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Abstract

In this paper the design and implementation of a general qualitative spatial reasoning engine (SPARQS) is presented. Qualitative treatment

of information in large spatial databases is used to complement the quantitative approaches to managing those systems, in particular, it is used

for the automatic derivation of implicit spatial relationships and in maintaining the integrity of the database. To be of practical use,

composition tables of spatial relationships between different types of objects need to be developed and integrated in those systems.

The automatic derivation of such tables is considered to be a major challenge to current reasoning approaches. In this paper, this issue is

addressed and a new approach to the automatic derivation of composition tables is presented. The method is founded on a sound set-

theoretical approach for the representation and reasoning over arbitrarily shaped objects in space. A reasoning engine tool, SPARQS, has

been implemented to demonstrate the validity of the approach. The engine is composed of a basic graphical interface where composition

tables between the most common types of spatial objects are built. An advanced interface is also provided, where users are able to describe

shapes of arbitrary complexity and to derive the composition of chosen spatial relationships. Examples of the application of the method using

different objects and different types of spatial relationships are presented and new composition tables are built using the reasoning engine.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Qualitative Spatial Representation and Reasoning

(QSRR) is an active field of AI research where formalisms

for encoding and manipulating qualitative spatial knowl-

edge are studied [10]. A main aim of these techniques is the

provision of tools to enhance the derivation and retrieval of

implicit knowledge in large spatial databases typically used

in applications such as, Geographic Information Systems

(GIS), medical and biological databases and Computer

Aided Design, Manufacture and Process Planning (CAD/

CAM/CAPP). Such application domains are characterised

by handling very large sets of spatial entities, relationships

and constraints and their manipulation usually involve

substantial computational costs. The ability to handle a

certain level of indeterminacy makes QSRR techniques

attractive in those domains. The goal is for such techniques

to complement and enhance the traditional, usually

computationally expensive, geometrical methods,

especially when precise information are neither available

nor needed. A simple example in a GIS is the derivation of

the fact that the location of Peterhouse College is in the UK,

from the facts that it is located in Cambridge and Cambridge

is in the UK, without needing to execute a polygon-in-

polygon geometric computation. Applications of QSRR

include, qualitative spatial scene specification and scene

feasibility problems, checking the similarity and consist-

ency of data sets, integrating different spatial sets, and in

initial pruning of search spaces in spatial query processing.

Research is also ongoing for incorporating QSRR in the

definition and implementation of spatial query languages.

However, the qualitative approach has obvious limitations

where useful characteristics of spatial objects such as shape

and size are not used. Also, its application becomes limited

when exact positions and tolerance constraints are con-

sidered. Hence, it can be argued that both the quantitative

and qualitative approaches have complementary areas of

strength and that any system which can combine the two

paradigms in a way which uses their strength would be an

effective platform for a range of novel and conventional

applications. One approach to utilising QSRR in such

systems is by the automatic development of composition or

transitivity tables between different types of spatial objects.

Reasoning can then be transformed into a simple process of

table look-up to be invoked when needed. Several

works have addressed this problem previously, and some
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composition tables between simple objects have been

reported. These approaches are generally limited and

applicable only in simple constrained domains. The problem

is, however, recognised as a major challenge to automatic

theorem provers [3,25], and no general solution has yet been

found.

In this paper, a new approach is proposed for the

automatic reasoning of spatial relationships and the

automatic building of composition tables. The approach is

novel as composition tables between objects of any type and

complexity can be derived. The proposed method is

implemented using java in the SPARQS (SPAtial Reasoning

in Qualitative Space) reasoning engine tool. The engine is

used to validate the method and demonstrate its generality.

The paper is structured as follows. Section 2 outlines the

representation and reasoning approach in topological

spaces. The reasoning method is applied over topological

relations between different types of objects. In Section 3 the

reasoning engine is described and the process of building

composition tables is illustrated. Section 4 provides an

overview of related approaches and some conclusions are

drawn in Section 5.

2. The formalism

This section addresses the problem of qualitative

representation of objects with arbitrary spatial complexity

and their topological relationships. The reasoning formal-

ism is then presented, consisting of (a) general constraints to

govern the spatial relationships between objects in space,

and (b) general rules to propagate relationships between

those objects. Both the constraints and the rules are based on

a uniform representation of the topology of the objects, their

embedding space and the representation of the relationships

between them.

2.1. The general representation approach

Objects of interest and their embedding space are divided

into components according to a required resolution.

The connectivity of those components is explicitly

represented. Spatial relations are represented by the

intersection of object components [1] in a similar fashion

to that described in Ref. [17] but with no restriction on

object components to consist only of three parts (boundary,

interior and exterior).

The topology of the object and the embedding space can

then be described by a matrix whose elements represent the

connectivity relations between its components. This matrix

shall be denoted adjacency matrix. In the decomposition

strategy, the complement of the object in question shall be

considered to be infinite, and the suffix 0; e.g. (x0) is used to

represent this component.

Hence, the topology of a space S containing an object x is

defined using the following equation

x ¼
[n
i¼1

xi ð1Þ

Sx ¼ x < x0 ð2Þ

where Sx is used to denote the space associated with object x:

In Fig. 1 different possible decompositions of a simple

convex polygon and its embedding space is shown along

with their adjacency matrices. In (a), the object is

represented by two components, a linear component x1

and an areal component x2 and the rest of the space is

represented by an infinite areal component x0 representing

the surrounding area. In (d), only one areal component is

used to represent the polygon. Both representations are

valid and may be used in different contexts. Different

decomposition strategies for the objects and their embed-

ding spaces can be used according to the precision of the

relations required and the specific application considered.

The higher the resolution used (or the finer the components

of the space and the objects), the higher the precision of the

resulting set of relations in the domain considered.

The fact that two components are connected is

represented by a (1) in the adjacency matrix and by a (0)

otherwise. Since connectivity is a symmetric relation, the

resulting matrix will be symmetric around the diagonal.

Hence, only half the matrix is sufficient for the represen-

tation of the object’s topology and the matrix can be

collapsed to the structure in Fig. 1(c) and (f).

Semi-bounded areas of the embedding space can also be

represented (as virtual components) if needed. For example,

Fig. 1. (a,d) Possible decompositions of a simple convex polygon and its

embedding space. (b,e) Adjacency matrices corresponding to the two

shapes in (a) and (d), respectively. (c,f) Half the symmetric adjacency

matrix is sufficient to capture the object representation.
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Fig. 2(a) shows a possible decomposition of a concave

shaped object and its embedding space. In (b) the adjacency

matrix for its components is presented. The object is

represented by two components a linear component x1 and

an areal component x2 and the rest of its embedding space is

represented by a finite areal component x3 (representing the

virtual enclosure) and infinite areal component x0 represent-

ing the surrounding area.

2.1.1. The underlying representation of spatial relations

In this section, the representation of the topological

relations through the intersection of their components is

adopted and generalized for objects of arbitrary complexity.

Distinction of topological relations is dependent on the

strategy used in the decomposition of the objects and

their related spaces. For example, in Fig. 3 different

relationships between two objects x and y are shown,

where in (a) x is outside y and in (b) x is inside y:

Object y is decomposed into two components y1 and y2

and the rest of the space associated with y is decomposed

into two components: y3 representing the enclosure and y0

representing the rest of the space. Note that it is the

identification of the (virtual) component y3 that makes

the distinction between the two relationships in the

figure. The complete set of spatial relationships

are identified by combinatorial intersection of the

components of one space with those of the other space.

If Rðx; yÞ is a relation of interest between objects x and y;

and X and Y are the spaces associated with the objects,

respectively, such that m is the number of components in X

and l is the number of components in Y ; then a spatial

relation Rðx; yÞ can be represented by one instance of the

following equation:

Rðx; yÞ ¼ X > Y ¼
[m
i¼1

xi

 !
>

[l

j¼1

yj

0
@

1
A

¼ ðx1 > y1;…; x1 > yl; x2 > y1;…; xm > ylÞ

The intersection xi > yj can be an empty or a non-empty

intersection. The above set of intersections shall be

represented by an intersection matrix, as follows

For example, the intersection matrices corresponding to

the spatial relationships in Fig. 3 are shown in Fig. 4.

The components x1 and x2 have a non-empty intersection

with y0 in Fig. 4(a) and with y3 in Fig. 4(b). Different

combinations in the intersection matrix can represent

different qualitative relations. The set of valid or sound

spatial relationships between objects is dependent on the

particular domain studied.

2.2. The general reasoning formalism

The reasoning approach consists of: (a) general con-

straints to govern the spatial relationships between objects

in space, and (b) general rules to propagate relationships

between the objects.

2.2.1. General constraints

The intersection matrix is in fact a set of constraints whose

values identifies specific spatial relationships. The process of

spatial reasoning can be defined as the process of propagating

the constraints of two spatial relations (for example, R1ðA;BÞ

and R2ðB;CÞ), to derive a new set of constraints between

Fig. 2. (a) Using virtual components to represent semi-bounded

components in space. (b) Adjacency matrix for the shape in (a).

Fig. 3. Different qualitative spatial relationships can be distinguished by

identifying the appropriate components of the objects and the space.

Fig. 4. The corresponding intersection matrices for the relationships in

Fig. 3, respectively.
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objects. The derived constraints can then be mapped to a

specific spatial relation (i.e. the relation R3ðA;CÞ).

A subset of the set of constraints defining all possible spatial

relations are general and applicable to any relationship between

any objects. These general constraints are a consequence of the

initial assumptions used in the definition of the object and space

topology. The two general constraints are:

1. Every unbounded (infinite) component of one space must

intersect with at least one unbounded (infinite) component of

the other space.

Intuitively this rule says that it is impossible for an infinite

component in the space to only have an intersection with

finite component(s). In this case the infinite component

becomes a subset of the finite component(s) which is not

possible.

2. Every component from one space must intersect with at least

one component from the other space.

If one component of one space does not intersect with any

component of the other space, either the two spaces are not

equal or the spaces are not dense or connected. Both

conditions are excluded by the initial assumptions. This

implies that there cannot exist a row or a column in the

intersection matrix whose elements are all empty intersec-

tions, hence the combinatorial cases in the matrix where this

case exists can be ignored.

2.2.2. General reasoning rules

Composition of spatial relations is the process through

which the possible relationship(s) between two object x and

z is derived given two relationships: R1 between x and y

and R2 between y and z: Two general reasoning rules for the

propagation of intersection constraints are presented. The

rules are characterized by the ability to reason over spatial

relationships between objects of arbitrary complexity in any

space dimension. These rules allow for the automatic

derivation of the composition (transitivity) tables between

any spatial shapes.

2.2.2.1. Reasoning rules. Composition of spatial relations

using the intersection representation approach is based on

the transitive property of the subset relations. In what

follows the following subset notation is used. If x0 is a set of

components (set of point-sets) {x1;…; xm0} in a space X; and

yj is a component in space Y ; then h denotes the following

subset relationship.

† yj h x0 denotes the subset relationship such that: ;xi [
x0ðyj > xi – fÞ ^ yj > ðX 2 x1 2 x2· · · 2 xmÞ ¼ f where

i ¼ 1;…;m0: Intuitively, this symbol indicates that the

component yj intersects with every set in the collection x0

and does not intersect with any set outside of x0:

If xi; yj and zk are components of objects x; y and z

respectively, then if there is a non-empty intersection

between xi and yj; and yj is a subset of zk; then it can be

concluded that there is also a non-empty intersection between

xi and zk:

ðxi > yj – fÞ ^ ðyj # zkÞ! ðxi > zk – fÞ

This relation can be generalized in the following two

rules. The rules describe the propagation of intersections

between the components of objects and their related spaces

involved in the spatial composition.

Rule 1: propagation of non-empty intersections. Let x0 ¼

{x1; x2;…; xm0} be a subset of the set of components of space

X whose total number of components is m and m0 # m;

x0 # X: Let z0 ¼ {z1; z2;…; zn0} be a subset of the set of

components of space Z whose total number of components

is n and n0 # n; z0 # Z: If yj is a component of space Y ; the

following is a governing rule of interaction for the three

spaces X; Y and Z:

ðx0 i yjÞ^ ðyj h z0Þ! ðx0 > z0 – fÞ; ðx1 > z1

– f_ · · ·_ x1 > zn0 – fÞ^ ðx2 > z1 – f_ · · ·_ x2 > zn0

– fÞ^ · · ·^ ðxm0 > z1 – f_ · · ·_ xm0 > zn0 – fÞ

The above rule states that if the component yj in space Y

has a positive intersection with every component from the

sets x0 and z0; then each component of the set x0 must intersect

with at least one component of the set z0 and vice versa.

The constraint xi > z1 – f _ xi > z2 – f· · · _ xi > zn0 –
f can be expressed in the intersection matrix by a label, for

example, the label ar (r ¼ 1 or 2) in the following matrix

indicates x1 > ðz2 < z4Þ – f (x1 has a positive intersection

with z2; or with z4 or with both). A- in the matrix indicates that

the intersection is either positive or negative

Rule 1 represents the propagation of non-empty inter-

sections of components in space. A different version of the

rule for the propagation of empty intersections can be stated

as follows.

Rule 2: propagation of empty intersections. Let z0 ¼

{z1; z2;…; zn0} be a subset of the set of components of space Z

whose total number of components is n and n0 , n; z0 , Z:

Let y0 ¼ {y1; y2;…; yl0} be a subset of the set of components

of space Y whose total number of components is l and l0 , l;

y0 , Y : Let xi be a component of the space X: Then the

following is a governing rule for the spaces X; Y and Z:

ðxi h y0Þ ^ ðy0 h z0Þ! ðxi > ðZ 2 z1 2 z2· · · 2 zn0 Þ ¼ fÞ

Rules 1 and 2 are the two general rules for propagating

empty and non-empty intersections of components of
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spaces. Note that in both rules the intermediate object ðyÞ

and its space components plays the main role in the

propagation of intersections. The first rule is applied a

number of times equal to the number of components of the

space of the intermediate object. Hence, the composition of

spatial relations becomes a tractable problem which can be

performed in a defined limited number of steps.

2.2.2.2. Soundness and completeness of the formalism. The

formalism can be said to be sound if any derived conclusion

using the rules follows set-theoretically, and the formalism

can be said to be complete if any conclusions which follows

semantically from the axioms of the set theory are also

derivable by the formalism.

In this section the formalism is proved to be sound and

complete using the basic axioms of transitivity and set

intersections in the set theory, in particular

† transitivity of subsets: A # B # C ! A # C; and its

implication: A # C ! A > ðCpÞ ¼ f; where Cp is the

complement of C:

† set intersection: A > B ^ B # C ! A > C – f; and,

C > B ^ B # A ! A > C – f: These rules can be

derived directly from the transitivity axiom as follows:

If ’aða [ A ^ a [ BÞ then ða # AÞ ^ ða # BÞ ^ ðB #
CÞ! a # C or a> C – f: Hence, A > B ^ B # C !

A > C – f:

Soundness of the formalism. Rule 1 states that

ðx0 i yjÞ ^ ðyj h z0Þ! ðx0 > z0 – fÞ ; ðx1 > z1

– f _ · · · _ x1 > zn0 – fÞ ^ · · · ^ ðxm0 > z1

– f _ · · · _ xm0 > zn0 – fÞz1 > x1 – f _ · · · _ z1 > xm0

– fÞ ^ · · · ^ ðzn0 > x1 – f _ · · · _ zn0 > xm0 – fÞ

i:e: ðx1 > z0 – f; xm0 > z0 – f; z1 > x0 – f; zn0 > x0 – fÞ

Since x0 i yj ! ðyj > x1 – f ^ yj > x2 – f ^ · · · ^

yj > xm0 – fÞ; and, z0 i yj ! ðyj > z1 – f ^ yj > z2 –
f ^ · · · ^ yj > zn0 – fÞ; then, Rule 1 can be expressed by

the collection of the following axioms:

x1 > yj – f ^ yj h z0 ! x1 > z0 – f

x2 > yj – f ^ yj h z0 ! x2 > z0 – f

..

.

xm0 > yj – f ^ yj h z0 ! xm0 > z0 – f

z1 > yj – f ^ yj h x0 ! z1 > x0 – f

z2 > yj – f ^ yj h x0 ! z2 > x0 – f

..

.

zn0 > yj – f ^ yj h x0 ! zn0 > x0 – f

Hence, Rule 1 reduces to the axiom of set intersection

and is therefore sound.

Rule 2 states that:

ðxi h y0Þ ^ ðy0 h z0Þ! ðxi > ðZ 2 z0Þ ¼ fÞ

Z 2 z0 is the complement of z0: Using the transitivity of

subsets, xi h y0 ^ y0 h z0 ! xi # z0; then intersection of xi

with the complement of z0 must be empty. Hence Rule 2 is

also sound.

Completeness of the formalism. As shown above, Rule 1

is an equivalent form of the set intersection axiom and hence

any conclusion which can be derived using this axiom is

also derivable using Rule 1.

From the set theory we have that: A # B # C ! A #
C ! A > ðU 2 CÞ ¼ f; where U is the universal set for

space. In the formalism the underlying spaces for the objects

are equal, i.e. X ¼ Y ¼ Z and all are equivalent to the

Universal set for space. Hence, ;x [ Xðx # ZÞ; and

similarly, ;z [ Zðz # XÞ: From Rule 2 we have that: xi h

y0 h z0 ! xi # z0 ! xi > ðZ 2 z0Þ ¼ f where Z is the uni-

versal set for space. Then Rule 2 reduces to the subset

transitivity axiom and its implication, and any conclusion

which can be derived using these axioms are also derivable

by the formalism.

Since both rules in the formalism are equivalent to basic

axioms of the set theory, then the formalism is set-

theoretically complete with respect to the two axioms and

any axioms derived from them.

2.3. Analysis of the formalism

If m0 and n0 are the number of components of the sets x0

and z0; respectively, and m and n are the total number of

components of the spaces X and Z; respectively, and x0 h X

and z0 h Z: Using Rule 1 the composition of relations can be

classified into the following.

(I) If (m0 ¼ 1 _ n0 ¼ 1), (e.g. x0 ¼ {x1} or z0 ¼ {z1} or

both) then the rule shall propagate a definite set of

intersections. For example, if yj intersects with the

only element of x0; then this element of x0 must have a

non-empty intersection with every element from the

set z0: Also, if yj intersects with the only element of z0;

then this element of z0 must have a non-empty

intersection with every element from the set x0: If

this property holds for every component of the

intermediate space y then the composition must result

in a definite relation. An example of this case is the

composition of the inside relationship between two

simple convex regions.

(II) If ðm0 . 1 ^ n0 . 1Þ; (e.g. if x0 ¼ {x1; x2} and

z0 ¼ {z1; z2}Þ; for at least one yj of the space Y ; no

definite intersections are propagated (i.e. x0 > z0 – f).

If after the application of the reasoning rules this

result still holds, then the composition shall produce a

set of disjunctive relations.
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(III) If (m0 ¼ m ^ n0 ¼ n), i.e. ðX i yjÞ ^ ðyj h ZÞ; no

distinguishing constraints can be propagated from

the component yj; as this case is an expression of the

second general constraint. Also, since the implication

of such constraint is that every component of one

space may intersect with all the components of the

other space no empty intersection will be propagated

(using Rule 2) for any component.

(IV) If (m0 ¼ 1 ^ n0 ¼ 1 ^ x0 ¼ {x0} ^ z0 ¼ {z0}), i.e. x0 is

the infinite component and z0 is the infinite com-

ponent, then the rule becomes an expression of the

first general constraint, i.e. no distinguishing con-

straint will be propagated.

(V) If all the propagated intersections for the set of

components of the intermediate space are either of

type III or IV above or both then the composition

results in the universal relation (disjunction of all

possible relationships)—since the only constraints

propagated are the general ones, i.e. no specific

constraint is propagated.

2.4. Example 1: propagation of definite relations

The example in Fig. 5 is used for demonstrating the

composition of relations using non-simple spatial objects.

Fig. (a) shows the relationship between a concave polygon x

and a polygon with a hole y and (b) shows the relationship

between object y and a simple polygon z where z touches the

hole in y: The intersection matrices corresponding to the two

relationships are also shown.

The reasoning rules are used to propagate the intersec-

tions between the components of objects x and z as follows.

From Rule 1 we have

† y0 intersections:

{x0; x1; x2; x3} i y0 ^ y0 h {z0} ! x0 > z0 – f^ x1 > z0

– f^ x2 > z0 – f^ x3 > z0 – f

† y1 intersections:

{x0; x3} i y1 ^ y1 h {z0} ! x0 > z0 – f^ x3 > z0 – f

† y2 intersections:

{x0; x3} i y2 ^ y2 h {z0} ! x0 > z0 – f^ x3 > z0 – f

† y3 intersections:

{x3} i y3 ^ y3 h {z0} ! x3 > z0 – f

† y4 intersections:

{x3} i y4 ^ y4 h {z0; z1; z2} ! x3 > z0 – f^ x3 > z1

– f^ x3 > z2 – f

Refining the above constraints, we get the following

intersection matrix

The resulting matrix corresponds to one possible

relationship between x and z as shown in Fig. 6.

Fig. 5. (a,b) Spatial relationships between non-simple objects x; y and z:

(c,d) Corresponding intersection matrices.

Fig. 6. Resulting definite relation from the composition of the relations in

Fig. 5.
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2.5. Example 2: propagation of indefinite relations

The example in Fig. 7 is used for demonstrating the

composition of relations using non-simple spatial objects,

resulting in a set of possible relationships between objects x

and z:The figure shows example relationships and the

corresponding intersection matrices, between regions with

indeterminate boundaries x and y and z as defined in

Ref. [7].The problem of representing vague regions have

been addressed in various research works previously

[28].In Ref. [28] a set of 44 possible relations is defined

between the two region with broad boundaries.

The following is an example of how the reasoning rules

are applied to derive the composition of two example

relations.

The reasoning rules are used to propagate the intersec-

tions between the components of objects x and z as follows.

From Rule 1 we have

† y1 intersections:

{x1; x2} i y1 ^ y1 h {z1; z0} ! x1 > ðz1 < z0Þ

– f ^ x2 > ðz1 < z0Þ – f

† y2 intersections:

{x1; x2} i y2 ^ y2 h {z2} ! x1 > z2 – f ^ x2 > z2 – f

† y0 intersections:

{x1; x2; x0} i y0 ^ y0 h {z1; z0} ! x1 > ðz1 < z0Þ

– f ^ x2 > ðz1 < z0Þ – f ^ x0 > ðz1 < z0Þ

– f

Refining the above constraints, we get the following

intersection matrix

where a1 and a2 represent the constraint x1 > ðz1 _ z0Þ ¼ 1

and b1 and b2 represent the constraint x2 > ðz1 _ z0Þ ¼ 1; c1

and c2 represent the constraint z1 > ðx1 _ x2Þ ¼ 1 and d1

and d2 represent the constraint z0

T
ðx1 _ x2Þ ¼ 1 and the ?

represents ð1 _ 0Þ: The result matrix corresponds to one of

four possible relationships between x and z; namely numbers

21–23 and 25, as shown in Fig. 8.

3. SPARQS: the reasoning engine

To demonstrate the validity of the proposed approach, a

reasoning engine has been designed and implemented using

java. The interface to the program, named SPARQS consists

of two parts. A basic interface is provided, where the

topology of some common spatial object shapes are

predefined, as shown in Fig. 9(a). Users are able to choose

object types from a menu of available ones, namely, points,

lines, simple regions, regions with indeterminate boundaries

and concave regions. Users are then offered a selection of

possible topological spatial relationships between the

chosen object types. Sets of relationships are shown

graphically and categorised using a coarse classification

scheme under four headings, namely, disjoint, inside,

overlap and touch to enhance the usability of the interface.

The reasoning rules are applied to propagate the intersection

matrices and produce the result matrix. The constraints in

Fig. 7. (a,b) Spatial relationships between vague regions x; y and z: (c,d)

Corresponding intersection matrices.

Fig. 8. Possible configurations for the composition in Fig. 7.
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Fig. 9. The basic interface in SPARQS. (a) Composition of relationships between lines and region. (b) Composition of relationships between regions with holes.
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the matrix are then matched to the set of possible

relationships and all the ones satisfying the constraints are

displayed in the result window, as shown in (a). The

program is flexible where the input spatial relationships can

be changed and resubmitted and the result re-calculated, as

shown in (b).

A preliminary implementation of an advanced interface

is also provided as shown in Fig. 10. Users are able to fill in

adjacency and intersection matrices, which are subsequently

used by the system to derive the resulting relationships.

Some validation checks are done on the input matrices,

e.g. to reject matrices that violate the general constraints

described earlier, where no rows or columns in the matrix

are allowed to contain only zeros. The result constraint

matrix is therefore dependent on the validity of the input

shapes and relations. Enhancement to the interface may be

possible, where a more guided approach to input, possibly

using sketch-based techniques, can be utilised to ensure

valid entries.

The engine has been used to derive new composition

tables between all the combination of objects defined in the

basic interface, e.g. between simple regions, concave

regions and regions with indeterminate boundaries, etc.

Part of the composition table between regions with

indeterminate boundaries is shown in Tables 2 and 3.

The full set of 44 sound relations between those regions are

as defined in Ref. [28] and are shown in Table 1.

Note the notation of the result of the compostions in

Tables 2 and 3. An example is shown in Fig. 11, where the

matrix of dots represent the 44 relations, read from left to

right and from top to bottom. A black dot indicates that the

existence of the relation. Hence, the example in the figure

denotes that the result of the composition is R1 or R2 or R6 or

R7 or R8:

4. Comparison with related work

The main advantage of the method proposed above is

its generality. The same methodology is used for the

definition of simple, complex, composite regions, as well

as regions with indeterminate boundaries. The method is

also adaptable, where different levels of representation

can be devised by hiding or revealing the details of

objects as required. The method is therefore well adapted

for use as a basis for a spatial reasoning formalism.

Fig. 10. The advanced interface in SPARQS. Users specify the adjacency and intersection matrices. The example in the figure corresponds to the Example 1.

B.A. El-Geresy, A.I. Abdelmoty / Knowledge-Based Systems 17 (2004) 89–102 97



Representing complex regions has been addressed in

many works. Cohn et al. [10,11] extended a logic-based

formalism to handle concave regions, and regions with

holes (doughnut shapes). New axioms and theories had to be

devised to define the new shapes. The main drawback of this

approach is its complexity, as new, possibly considerable,

extensions of the formalism have to be devised with every

new shape considered.

Egenhofer et al. [17,16] used point-set topology to define

simple regions, using three components, boundary, interior

and exterior. The method proposed here deviates from their

work in one important respect, which has far-reaching

implications. The constraint on the object components has

been relaxed to be any possible set of components,

which satisfies the main assumptions behind the formalism.

The notions of boundaries, interiors and exteriors were

dropped and the notion of object and space components is

used instead. Other methods were devised in Ref. [15] to

define regions with holes, through the definition of spatial

relationships between simple regions and no extension for

the method was proposed for the definition of irregular or

concave regions.

The work of Clementini and De Felice [7] follows

closely the method of Egenhofer, and provides a definition

for regions with holes using boundaries, interiors and

exteriors. Their method inherits the same limitations of

Ref. [17]. In another work [8], Clementini et al. addressed

the issue of defining composite regions for use in spatial

query languages, by defining explicit relationships between

all the components in the object, in the same way, regions

with holes were defined in Ref. [15].

Clementini et al. [6] proposed a method of representing

unique topological relationships between two composite

regions (composed from simple regions without holes) as a

set of rules which use only binary topological relationships

at component level to decide the topological relationship

between complex objects at higher level. The work of

Nguyen et al. [23] follows a similar approach to the above,

but generalises the rules for connected composite objects

with or without holes.

Coenen and Pepijn [9] proposed an ontology for objects

and relationships in spatio-temporal domains. They assumed

the space to consist of sets of points and used set-theoretic

notions to define objects in that space. Their approach is

Table 1

The set of 44 sound topological relations between regions with broad boundaries as defined in Ref. [7]
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distinctive from the above where space is considered to be

discrete, not continuous. The method was used to define a

general ‘object’ and quantitative identifiers are used to

qualify the object properties. Extending the method for

distinguishing between different types of regions was not

proposed.

Vague regions or regions with undetermined boundaries

were studied in Refs. [4,7,12,18,20,27]. Only simple convex

regions with no holes were considered and the undetermined

boundary was represented by a surrounding ring [7,12].

Approaches to spatial reasoning in the literature can

generally be classified into (a) approaches using transitive

propagation and (b) approaches using theorem proving.

† Transitive propagation. In this approach the transitive

property of some spatial relations is utilized to carry out

the required reasoning. This applies to the order

relations, such as before, after and ð,;¼;.Þ

(for example, a , b ^ b , c ! a , c), and to subset

relations such as contain and inside (for

example, insideðA;BÞ ^ insideðB;CÞ! insideðA;CÞ and

eastðA;BÞ ^ ðB;CÞ! eastðA;CÞ).

Transitive property of the subset relations was

employed by Egenhofer [14] for reasoning over topological

relationships. Transitive property of the order relations

has been utilised by Mukerjee and Joe [22], Guesgen [19],

Lee and Hsu [21] and Papadias and Sellis [24].

Table 2

Part of the composition table between two regions with broad boundaries. The relations between R1 and all the 44 relations is shown
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Although order relations can be utilised in reasoning

over point-shaped objects, they cannot be directly applied

when the actual object shapes and proximity of objects are

considered.

† Theorem proving (elimination). Here, reasoning is carried

out by checking every relation in the full set of sound

relations in the domain to see whether it is a valid

consequence of the composition considered (theorems to

be proved) and eliminating the ones which are not

consistent with the composition [13].

Bennett [2] have proposed a propositional calculus

for the derivation of the composition of topological

relations between simple regions using this method.

However, checking each relation in the composition

table to prove or eliminate is not possible in general

cases and is considered a challenge for theorem provers

[5,26].

In general limitation of the methods in the above two

approaches can be summarised as follows.

† Spatial reasoning is studied only between objects of

similar types, e.g. between two lines or two simple areas.

Spatial relations exist between objects of any type and it

Table 3

Part of the composition table between two regions with broad boundaries

The relations between R31 and all the 44 relations is shown. Note. Object x contains object y in the figure.
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is limiting to consider the composition of only specific

object shapes.

† Spatial reasoning was carried out only between objects

with the same dimension as the space they are embedded

in, e.g. between two lines in 1D, between two regions in

2D, etc.

† Spatial reasoning is studied mainly between simple

object shapes or objects with controlled complexity,

for example, regions with holes treated as concentric

simple regions. None of the methods in the literature

have been presented for spatial reasoning between

objects with arbitrary complexity.

The method proposed here is simple and general - only

two rules are used to derive composition between objects of

arbitrary complexity and is applicable to different types of

spatial relations.

5. Conclusions

In this paper, a general approach to qualitative

representation and reasoning has been presented. The

method is simple and is based on a uniform representation

of objects and spatial relationships. Objects are decomposed

into representative components and their topology described

in an adjacency matrix. The set of sound topological

relations between objects are represented by the interaction

of the object components. The approach is general where

composition of spatial relations can be applied

between objects of arbitrary dimension and complexity.

An implementation of the method is also presented to

demonstrate its validity and generality. Using the reasoning

engine, SPARQS, several new composition tables were built

between common spatial object types, viz., points, lines,

polygons, concave polygons and regions with holes.

The engine also includes a more flexible interface where

manual input of adjacency and intersection matrices can be

used to derive the composition of other arbitrary object

shapes. The automatic derivation of composition tables

presents an important step towards the realisation of

a general qualitative reasoning engine which can be utilised

in large spatial databases.
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