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Topological Representation and Reasoning in Space

Abstract

In this paper, an approach is presented for the representation and reasoning over qualitative spatial
relations. A set-theoretic approach is used for representing the topology of objects and underlying
space by retaining connectivity relationships between objects and space components in a structure,
denoted, adjacency matrix. Spatial relations are represented by the intersection of components, and
spatial reasoning is achieved by the application of general rules for the propagation of the intersection
constraints between those components. The representation approach is general and can be adapted for
different space resolutions and granularities of relations. The reasoning mechanism is simple and the
spatial compositions are achieved in a finite definite number of steps, controlled by the complexity
needed in the representation of objects and the granularity of the spatial relations required. The
application of the method is presented over geometric structures which takes into account qualitative
surface height information. It is also shown how directional relationships can be used in a hybrid
approach for more richer composition scenarios. The main advantages of this work is that it offers
a unified platform for handling different relations in the qualitative space which is a step towards

developing general spatial reasoning engines for large spatial databases.

KeywordS: Qualitative spatial relations, qualtiative reasoning, topological relationships, orientation

relationships, spatial databases



1 Introduction

Representing and manipulating spatial or geometric relations are of primary importance in many applica-
tion areas of large spatial databases such as, Computer Aided Design, Manufacture and Process Planning
(CAD/CAM/CAPP), Geographic Information Systems (GIS) and medical and biological databases. As
a result Spatial Reasoning (SR) find application in diverse areas such as Assembly Planning, Robotics,
Constraint Driven Design and Drafting and Machine Selection and Specification. GIS are based on a
range of spatial reasoning techniques for manipulating geographic features on one or more data layers,
such as in processing spatial join queries, where sets of geographically referenced features are overlaid in
the search for regions satisfying particular constraints. Such application domains are characterised by
handling very large sets of entities, relationships and constraints and their manipulation usually involve
substantial computational costs.

Qualitative Spatial Representation and Reasoning (QSRR) techniques are being developed to comple-
ment the traditional quantitative methods in those domains. Many typical problems could benefit from
qualitative manipulation when precise geometric information are neither available nor needed. Applica-
tions of QSRR include, qualitative spatial scene specification and scene feasibility problems, checking the
similarity and consistency of data sets, integrating different spatial sets [EGA98], and in initial pruning
of search spaces in spatial query processing. Research is also ongoing for incorporating QSRR in the
definition and implementation of spatial query languages. However, the qualitative approach has obvious
limitations where useful characteristics of spatial objects such as shape and size are not used. Also, its
application becomes limited when exact positions and tolerance constraints are considered. Hence, it can
be argued that both the quantitative and qualitative approaches have complementary areas of strength
and that any system which can combine the two paradigms in a way which uses their strength would be
an effective platform for a range of novel and conventional applications.

This paper presents an approach to the representation of and reasoning over qualitative spatial rela-
tions, namely topological and orientation. It is shown how a representation strategy for storing connec-
tivity relationships between objects and space components forms the basis of a reasoning mechanism for
the composition of spatial relationships. The two types of relationships are treated individually and then

combined to demonstrate the effectiveness of a hybrid approach. Examples are given to illustrate the



applicability of the reasoning process on objects of arbitrary complexity and dimension. The extension
of formalism to higher dimension spaces is readily recognised.

The paper is structured as follows. In section 2, an overview is given of the different types of qualitative
relationships in space. Section 3 outlines the representation approach in topological spaces. In section
4, the reasoning method is presented and applied over topological relations between non-simple objects.
Representation and reasoning over orientation spaces is given in section 5 and the combined spaces are
treated in section 6. Discussions and conclusions are given in section 7 where it is also shown how
semi-quantitative shape information could be incorporated in the formalism.

The Qualitative Frame of Reference

Different types of qualitative spatial relations can be presented on a qualitative frame of reference in
an analogy to the quantitative (absolute) frame of reference. One of the objects is used to represent the
‘origin’ with respect to which the other object is referenced. An object in space possess three degrees
of freedom which determine its spatial relationship with other objects, namely, transition, rotation and
scaling (enlargements or shrinking). Accordingly, three main axes of variation can be established as

shown in figure 1, namely,

1. Topology-proximity axis (P-azis): over which the variation represents relationships resulting from

the relative transition of objects.

2. Orientation axis (O-azis): over which the variation represents relationships resulting from the rel-

ative rotation of objects.

3. Size axis (S-azis): where scaling variations are represented.

Two types of rotations can be distinguished on the orientation axis: the rotation of the object around
the reference object and the rotation of the object around itself. Hence, there is a need to define orientation
relations from the points of view of each object. This type of orientation is called body orientation and
is using an intrinsic frame of reference[RS88]. On the other hand, Extrinsic orientations are when a fixed
external frame of reference is used for both the object spaces, for example cardinal direction orientation
(east, west, north, south)

Inter-dependencies of the axes can be recognised as follow,
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Figure 1: Qualitative frame of reference for spatial relationships.
1. Relationships along the Size axis are independent of the other two axes.

2. Relationships along the Topology-Proximity axis could depend on the size of the objects involved
in the case where the objects are in close proximity. For example, when objects are very close,
changing the size of the objects can transform a relationship of disjoint into overlap or the

relationship of equal to contain or inside.

3. Relationships on the Orientation axis could be affected by both size and proximity of the objects
involved. An object front of another can become also left or right of it, if it increases in size or

gets closer to the other object.

Shape is another aspect of the qualitative representation. However, it cannot be represented by linear
ordered continuous variations. It is added on the figure for illustrative purposes. Accordingly an object
O; can be qualitatively described with reference to another object Os by a triple (P, O, S) which is the

qualitative equivalence to the (X,Y, Z) or (R, 6, ¢) in a quantitative frame of reference.

2 The Formalism

This section first addresses the problem of qualitative representation of objects with random spatial

complexity and their topological relationships. The reasoning formalism is then presented, consisting of



a) general constraints to govern the spatial relationships between objects in space, and b) general rules
to propagate relationships between those objects. Both the constraints and the rules are based on a
uniform representation of the topology of the objects, their embedding space and the representation of

the relationships between them.

2.1 The General Representation Approach

Objects of interest and their embedding space are divided into components according to a required reso-
lution. The connectivity of those components is explicitly represented. Spatial relations are represented
by the intersection of object components [AW94] in a similar fashion to that described in [Ege94] but

with no restriction on object components to consist only of two parts (boundary and interior).

2.1.1 The Underlying Representation of Object Topology

Let S be the space in which the object is embedded. The object and its embedding space are assumed
to be dense and connected. The embedding space is also assumed to be infinite. The object and its
embedding space are decomposed into components which reflects the objects and space topology such

that,

1. No overlap exists between any of the representative components.

2. The union of the components is equal to the embedding space.

The topology of the object and the embedding space can then be described by a matrix whose elements
represent the connectivity relations between its components. This matrix shall be denoted adjacency
matriz. In the decomposition strategy, the complement of the object in question shall be considered to
be infinite, and the suffix 0, e.g. (x¢) is used to represent this component. Hence, the topology of a space

S containing an object z is defined using the following equation.

S, = zUxo (2)

where S, is used to denote the space associated with object z.
In figure 2 different possible decompositions of a simple convex polygon and its embedding space are

shown along with their adjacency matrices. In 2 (a), the object is represented by two components, a
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Figure 2: (a), (d) Possible decompositions of a simple convex polygon and its embedding space. (b),
(e) Adjacency matrices corresponding to the two shapes in (a) and (d) respectively. (c), (f) Half the

symmetric adjacency matrix is sufficient to capture the object representation.

linear component x; and an areal component z» and the rest of the space is represented by an infinite
areal component o representing the surrounding area. In 2(d), only one areal component is used to
represent the polygon. Both representations are valid and may be used in different contexts. Different
decomposition strategies for the objects and their embedding spaces can be used according to the precision
of the relations required and the specific application considered. The higher the resolution used (or the
finer the components of the space and the objects), the higher the precision of the resulting set of relations
in the domain considered.

The fact that two components are connected is represented by a (1) in the adjacency matrix and by a
(0) otherwise. Since connectivity is a symmetric relation, the resulting matrix will be symmetric around
the diagonal. Hence, only half the matrix is sufficient for the representation of the object’s topology and
the matrix can be collapsed to the structure in figure 2(c) and (f).

Semi-bounded areas of the embedding space can also be represented (as virtual components) if needed.
For example, figure 3(a) shows a possible decomposition of a concave shaped object and its embedding

space. In 3(b) the adjacency matrix for its components is presented. The object is represented by two
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Figure 3: (a) Using virtual components to represent semi-bounded components (of interest) in space. (b)

Adjacency matrix for the shape in (a).

components a linear component z; and an areal component zo and the rest of its embedding space
is represented by a finite areal component z3 (representing the virtual enclosure) and infinite areal

component o representing the surrounding area.

2.1.2 The Underlying Representation of Spatial Relations

In this section, the representation of the topological relations through the intersection of their components
[ECP94, EH90] is adopted and generalised for objects of arbitrary complexity. Distinction of topological
relations is dependent on the strategy used in the decomposition of the objects and their related spaces.
For example, in figure 4 different relationships between two objects x and y are shown, where in 4(a) the
x is outside y and in 4(b) z is inside y. Object y is decomposed into two components y; and y, and the
rest of the space associated with y is decomposed into two components: ys representing the enclosure
and yo representing the rest of the space. Note that it is the identification of the (virtual) component
ys that makes the distinction between the two relationships in the figure. The complete set of spatial
relationships are identified by combinatorial intersection of the components of one space with those of
the other space.

If R(z,y) is a relation of interest between objects  and y, and X and Y are the spaces associated
with the objects respectively such that m is the number of components in X and [ is the number of
components in Y, then a spatial relation R(x,y) can be represented by one instance of the following

equation:

R(z,y) = XnY
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Figure 4: Different qualitative spatial relationships can be distinguished by identifying the appropriate

components of the objects and the space. (c) and (d) corresponding intersection matrices.
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The intersection z; Ny; can be an empty or a non-empty intersection. The above set of intersections shall

be represented by an intersection matrix, as follows,
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Y1

Y2

Lo

R(z,y) =

T
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For example, consider the intersection

have a non-empty intersection with yo in 4(c) and with ys in 4(d).

matrices in figure 4(c) and (d).

The components z; and 2

Different combinations in the intersection matrix can represent different qualitative relations. The set

of valid or sound spatial relationships between objects is dependent on the particular domain studied.

Also, properties of the objects would affect the set of possible spatial relationships that can exist between

them. For example, if one of the objects is solid and the other is permeable, there cannot be any

intersection of the inside of the solid object with any other component of the other object. Objects of
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Figure 5: A set of 6 spatial relationships between two solid bodies. The decomposition of objects are as

in figure 4.

different size or shape cannot be involved in certain spatial relations such as equal or contain between
the smaller and the larger object.

The example in figure 5 demonstrates the six possible spatial relations that can exist between two
solid objects; a simple convex polygon and a simple concave one, along with their intersection matrices.
The example can be used to represent many situations, for example, putting a box into a container,
carving a hole in a solid shape by a tool, etc. Note that since object y is a solid object, the component

y» will always have only one intersection relation with xg.

2.2 The General Reasoning Formalism

The reasoning approach consists of: a) general constraints to govern the spatial relationships between

objects in space, and b) general rules to propagate relationships between the objects.

2.2.1 General Constraints

The intersection matrix is in fact a set of constraints whose values identifies specific spatial relationships.
The process of spatial reasoning can be defined as the process of propagating the constraints of two spatial
relations (for example, R;(A, B) and R2(B,C)), to derive a new set of constraints between objects. The
derived constraints can then be mapped to a specific spatial relation (i.e. the relation R3(A4,C)).

A subset of the set of constraints defining all possible spatial relations are general and applicable to any
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relationship between any objects. These general constraints are a consequence of the initial assumptions

used in the definition of the object and space topology. The two general constraints are:

1. Every unbounded (infinite) component of one space must intersect with at least one unbounded

(infinite) component of the other space.

2. Every component from one space must intersect with at least one component from the other space.

2.2.2 General Reasoning Rules

Composition of spatial relations is the process through which the possible relationship(s) between two
object z and z is derived given two relationships: R; between x and y and R between y and z. Two
general reasoning rules for the propagation of intersection constraints are presented. The rules are char-
acterised by the ability to reason over spatial relationships between objects of arbitrary complexity in
any space dimension. These rules allow for the automatic derivation of the composition (transitivity)

tables between any spatial shapes [AA95, RCC92b].

Reasoning Rules

Composition of spatial relations using the intersection representation approach is based on the tran-
sitive property of the subset relations. In what follows the following subset notation is used. If 2’ is a set
of components (set of point-sets) {z1,---, %, } in a space X, and y; is a component in space Y, then C

denotes the following subset relationship.

e y; C 2’ denotes the subset relationship such that: Vz; € z'(y;Nz; # ¢) Ay;,N(X—z1—22 - —p) =
¢ where i = 1,---m'. Intuitively, this symbol indicates that the component y; intersects with

every set in the collection 2’ and does not intersect with any set outside of z’.

If z;, y; and z; are components of objects =, y and z respectively, then if there is a non-empty
intersection between z; and y;, and y; is a subset of z;, then it can be concluded that there is also a

non-empty intersection between x; and zj.

(iNy; #¢) N (y; Czi) = (i Nz # @)
This relation can be generalised in the following two rules. The rules describe the propagation of
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intersections between the components of objects and their related spaces involved in the spatial compo-
sition.

Rule 1: Propagation of Non-Empty Intersections

Let ' = {x1,22, -,y } be a subset of the set of components of space X whose total number of
components is m and m' < m; ' C X. Let 2/ = {z1,22, -+, 2n} be a subset of the set of components of
space Z whose total number of components isn and n' <n; 2' C Z. Ify; is a component of space Y, the

following is a governing rule of interaction for the three spaces X, Y and Z.

(' Jy;)) A (Y T2

= (2'Nnz' #£9¢)

(N2t # GV -V Nzy #P)
/\(Z’Qr\lzl;é(f)\/"'\/l'2mzn’7é¢)

A(mmrﬂz1#¢V---VﬂJm'ﬂzn'35425)

The above rule states that if the component y; in space Y has a positive intersection with every component
from the sets 2’ and z', then each component of the set 2’ must intersect with at least one component of
the set 2z’ and vice versa.

The constraint z; Nzy #Z ¢ V x; Nzy # ¢--- V x; N zy # ¢ can be expressed in the intersection
matrix by a label, for example the label a, (r =1 or 2) in the following matrix indicates 1 N (z2Uz4) # ¢
(z1 has a positive intersection with zs, or with z4 or with both). A — in the matrix indicates that the

intersection is either positive or negative.

21 | %22 |23 | 24 || %n

I1 — aq — a2 — —

Rule 1 represents the propagation of non-empty intersections of components in space. A different
version of the rule for the propagation of empty intersections can be stated as follows.

Rule 2: Propagation of Empty Intersections

Let 2/ = {z1,22, - ,zn } be a subset of the set of components of space Z whose total number of

components isn and n' < n; 2z’ C Z. Lety' = {y1,y2,---,yrr} be a subset of the set of components of

12



space Y whose total number of components isl and l' < l; y' C Y. Let x; be a component of the space

X. Then the following is a governing rule for the spaces X, Y and Z.

(z:Ey) AN (Y EZ)

= (ziN(Z—-—z1—2—2p) =0)

Remark: if n’ = n, i.e. x; may intersect with every element in Z, or if m' = m, i.e. z; may intersect
with every element in X, or if I’ =1, i.e. x; (or z;) may intersect with every element in Y, then no empty
intersections can be propagated for x; or zr. Rules 1 and 2 are the two general rules for propagating
empty and non-empty intersections of components of spaces.

Note that in both rules the intermediate object (y) and its space components plays the main role
in the propagation of intersections. The first rule is applied a number of times equal to the number of
components of the space of the intermediate object. Hence, the composition of spatial relations becomes

a tractable problem which can be performed in a defined limited number of steps.

2.3 Example of Spatial Reasoning with Complex Objects

The example in figure 6 is used for demonstrating the composition of relations using non-simple spatial
objects. Figure 6(a) shows the relationship between a concave polygon x and a polygon with a hole y
and 6(b) shows the relationship between object y and a simple polygon z where z touches the the hole
in y. The intersection matrices corresponding to the two relationships are also shown.

Given that the possible set of relationships that can occur between = and z in a certain domain are
as shown in figure 5, it is required to derive the possible relationships between these two objects given

the situation in figure 6.
The reasoning rules are used to propagate the intersections between the components of objects  and

z as follows. From rule 1 we have,

e 1o intersections:

{mo,x1, 22,23} Jyo A  yo E {20}
= xoNzoFPANz1N2zo F# P

AN x2NzoFPANx3Nzg# ¢

13
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Figure 6: (a) and (b) Spatial relationships between non-simple objects z, y and 2. (c) and (d) Corre-

sponding intersection matrices.

e y1 intersections:
{zo, 23} Iy Ay E{zo} 2 x1N20 P A23N20 # @
e y» intersections:

{zo,z3} Jy> A y2 C{z0,21,22}
— xoN(z0Uz1Uz2) # ¢

A $30(20U21U22)7é¢
e Y3 intersections:

{z3} Jys A y3C {20,221}

— $3ﬁz07é¢/\$3021?é¢
e y4 intersections:
{zs} Jys A yaC{20} — x3N20F#¢

Applying rule 2 we get the following,

o zo L {y07y17y2} A {y07y17y2} c {Z07z17z2}

o has no empty intersections with components in Z.

14
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Figure 7: Example for the propagation of definite relationships.

e z1 Cyo A yoE{Zo}—}l‘102’1:¢/\1’1022=¢
e zo Cyo A yoE{Zo}—}l‘202’1:¢/\1’2022=¢

e 23 C {yo,y1,¥2,¥3, ¥4} A {¥o,y1,Y2,¥3,ya} C {20, 21, 22}

3 has no empty intersections with components in Z.

Refining the above constraints, we get the following intersection matrix.

Z0 Z1 z2

Zo 1 - ai

1 | 1 0 0

I3 1 1 asz

Comparing the resulting matrix above with the matrices in figure 5, it can be seen that the result
matrix corresponds to two possible relationships between objects x and z, namely the relationships Rj
and Rj.

A different conclusion is obtained if the relationship between objects y and z is as shown in figure
7(a). The composition of the relationships between z, y and z in this case will result in the definite

matrix in figure 7(b) which corresponds to Rj in figure 5.
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3 Representation and Reasoning over Orientation Relations

Orientation spaces are defined using a similar strategy as used for topological spaces above. Adjacency
between objects and the semi-infinite orientation areas are explicitly represented for each object. Ori-
entation relationships between two objects are defined by the intersection between components in the
object spaces.

Several schemes exist for the division of space to represent areas of acceptance for each orientation
such as conical or rectangular. The approach defined here is independent of the scheme used to divide the
space. Space divisions used in this paper are chosen for clarity and readability. More complex divisions
can be treated in a similar way.

For simplicity object shapes are approximated by points in the following examples. Consider the
orientation relations in figure 8(a) for an intrinsic frame of reference. The components of spaces X
and Y are as follows: X = zUFR,UFL, UBR, UBL,,Y =yUFR,UFL,U BR,U BL, where
FR;,FL;, BR;, BL; denote the orientation relations: Front-Right, Front-Left, Back-Right and Back-Left
respectively. The intersection matrix corresponding to this relation is shown in figure 8(b).

Both the relationship and its converse are needed to completely define the orientation relation in the
case of the intrinsic frame of reference. For example, in figure 8(a), the relationship between objects  and
y is defined by BR(z,y) A FL(y, z). If either of the objects rotates around itself, its relative relationship
with the other object shall change as well, as shown in figure 9. In 9, object x has changed its orientation

and hence also has changed its relationship with y to be: BR(z,y) A BL(y, z).

3.1 Examples of Qualitative Reasoning with Orientation Relations

For the sake of simplicity, the objects and the bounding lines of the orientations areas are omitted. This
does not affect the reasoning process in the examples given or the features of the formalism since both
general constraints are preserved for the semi-infinite areas. A mapping between non-empty intersections
of space and the corresponding possible relations is given in table 10.

Each cell in the table contain the relations where there is a non-empty intersection between the corre-
sponding components. If a relation is missing in a cell, then the intersection between the corresponding

components is empty for the missing relation. For example, the highlighted cell in the table correspond-

16



FL_y FRy
y
FR_x
FL_x
BLy BRy | X
x FRg FLg BRg BLg
BL_)( BR x y 0 0 1 0 0
B FRy | 0 1 1 0 0
FLy 0 0 1 0 0
BRy 1 1 1 1 1
BLy 0 0 1 0 1
(a) (b)

Figure 8: (a) Example of an intrinsic orientation relation and its corresponding intersection matrix in

(b). The arrow on the figure denotes the front of the object.

FL_y “ FRy
y
BL x FL_x
BLy BRy | X -
x FRy FLg BRg BLg
BR_X FR x y 0 0 0 0 1
FRy | 0 0 1 0 1
FLy 0 0 0 0 1
BRy 1 1 1 1 1
BLy 0 0 0 1 1
(a) (b)

Figure 9: (a) Changing the body orientation of object x gives a different relationship defined by the

matrix in (b).

17
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Figure 10: Correspondence between the intersection of the components and the relations in the intrinsic
frame of reference. The highlighted cell entry is explained in the text. The cross represents the space of

x, and the small arrows represent the front direction of object z.

ing to the components F'R, and F'R, is interpreted as follows: if we know that the intersection of the
components F'R, and FR, is not empty, then the relation between objects z and z could be either of the

following:

a. FR(z,z)AN(BL(x,2)VBR(z,z)VFL(z,z)VFR(z,z)). Another way of expressing this is: FR(z,z)A

All(zx, z), or,
b. BR(z,z) A (FL(x,z)V FR(z,z)), or,
c. BL(z,z) A FR(x, z), or,
d. FL(z,z) A (BR(z,z) V FR(z,z2))

Example: Propagation of Definite Compositions

Counsider the simple example of composing the relationships: F L(y,z)AFL(z,y)ABR(y,z)ABR(z,y).

The relationships and their corresponding intersection matrices are shown in figure 11(a) and (b).
The reasoning rules are used to propagate the intersections between the components of objects  and

z as follows. From rule 1 we have,

e F'R, intersections:

{FL,,BL,} 3 FR, C{BR.,BL.} — (FL.NBR.# ¢V FL,NBL. # ¢)

AN (BL;NBRy; #¢N BL, N BL, # ¢)

18



e F'L, intersections:

{X} 3 FL, E{BR.} — (BR.N{X}#4¢)

Note that the result of this composition can only identify the relative position of = to z (BR(z, z)), but not

vice versa.

e BR, intersections:

{FL.} ABR,C{Z} — (FL.N{Z}#¢)

From this constraint it can be deduced that the relation between z and x is FL(z,x).

e BL, intersections:

{FR,,FL,} J BL, C {FR.,BR.} — (FR.NFR.+# ¢V FR,NBR, # ¢)

N (FL.NFR. # ¢V FL, NBR. # ¢)

Note the intersections of the components F'L, and BR, have fully identified the composed relation,
namely, BR(z,z) A FL(z,x). In this case, we don’t need to apply rule 2. However for completeness the

propagation of constraints by rule 2 are as follows:

{FR,} C (FL,UBL,) C {BR.,FR.} - FR,N{FL.,BL.} = ¢

{BR,} C FL, C {BR.} - BR,N{FR.,FL.,BL.} = ¢

{BL,} C {FL,,FR,} C {BR.,BL.} - BL, N {FR.,FL.} = ¢

FL, has no empty intersections since I’ = [.

Grouping the above constraints, we get the intersection matrix in figure 11(c). Using table 10, it can be
seen that the result matrix corresponds to the relationships BR(x,z) A FL(z,z) as in figure 11(d).

Example: Propagation of Indefinite Compositions

Consider the relationships in figure 12: FL(y,xz) A FL(z,y) AFR(z,y) A FR(y, z). The corresponding
intersection matrices are shown in (b). The reasoning rules are used to propagate the intersections

between the components of objects x and z as follows. From rule 1 we have,

e F'R, intersections:

{Z} 3 FR,C{FL,,BL,} — (FR.NFL,#¢VFR.NBL,#¢) (al)
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BR_y BL_y FL_y FR_y
Yy Yy
FL_x FR_x BR_z BL_z
x BL z
FR_y v FL_y — BR_y
BL_x BR_x FR_z Y FL_z
(a)
FRy, | FLy | BRy | BLg FR. | FL. | BR. | BL.
0 1 0 1 FRy 0 0 1 1
1 1 1 1 FLy 0 0 1 0
0 1 0 0 BRy 1 1 1 1
1 1 0 0 BLy 1 0 1 0
(b)
FL_z FR_z
z
FR_Xx
FL_Xx
BL_z BR z | X
FRy | FLy | BRy | BLg —
FR. 1 1 0 0 BL_x BR X
FL. 0 1 0 0
BR. 1 1 1 1
BL. 0 1 0 1
@ @

Figure 11: (a) Composing the relationships FL(z,y) AFL(y,x) and BR(y,z) ABR(z,y). (c) Correspond-

ing intersection matrices. (d) Resulting propagated constraints. (e) Corresponding (definite) relationship.
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BR y BL y BR_z BL_:
A FbLy  AFRy
y FL_x FR_x z
FRy y Y ) Yl Frzy P
BL_x BR_x BL_y BR_y
(a)
FRy FL, BRg BLg FR. FL, BR; BL:
0 1 0 1 FRy 1 1 1 1
1 1 1 1 FLy 1 0 1 0
0 1 0 0 BRy 1 1 0 0
1 1 0 0 BLy 1 0 0 0
(b)
A
I
_________ JI_Z_ R
1
5 x
I
FR» FL BR: BL, :
FRy 1, by 0 by o | --------- ‘I—Z— ———————
FLy ai, by, 1 as, 1 ag,by ay :
BRg b3 0 b3 0
BLy ai, by a2 by, a3 aq

()

Figure 12: (a) Composing the relationships

FL(z,y) N FL(y,z) and FR(y,z) A FR(z,y).

(d)

(b) Corre-

sponding intersection matrices. (c) Resulting propagated constraints. (d) Corresponding (indefinite)

relationships.
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A (FL.NFL,#¢VFL.NBL, #¢) (a2)
A (BR.NFL,#¢VBR.NBL, #¢) (a3)

A (BL.NFL,#¢VBL.NBL, #¢) (a4)

e F'L, intersections:

{FR.,BR.} JFL,C{X} — (FR.NFR.#¢VFR,NBR.#¢) (bl)
AN (FLy,NFR,#¢VFL,NBR. #¢) (b2)
A (BR,NFR,#¢VBR,NBR. #¢) (b2)

A (BL,NFR.#¢VBL.,NBR. #¢) (b2)

e BR, intersections:

{FR.,FL.} JBR,C{FL,} — (FL.NFR,#¢AFL,NFL, # ¢)

e BL, intersections:

{FR.} JBL,C{FR,,FL,} — (FR.NFR,# ¢AFR.NFL, # ¢)

Applying rule 2 we get the following,
e FL.C{FR,UBRy} C{FL,,BL,} - FL.NFR,=¢ANFL.FL.NBR, =¢

e BL,C FR,C {FL,,BL,} = BL.NFR, = $ ABL, N BR, = ¢

Refining the above constraints, we get the intersection matrix in figure 12(c). Using the table 10, we
get the possible relations in figure 12(d). Note that the conditions: (a1), (a2), (b1) and (bs) are satisfied by
definite intersections. The process of mapping the propagated intersections into possible relations in the
table is carried out by finding the intersection of the set of relations corresponding to cells of value 1 in the
matrix with the complement of the set of relations corresponding to cells of value 0 in the matrix. This
process is demonstrated in figure 13. In 13(a) the intersection of the set of the relations corresponding
to cells of value 1 is shown and in (b) the result from (a) is intersected with the complements of the sets

of relations corresponding to cells of value 0.
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Figure 13: The process of mapping the constraints propagated by the reasoning rules to the set of possible

relations, namely, (FR(x,z) A BL(z,z))V (BR(x,z) A FL(z,x)). The figure is explained in the text.

The result of the composition is indefinite and consequently the relative positions of the objects
is ambiguous. The possible resulting relations between objects x and z are: (FR(z,z) A BL(z,z)) V

(BR(z,z) AN FL(z,x))

4 Possible Extensions of the Approach

In this section, the formalism proposed in extended in two ways. Firstly, the reasoning process is enhanced
by considering multiple types of qualitative positional information at once, namely, combining topological
and orientation information. Secondly, the application of the approach in assembly problems is studied,

by enhancing the method with semi-quantitative shape information.

4.1 Combined Reasoning with Topological and Orientation Spaces

As can be expected, reasoning with more than one type of qualitative relationships would produce
more precise results. One way of handling multiple types of relations using the representation and
reasoning approaches above is by overlaying both the orientation and topological spaces for the ob-
jects. Hence, the combined space would contain both the object components as well as the orienta-
tion areas. Orientation areas around the object could either be defined using a representative point
on the object (e.g. its centre)[], or using the minimum bounding rectangle of the object. The ex-
ample in figure 14 illustrates the space components in the later case. Hence, spatial reasoning is

carried out in similar fashion as above. Figure 15 shows the composition of the following relation-
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Figure 14: Representation of the combined topological and orientation spaces.

ships between objects z, y and z: touch(z,y) and front(y,z) A disjoint(y,z) and back(y,z). The
composition would yield the definite relations:disjoint(z, z) and back(x,z). Note that the composition
would have been indefinite if only the topological relationships were used; touch(z,y) A disjoint(y,z) —
disjoint(x,z) V touch(x, z) V overlap(x, z) V inside(z, z) V inside — and — touch — boundary(x, z).

Also, proximity and relative size of the objects are important factors, which must be considered

especially when the objects are very close or are in containment relation [].

4.2 Topological Structuring using Qualitative Height Information
Given a network of objects and relations, reasoning tasks can be one or more of the following:

Finding all feasible relations (minimal labelling problem).

Finding a consistent scenario.

Finding all consistent scenarios.

Other reasoning tasks such as determining whether given spatial specifications are consistent.

In this section, qualitative topological reasoning is used for finding all consistent scenarios in the context
of simple assembly problems. In CSG, any solid object could generally be constructed from an initial basic
shape by adding or taking away other shapes in a sequence of operations and transformations. Here, this
idea is borrowed where an object is represented qualitatively by a basic shape into which a set of holes
are drilled and onto which a set of protrusions are added as shown in figure 16(a). A semi-qualitative

representation is used by taking surface heights into account, where holes are represented by negative
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Figure 15: (a) Composing touch(z,y) and front(y,z) Adisjoint(y, z) and back(y, z). (b) Definite result:

disjoint(z,z) and back(zx, z)
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Figure 16: Qualitative representation using surface heights.

regions and protrusions by positive ones, as shown in 16(b). The basic shape is denoted base region (or
zero-height region). Those regions can be established by constructing orthographic views of the object
or by slicing the object at the level of its base region component. To determine all possible assembly

scenarios, two steps need to be applied.

a. Topological representation of objects using surface heights as above. This step includes the definition

of all relationship constraints between object components and forming a constraint network.

b. Topological reasoning over the network, applied as a constraint satisfaction problem to find all

consistent scenarios.

4.2.1 Topological representation using surface heights

For an object z, let the component z, denote its base region, ;= denote a hole region, and z;* denote
a protrusion region. Object a can then be defined as: z =z ;_o i~ Uj—o 7T
The following constraints apply between the components of the object. All possible relationships

between simple regions are shown in figure 17.
a. Between z and z;7: R(xp,2z;~) € {contain,b — contain}
b. Between z, and z;1: R(zp,z;) € {contain,b— contain, overlap, touch}
c. Between z;~ and x: R(x; ,zr ) € {disjoint} and 0 < k <n and k # 1.
d. Between z;" and z;7: R(z;",2;") € {disjoint} and 0 <1 <m and [ # j.

e. Between z;~ and z;*: R(z;~,z; 1) € {disjoint, touch, contain}
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Figure 17: The set of all possible relationships between two simple regions.

Y

b — contain z

contain disjoint 2t |
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Figure 18: Topological representation using constraint networks.

Applying the above constraints, the topology of surfaces can represented as in the example shown in

figure 18. Note that the relations are aread as cell(column, row).

4.2.2 Qualitative reasoning in Assembly Problems

The basic constraint in assembling any two faces of objects is that of contact, i.e. the faces must touch.
Using the above topological representation of faces, this constraint is interpreted to a set of constraint

between different objects components. For two objects z and y the constrains are:
a. R(xy,yp) € {touch, overlap,equal,inside, contain,b— contain,b — inside}
b. R(z; ,z; ,yp ) € {U} where U is the set of all possible relations.
c. R(z;*,y,") € {touch,disjoint}
d. R(z;~,y,") € {disjoint,touch, equal, contain,b — contain}
e. R(zy,y,~) €{U}
f. R(zp,y,") € {disjoint,touch,inside} The inside relationships is only valid provided, R(y,*,z;™) €

{inside, b — inside, equal}
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Figure 19: (a) Assembling two lego bricks = and y. (b) Three topologically possible scenarios.

g. R(z;",y,”) € {equal,inside,b — inside} This is a global constraints which must be satisfied at

least once.

Example:

Consider the simple example of a child assembling two pieces of Lego bricks. If two faces of the bricks
are considered as shown in figure 19(a), one with two protrusions, and the other with two holes. Applying
the above constraints will produce three different scenarios depicted in figure 19(b). Scenario 3 is not
possible and can be excluded if size constraints are taken into account, larger(y;™ +y2™), (z17 V337)).
Using different types of qualitative relations would need to be used if the minimum possible solution set

is to be derived qualitatively.

5 Comparison with Related Work

Several approaches are reported in the literature for the representation and reasoning over topological
and orientation relations. The main advantage of the representation method proposed is its uniformity.
The same methodology is used for the definition of simple and complex objects and is applied consis-
tently in the orientation and topological spaces. The method is also adaptable, where different levels of
representation can be devised by hiding or revealing the details of objects as required. The method is
therefore well adapted for use as a basis for a spatial reasoning formalism.

The representation of complex regions has been addressed in many works. In [CBGG97], Cohn et al
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extended the RCC formalism to handle concave regions, and regions with holes (doughnut shapes). New
axioms and theories had to be devised to define the new shapes. The main drawback of this approach is
its complexity, as new, possibly considerable, extensions of the formalism have to be devised with every
new shape considered.

In [EH90, EF91], Egenhofer et al used point-set topology to define simple regions, using three com-
ponents, boundary, interior and exterior. The method proposed here deviates from their work in one
important respect which has far-reaching implications. We relaxed the constraint on the object compo-
nents to be any possible set of components which satisfies the main assumptions behind the formalism.
The notions of boundaries, interiors and exteriors were dropped and the notion of object and space com-
ponents is used instead. Egenhofer’s method is limiting and could not be extended to handle complex
objects. Other methods were devised in [ECP94] to define regions with holes, through the definition
of spatial relationships between simple regions and no extension for the method was proposed for the
definition of irregular, or concave regions.

The work of Clementini and De Felice [CDF94] follows closely the method of Egenhofer, and provides
a definition for regions with holes using boundaries, interiors and exteriors. His method carries the same
limitations as those of [EH90]. In another work [CDFC95], Clementini et al addressed the issue of defining
composite regions for use in spatial query languages, by defining explicit relationships between all the
components in the object, in the same way, regions with holes were defined in [ECP94].

Coenen and Pepijin [CP98] proposed an ontology for objects and relationships in spatio-temporal
domains. They assumed the space to be consisting of sets of points and used set-theoretic notions to
define objects in that space. Their approach is distinctive from the above where space is considered to be
discrete, not continuous. The method was used to define a general “object” and quantitative identifiers
are used to qualify the object properties.

Our approach is a an example of the constraint-driven approach where a spatial relationship is defined
by a set of intersection constraints between the object components. As mentioned earlier, the approach
is a fundamental variation from that proposed by Egenhofer and Franzosa [Ege89].

The approach developed by Randell et. al [RCC92a] is an example of the relation-driven approach to
representing topological relationships, where a set of axioms for defining every needed relationship have

to be devised. For example, the definition of the overlap relationship between two simple regions is :
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Overlap(z,y) < Part(z,z) A Part(z,y) and a set of constraints are used for defining the relationship
Part(z,y).
Approaches for representing orientation relationships can be classified under two main categories:

projection-based approaches and space-division approaches.

e In the projection-based approaches, objects are projected on the x and y axes, dividing the axes up
into several ordered parts. By comparing the order of these projected parts, the orientation relation
is inferred. Reasoning in these approaches exploits the interval algebra (Allen’s transitivity tables)

from the temporal domain [Gue89, CJ86, Fra92]

e The space-division approaches are based on dividing the space around the object into semi-infinite
acceptance areas. Reasoning in these approaches utilises spatial composition tables which are

usually built manually, by a visual process, for every object type or space granularity considered.

Fewer works exist for defining and reasoning over other types of relationship. In [HCDF95] proximity is
defined by distance values and reasoning is carried out by vector sums with respect to specific orientation
between objects. In Gahegan [Gah95] a fuzzy set membership relations is used to reason about degrees
of closeness.

In general, approaches to handling orientation relations are limited in their expressiveness, due to
their inability to represent different types of orientation relations for different object dimensions with-
out restricting the space resolution or division. Also, building composition tables manually affects the
tractability of the reasoning process in the case of high space resolutions. In general, approaches are
specific and none of the existing approaches offers a unified method for handling different types of spatial
relations, which is the main aim of the work presented here.

Approaches to spatial reasoning in the literature can generally be classified into a) using transitive

propagation and b) using theorem proving.

e Transitive propagation: In this approach the transitive property of some spatial relations is utilised
to carry out the required reasoning. This applies to the order relations, such as before, after and
(<,=,>) (for example, a < b A b < ¢ — a < ¢), and to the subset relations such as contain
and inside (for example, inside(A, B) Ainside(B,C) — inside(A,C), east(A, B) A east(B,C) —

east(A,C)).
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Transitive property of the subset relations was employed by Egenhofer [Ege94] for reasoning over
topological relationships. Transitive property of the order relations has been utilised by Mukerjee
& Joe [MJ90], Guesgen [Gue89], Chang & Lu [CL84], Lee & Hsu [LH91] and Papadias & Sellis

[PS92].

Although order relations can be utilised in reasoning over point-shaped objects, they cannot be

directly applied when the actual shapes and proximity of objects are considered.

e Theorem proving (elimination): Here, reasoning is carried out by checking every relation in the full
set of sound relations in the domain to see whether it is a valid consequence of the composition
considered (theorems to be proved) and eliminating the ones which are not consistent with the

composition [CRCB93].

Bennett [Ben94] have proposed a propositional calculus for the derivation of the composition of
topological relations between simple regions using this method. However, checking each relation
in the composition table to prove or eliminate is not possible in general cases and is considered a

challenge for theorem provers [RCC92b].
In general the limitation of all the methods in the above two approaches are as follows:

e Spatial reasoning is studied only between objects of similar types, e.g. between two lines or two
simple areas. Spatial relations exist between objects of any type and it is limiting to consider the

composition of only specific object shapes.

e Spatial reasoning was carried out only between objects with the same dimension as the space they

are embedded in, e.g. between two lines in 1D, between two regions in 2D, etc.

e Spatial reasoning is studied mainly between simple object shapes or objects with controlled com-
plexity, for example, regions with holes treated as concentric simple regions. None of the methods in

the literature have been presented for spatial reasoning between objects with arbitrary complexity.

6 Conclusions

A general approach is presented for qualitative spatial representation and reasoning. No limitations on

the complexity of the objects are imposed [AJ97]. It is based on a uniform representation of the topology
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of the space as a connected set of components. A structure called adjacency matrix is proposed to capture
the topology of objects with different complexity. It is shown how topological spatial relations can be
uniquely defined. The reasoning method consists of a set of two general constraints to govern the spatial
relationships between objects in space, and two general rules to propagate relationships between objects
in space. The reasoning process is general and can be applied on any types of objects with random
complexity. It is also simple and is based on the application of two rules for the propagation of empty
and non-empty intersections between object components.

The method has been applied to orientation spaces and extended to cater for hybrid reasoning where
topological and orientation spaces are used concurrently. A possible extension of the method was also

presented which takes into account qualitative surface height information.
It can be concluded that significant benefits are envisaged if spatial reasoning systems are enhanced

by qualitative manipulation of different types of positional information.
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