy, the
complement of the object in question shall be considered to be infinite. The suffix
0 (zo) is used to represent this component.
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Figure 3: (a) Possible decomposition of a concave-shaped object and its embedding
space. (b) Adjacency matrix of the shape in (a). (c¢) Half the symmetric adjacency
matrix is sufficient to capture the object representation.
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Figure 4: Different qualitative spatial relationships can be distinguished by identi-
fying the appropriate components of the objects and the space.

4.1.2. The Underlying Representation of Spatial Relations

In this section, the representation of the topological relations through the inter-
section of their components '® is adopted and generalized for objects of arbitrary
complexity.

Distinction of topological relations is dependent on the strategy used in the
decomposition of the objects and their related spaces. For example, in figure 4
different relationships between two objects representing a ship (z) and an island
(y) are shown, where in 4(a) the ship is outside the bay and in 4(b) the ship
is inside the bay. The concave region representing the island (y) is decomposed
into two components y; and y» and the rest of the space associated with y is
decomposed into two components (y3 representing the bay and yo representing the
rest of the ocean). Note that the component y3 is a virtual component, i.e. with
no physical boundary to delineate its spatial extension. It is the identification of
this component that makes the distinction between the two relationships in the
figure. The complete set of spatial relationships are represented by combinatorial
intersection of the components of one space with those of the other space.
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Figure 5: The corresponding intersection matrices for the relationships in figure
4 respectively.

If R(x,y) is a relation of interest between object x and object y, and X and Y
are the spaces associated with the objects respectively such that m is the number
of components in X and [ is the number of components in Y, then a spatial relation
R(x,y) can be represented by one state of the following equation:

R(z,y) = XnY
m [
i=1 j=1
= (@1Ny1,-, 21 NYLT2 N Y1, Ty N Y1)

The intersection z; Ny; can be an empty or a non-empty intersection. The above
set, of intersections shall be represented by an intersection matrix, as follows,

Yo | Y1 | Y2

Lo

R(z,y) = 11
T2

For example, the intersection matrices corresponding to the spatial relationships
in figure 4 are shown in figure 5. The components z; and zs have a non-empty
intersection with yo in 5(a) and with ys in 5(b).

Different combinations in the intersection matrix can represent different quali-
tative relations. The set of valid or sound spatial relationships between objects is
dependent on the particular domain studied.

In what follows the following subset notation is used. If 2’ is a set of components
(set of point-sets) {x1,---,zm } in a space X, and y; is a component in space Y,
then C denotes the following subset relationship.

e y; C 2’ denotes the subset relationship such that: Va; € z'(y;Na; # @) A y;N
(X —x1 — 22+ — ) = ¢ where i = 1,---m'. Intuitively, this symbol
indicates that the component y; intersects with every set in the collection z'
and does not intersect with any set outside of z'.

5. General Soundness Rules and Constraints



To reduce the set of complete relations in a domain to the set of complete
and sound ones, soundness rules have to be devised which incorporate the physical
properties or constraints of the topological space. Relations that do not conform to
those rules would thus be filtered out. Physical properties of the topological space
are constant under any topological mapping. Hence, properties such as size and
shape are not considered. The set of soundness rules, denoted here as topological
mapping rules, are then transformed to a set of constraints that can be directly
applied to reduce the combinatorial intersection in the intersection matrices to only
those representing physically possible or sound relationships.

The set of rules and constraints represents the properties most commonly used
by humans in the process of topological visual reasoning. The representation for-
malism together with the constraints proposed here represent a major step towards
developing a general theory for qualitative space.

5.1. General Topological Mapping Rules

In a topological space, object properties remain invariant under topological
transformations such as, stretching or rotation. The following set of rules cap-
tures the main characteristics of the qualitative space and govern the process of
space and object decomposition in that space.

Connectivity Rule: A connected component x will preserve its connectivity under
any topological transformation.

Component Dimension Rule: A component z with dimension n, where n =0V 1V
2 v 3 will preserve its dimension under any topological transformation.

Closed Component Rule: A closed component, e.g. a line forming a closed curve or
an area forming a closed surface, will preserve its closure under any topological
transformation.

Closure Rule: An open set will remain open under any topological transformation
and a closed point set will remain closed under any topological transformation.

In addition, the two assumptions used in our model, those of infinity and equality
of spaces have to be preserved under topological transformations. The following two
rules captures both assumptions.

Infinite Component Rule: Infinite components of a space will remain infinite under
any topological transformation.

Space Equality Rule: Any two infinite and equal spaces will remain equal under
any topological transformation.

5.2. Mapping Rules to Soundness Constraints
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Figure 6: (a) Simple regions z and y. (b) An impossible intersection matrix for the
regions. A — in the matrix represents 0 V 1.

The above rules must apply when objects interact in any possible topological
relationship. Hence, any intersection relation that violates one or more of the
above rules is not a physically possible relation and can be omitted. The following
constraints are the interpretation of the above rules on the intersection relations.
The simple case of the intersection relations between two simple regions = and y in
2D space is used here to illustrate the concepts.

1. Connectivity constraint: If y; is a connected component of space Y and
x' is a subset of space X, where ' = {z1,22,---,2,s} and m’ < m and m
is the total number of components of space z, then if y; C z', 2’ must be
connected. I.e. each component in the set ' must be adjacent to one or
more components of the set z'. If 2’ is not connected, then the corresponding
intersection relation is false.

Hence, in the case of simple regions = and y, the matrix in figure 6(b) is false
and can be eliminated. In the matrix y; C {z1,20} and z; is not connected

to xp.
This condition can be generalised as follows. Let y' C 2’ and y' = {y1,y2, ", Yn' }
and ' = {x1,22, -,z }. If 2’ is connected, then y' must also be connected.
For example, the following matrix is not valid.
Y1 | Y2 | Yo

I 1 0 -

) 0 0 -

Lo 0 1 -

In the matrix, let y' = {y1,y2} and =’ = {z1,2z0}. In this case y' is connected
but 2’ is not.
2. Dimension constraint:

If y; is a component with dimension p in space Y, and 2’ C X where
maz(dim(z')) = ¢, then y; C &' — ¢ > p.

This constraint states that an object component of a certain dimension can’t
be a subset of another object component of lower dimension. Hence, the



following matrix is false in the case of two simple regions, since y; C 5 and
dim(y1) > dim(z3). The object components are as shown in figure 6(a).

Y1 | Y2 | Yo
T 0 1 0
T2 1 1 0
zo | 0 | 1 1

Accordingly, an object component of dim = 0, i.e. a point, can’t have a
positive intersection with more than one component of the other space of any
dimension.

. Closure constraint: If y; is a closed component of space Y, i.e. a closed
line or an area, and if z; is a non-closed component of space X of the same
type (i.e. x; is a line if y; is a line and an area if y; is an area), then y; C z;
represents a false relation.

The reason being, if y; C z; then z; must be either closed (a contradiction)
or intersects itself (excluded case by assumption) or of higher dimension. An
example of this constraint is in the case of line-region relations where if the re-
gion boundary have a positive intersection with the line, it must also intersects
its embedding space as well.

. Open and closed set constraint: Let y; be a component of space ¥ and
z' C X. If y; is an open set and y; C z', then 2’ must also be an open set.
Remember that y; C ' — y; intersects only with every member of the set «'.

Consider the example of the two simple regions z and y. The components
of space X are z1, 2 and xg as shown in figure 6. Either the components
x1 Uzo are closed and zq is open or the components xo U x5 are closed and z;
is open. Hence, if y; (an open set) intersects with both z; and s, the result
of the intersection must be an open set which has to consequently intersect
with z¢ as well. The same is true if y; (or yp) intersects xo and z5. Hence,
y1 C (x1 Uxzs) is not valid, since y; is an open set and z; U z2 is a closed set.
Intuitively, this means that y; can’t intersect with both x; and z» without
part of y; intersecting part of x5. Hence, any relation conforming with the
following matrix is not valid.

Y1 | Y2 | Yo
T1 1 - -
) 1 - -
o 0 - -

Another implication of this constraint can be stated as follows. If a com-
ponent y; of the same dimension of the embedding space intersects with a
component of dimension 0, i.e. a point, it must intersect with all its adjacent
components. Otherwise, it intersects its boundary whose dimension is less
than the embedding space.



5. Infinity constraint: If y, is an infinite component of space X and if yo C 2/,
then 2’ must contain at least one infinite component.

Intuitively this constraint says that it is impossible for an infinite component
in the space to only have an intersection with finite component(s). In this case
the infinite component becomes a subset of the finite component(s) which is
not possible. Hence, any relation conforming with the following matrix is not

valid.
Y | Y2 | Yo
T - - -
To - - -
o - - 0

6. Space equality constraint: Every component from one space must intersect
with at least one component from the other space.

If one component of one space does not intersect with any component of the
other space, either the two spaces are not equal or the spaces are not dense
or connected. Both conditions are excluded by the initial assumptions. This
implies that there cannot exist a row or a column in the intersection matrix
whose elements are all empty intersections. Hence the combinatorial cases
in the matrix where this case exists can be ignored. For example, relations
represented by the following matrix are not valid.

Y1 [ Y2 | Yo
I 0 - -
D) 0 - -
o 0 - -

5.3. Non Topological or Domain Specific Constraints

In studying specific problem domains, more specific constraints, in addition to
the general ones, need to be identified and applied to filter out non-sound rela-
tions. In some cases, quantitative as opposed to qualitative properties need to be
considered. Four general types of domain specific constraints can be identified.

e Component Size/dimensions Constraint: The size of an object compo-
nent, measured by its length, width, area or volume plays a role in filtering
out invalid relations where components of larger size cannot be subsets of
components of smaller (shorter, narrower) size. If y; > x; then any relation
where y; C z; is an invalid relation.

e Component Shape Constraint: This constraint excludes the cases where
two components of different shapes intersect only with each other. If z; and
y; are two components of spaces z and y respectively, then if the shape of
y; is not equal to the shape of z;, y; can’t be equal to z;. Le. y; C z; and
x; C y; are false relations.



Figure 7: Overlapping effect of the soundness rules.

e Physical Properties Constraint: Many different types of constraints re-
lated to the physical properties of the objects studied may be used, such as
permeability, rigidity, elasticity, deformability, etc. Considering those con-
straints may lead to the elimination of cases where some interaction between
the components of the different spaces are not allowed. For example, a rigid
component of one space can only intersect with the complement of the sur-
rounding space of a non-permeable object.

e Spatial Arrangement Constraint: This constraint involves the identifica-
tion of sound relations based on the allowable spatial arrangements of different
object components, using orientation and relative distance relations.

The computation is usually simpler and more effective if domain-specific rules
were applied first to eliminate some non-sound relations. Those constraints can sig-
nificantly reduce the number of possibilities studied. General soundness constraints
can be applied later to produce the set of complete and sound set of relations.

5.4. Calculating the number of Complete and Sound Relationships

Let the set R = {a,f,v,(} be the set of soundness constraints that will be
applied to an intersection matrix of N elements. The total number of complete
relations n¢ is 2V relations.

Let ny be the total number of false relations excluded by the set of constraints
R. Hence, the set of sound relations ng is defined as: ng = nc —ny. If no,ng,n,
and n¢ are the sets of relations eliminated directly by the application of the con-
straints a, 3,7, ¢ respectively, there is no guarantee that there will be no overlap
between the sets of relations excluded by each constraint. In this case, the overlap
between constraints has to be accounted for to ensure that some combinations are
not excluded more than once from the whole set n¢.

The number of false relations can therefore be calculated as follows:

ng = (na+ng+ny+n¢) = (Nap + Nay + Nag + Ny + na¢ + Nyc)
+ (Rapy +1apc + Naye + Nyc) — Ny
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Figure 8: (a) Calculating the number of sound relationships between a region and
a line. (b) Combinatorial intersections A — in the matrix represents 0V 1.

= A-B+C-D

where
e A = the total number of relations in the set «, 3, v and (.
e B = the number of relations resulting from the intersection of each two sets of a,

B, v and (.
e C = the number of relations resulting from the intersection of each three sets of

a, B,y and C.
e D = the number of relations resulting from the intersection of all the sets o, 3, v

and (.

Two constraints sets overlap if their common elements in the intersection matrix
had the same entry of 0 or 1, (e.g. #; Ny; = 0). If their corresponding intersection
result differs in one ore more element in the matrix, then they do not overlap.

5.5. FExzample: Determining the set of complete and sound relations
between a region and a line

Consider objects « and y in figure 8 The number of possible instances of different
intersection matrices for those objects is equal to 27%t™, i.e. 29,

The application of constraints 2, 5 and 6 above results in the intersection of the
component gy with all the components of X and consequently reduces the number
of possible combinations to 2.

Y1 [ Y2 | Y
I - - -
o - - -
o | 1| 1 |1

The rest of the soundness constraints apply to the matrix as follows.

Y2 Y1
0 1 0 1
I(z,y)=| =1 | (a) | (c) () | (b) (¢) | (f)
zy | (@) | (e) | (b)) | ()
zo | (a) | (e) (d) | (b) (d) | (£)




e a : Y2 has no intersection with space X (constraint 6)
e b : y; has no intersection with space X (constraint 6)
ec:yNzy =1land y2Nzs =1 and y» Nxg = 1. Since y» is a set of two separate
points and z; is an area, £; must intersect with the adjacent component to y» which
is y1 in this case (constraint 4)
ed: xpNy: =1and zg Ny; =0. Similar to ¢ (constraint 4)
eec:x;Nys;=1and z; Ny; =0.
This is impossible since ys consists of two points and a point can have a positive
intersection with only one component (constraint 4).
o f:y1 C{x1,20}. 1 and z( are not connected (constraint 1).

Taking into account the overlapping elements in the result of application of the
different constraints, and noting that if two constraints imply both positive and
negative intersection for the same components, then they do not overlap and can
be excluded. The set of sound relations can be calculated as follows:

nsg = nc—(Ng+np+ne+ng+ne+nyg)+

(Pab + Naf + Nbe + Nbag + Npe + Neq + Nee +
Nde + Nef) — (Nabf + Nbed + Nbce + Node + Nede) +
(nbcde)

= 64— (22 +25 428 424 +234+2%) ¢+
(20 +2" +22 +22 + 20 + 22 + 22 + 22 +20) -
(20 421 +20 4+ 20 4 21y 4
20

= 64— (64)+(25) — () + (1) =19

The sound and complete set of 19 relationships are shown in tables 9 and 10.

5.6. Deriving Sound Relations using Domain Specific Constraints

Consider the example shown in figure 11, where the relations between tennis
racket and a tennis ball are considered.

Three components are used to represent the ball and a simplified representation
of four components were used to define the racket. The three dimensional problem
can be reduced to 2D space using the following assumptions.

e The tennis ball is solid (not permeable) and hence can be represented as a 2D

region consisting of only two components, o and x1, as shown in figure 11
().
Note that the tennis ball shape as a sphere, combined with its rigidity implies
point contact of the component x; with any component yi;,y> or y3. How-
ever, as the ball is elastic, its intersection with components of space y will be
assumed to be an area.

e No level difference exist between the frame of the tennis racket and the racket
net which eliminates the need for further components.



r1Nyr z1Ny2 T1NYo
TNy T2aNy2  T20Y0 | e
ToNyr xoNy2 xoNYo
(a)

Ri(z,y)=1] 0 0 1 Ro(z,y)=]1 0 0 1

1 1 1 1 1 1
Rs(z,y)=1] 0 0 1 Ry(z,y)=]1 0 0 1

0 1 1 1 1 1

111 11 1 Q
Rs(z,y)=|0 0 1 Rs(z,y)={ 0 0 1

0 1 1 0 0 1

1 1 1 1 0 1
Rr(z,y)=1] 0 1 1 Rg(z,y)=] 0 1 1

0 0 1 0 0 1

1 1 1 1 0 1
Ro(z,y)=| 1 1 1 Rio(z,y)=| 1 1 1

0 0 1 0 0 1

Figure 9: Part of the set of sound relations between a region and a line.



Ru(z,y)=1] 1 1 Rip(z,y)=] 1 1 1
0 0 0 0 1
0 1 @ 1 1 1
ng(l‘,y) = 1 1 R14(1‘,y) = 1 1 1
0 1 0 1 1
Ris(z,y)=1] 0 1 Rig(z,y)=] 0 1 1
0 1 1 1 1
Rn(l‘,y) = 1 1 ng(l‘,y) = 0 1 1
L1 1 1 1 1
Rig(z,y) =] 0 0
L1 1

Figure 10: The rest of the set of sound relations between a region and a line.
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Figure 11: An example of using domain-specific constraints. (a) A tennis ball. (b)
A tennis racket.

e The racket is symmetrical around the proposed 2D plane.

The intersection matrix representing the possible relations is defined as follows,
giving rise to 82 = 256 possible relations.

Y1 | Y2 | Y3 | Yo
X1 - - - -
i) - - - -

A second domain-specific constraint ® is that the size of the tennis ball is smaller

than the size of the racket net. Hence, y3 Z ©1 — a9 Ny3 = 1. From constraint

number 6, we have xo Nyo = 1. Hence, xo C {ys3,%0}. Since, ys and yo are not
connected, hence zg Ny, = 1, i.e. 2y must intersect with y, as well.

A further constraint is that of size, where the diameter of the tennis ball is
smaller than the length of the tennis racket handle y;. Hence, y1 Z 1 — y1Nzo = 1.

Accordingly, the intersection relation of the component zy with all the compo-
nents of space y are positive. The remaining intersection relations are between
and space Y, namely, 4% = 16 relations.

The significant reduction in the number of cases considered demonstrates the
benefits of prior application of domain-specific constraints in the process of elimi-
nating invalid relations.

The general soundness constraints apply to the matrix as follows.

Y1 Y2 Ys Yo

I(z,y) = 0 1 0 1 0 1 0

z1 | (b) (e) | () (d) | (a) (c) (e) | (b) | (b) (e) | (a) (c) | (e) (b) (d)

e a : z; intersects with y3 and yo but not with y» (connectivity constraint )
e b : x; intersects only with yo (dimension constraint)




Figure 12: The set of eight sound relations between a tennis ball and a tennis racket.

e ¢ : x intersects with y; and y3 but not with y» (connectivity constraint)
e d : x; intersects with y; but not with yo (dimension constraint)
e ¢ : x; has no intersections (space equality constraint)

The set of sound relations can be calculated as follows:

ns = nc— (Ng+ne+n.+ng+mne)+
(nac+ncd)
= 16—-10+2=28

The eight relations are shown in figure 12. The corresponding possible intersec-
tions of the component z; with the space Y is as follows: 1) (0,0,0,1), 2)(0,1,0,1),
3)(0,1,1,1), 4) (0,1,1,0), 5) (0,0,1,0), 6) (1,1,1,1), 7) (1,1,0,1) and 8)(1,0,0,1).

6. Conclusions

General rules are proposed for the derivation of the set of sound qualitative
spatial relations between objects of arbitrary complexity. They are based on the
topologically invariant aspects of space. The rules are mapped into general con-
straints governing different aspects of space and object representation, including
connectivity, component dimension, closed components, open sets, infinite sets and
space equality. The constraints proposed complements a general formalism for qual-
itative spatial representation and reasoning proposed earlier ¢ and together provide
means for the automation of spatial reasoning techniques and their implementa-
tion. Domain specific constraints can be specified to reflect the characteristics of
different problems. A method of calculating the number of sound relationships is
also presented. This work is part of ongoing research that aims to develop a gen-
eral theory for the treatment of qualitative space and time. Future work include
realizing the theory by implementation in systems, such as GIS, and finding ways



of using both quantitative and qualitative aspects and also applying the constraints
in the temporal domain to facilitate the description of complex temporal relations
between non-convex intervals.
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