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Abstract

In this paper we propose a general approach for reasoning in space� The approach is com�

posed of a set of two general constraints to govern the spatial relationships between objects in

space� and two rules to propagate relationships between those ob jects� The reasoning method

is applicable to objects of random complexity and in any space dimension� The approach is

based on a uniform representation of the topology of the space as a connected set of compo�

nents and the representation of the relationships between those ob jects by the intersection of

the space components� Several examples are used to illustrate the generality of the proposed

method� The approach is also shown to be applicable to reasoning in the temporal domain

and is used to explain some phenomenon related to the reasoning process� namely� conceptual

neighbourhood and de�nite and inde�nite compositions� A major advantage of the method is

that reasoning between objects of any complexity can be achieved in a de�nite limited num�

ber of steps� Hence� the incorporation of spatial reasoning mechanisms in spatial information

systems becomes plausible�

� Introduction

A new generation of information systems tailored to handling spatial knowledge has been actively evolving

over the past few years� The representation of qualitative spatial knowledge and reasoning about it

are central tasks in many such systems for example� in CAD�CAM applications ���� image processing

����� geographic information systems ����� robotics� qualitative dynamics ���� �	�� Qualitative spatial

models are also used in non
spatial domains� for example� in natural language understanding in software

engineering in the visulisation and animation of programs ����� In all these applications� qualitative

as opposed to quantitative treatment of spatial knowledge is needed� Precise information required in

quantitative methods are usually neither available nor needed�

While the qualitative treatment of the temporal knowledge is an established research area where di�erent

approaches exist for the representation of temporal entities �intervals� point� moments
� their relations

�interval and point algebra
 and reasoning over them �composition tables and constraint networks
� a

general treatment of spatial knowledge is still lacking ��� Spatial reasoning is considered as a challenge to

automatic theorem provers ����� Composition tables need to be built for every new type of objects con


sidered and techniques to derive them automatically presents a challenge� Phenomena such as conceptual

�



neighbourhood needs explanation ����

General formalisms for the representation and reasoning of qualitative spatial knowledge are needed

to provide unambiguous de�nitions of spatial relations to facilitate their automated processing� Some

research work ���� tried to exploit the well developed treatment of temporal knowledge �	� in handling the

representation in the spatial domain� However� the multi
dimensionality and complexity of the topology

of spatial entities� as opposed to the uni
dimensionality of temporal entities and their simpler topology

prevented the generality of these approaches� Other approaches also exist for example those by Cohn

et al ���� and by Egenhofer ����� However� general approaches which handles reasoning over objects of

di�erent types and random complexity are not yet achieved�

In this paper a general reasoning formalism for qualitative spatial relations is proposed which is composed

of a set of general constraints and set of general reasoning rules� Both the rules and the constraints are

based on the a uniform representation of the topology of the objects� their embedding space and the

relationships between them� The rest of the paper is structured as follows� Section � describes the pro


posed approach by describing the underlying representation methodology and the reasoning formalism�

Examples are given to show how the approach can be used to represent and reason over relationships

between objects with random complexity� In section �� the reasoning approach is utilized to analyze and

discuss central issues of qualitative reasoning� In particular� it is shown under which conditions the com


position of spatial relationships is de�nite or in
de�nite� A possible explanation on how the phenomenon

of conceptual neighbourhood occurs is discussed and �nally the application of the same approach to the

representation and reasoning in the temporal domain is given� Section 	 gives a comparative description

of related approaches and some conclusions and a view over future work are given in section ��

� The Approach

The approach proposed in this paper for reasoning in space is composed of two parts� a
 general con


straints to govern the spatial relationships between objects in space� and b
 general rules to propagate

relationships between objects in space� Both the constraints and the rules are based on a uniform repre


sentation of the topology of the objects and the representation of the relationships between those objects�

The representation methodology is �rst described and examples are used to demonstrate how relationships

between objects of random complexity can be represented�

��� The Underlying Representation

The method used for representing the space and the objects is similar to the space vocabulary described

in ��	� where objects of interest and their embedding space are divided intro components according to a

required resolution� The connectivity of those components is explicitly represented� The representation

of the spatial relations uses a similar approach to that used in ���� where relationships are described by

the intersection of the objects components ��� ���
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Figure �� �a
 Possible decomposition of a concave
shaped object and its embedding space� �b
 adjacency

matrix corresponding to the shape in �a
� � in the matrix represents that the corresponding elements

are connected and a � represents non
connection� �c
 Half the symmetric connectivity matrix in �b
 is

su�cient to capture object representation�

����� The Underlying Representation of Object Topology

In this section an approach for the representation of the topology of objects with arbitrary complexity

is described� Let S be the space in which the object is embedded� The object and its embedding space

are assumed to be dense and connected� The embedding space is also assumed to be in�nite� The object

and its embedding space are decomposed into components which re�ects the objects and space topology

such that�

�� No overlap exist between any of the representative components�

�� The union of the components is equal to the embedding space�

The topology of the object and the embedding space can then be described by a matrix whose elements

represent the connectivity relations between its components� This matrix shall be denoted adjacency

matrix� In �gure ��a
 a possible decomposition of a concave shaped object �for example an island with a

bay
 and its embedding space is shown and in ��b
 the adjacency matrix for its components is presented�

The object is represented by two components a linear component x� �the shore line of the island
 and

an areal component x� and the rest of its embedding space is represented by a �nite areal component x�

�representing the bay of the island
 and in�nite areal component x� representing the surrounding area�

The fact that two components are connected is represented by a ��
 in the adjacency matrix and by a ��


otherwise� Since connectivity is a symmetric relation� the resulting matrix will be symmetric around the

diagonal� Hence� only half the matrix is su�cient for the representation of the object�s topology and the

matrix can be collapsed to the structure in �gure ��c
� In the decomposition strategy� the complement

of the object in question shall be considered to be in�nite� The su�x � �x�
 is used to represent this

component�

Note that di�erent decomposition strategies for the objects and their embedding spaces can be used

according to the precision of the relations required and the speci�c application considered� The higher

the resolution used �or the �ner the components of the space and the objects
� the higher the precision

of the resulting set of relations in the domain considered� For example� if we were interested in studying
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Figure �� Di�erent decomposition of the concave
shaped island in �gure to capture more details and

correspondingly increase the resolution of the objects represented� x� and x� represent a lake on the

island�
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Figure �� Di�erent qualitative spatial relationships can be distinguished by identifying the appropriate

components of the objects and the space�

the lakes on the island in �gure ��a
� more components to represent the lakes have to be used as in �gure

��

����� The Underlying Representation of Spatial Relations

In this section� the representation of the topological relations through the intersection of their components

���� is adopted and generalized for objects of arbitrary complexity�

Distinction of topological relations is dependent on the strategy used in the decomposition of the objects

and their related spaces� For example� in �gure � di�erent relationships between two objects representing

a ship �x
 and an island �y
 are shown� where in ��a
 the ship is outside the bay and in ��b
 the ship

is inside the bay� The concave region representing the island �y
 is decomposed into two components x�

and x� and the rest of the space associated with x is decomposed into two components �x� representing

the bay and x� representing the rest of the ocean
� Note that the component x� is a virtual component�

i�e� with no physical boundary to delineate its spatial extension� It is the identi�cation of this component

that makes the distinction between the two relationships in the �gure�

The complete set of spatial relationships are represented by combinatorial intersection of the components
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Figure �� The corresponding intersection matrices for the relationships in �gure � respectively� Each

element in the matrix represent the result of the intersection of the corresponding elements� ��
 for a

non
empty intersection and ��
 for an empty intersection�

of one space with those of the other space�

If R�x� y
 is a relation of interest between object x and object y� and X and Y are the spaces associated

with the objects respectively such that n is the number of components in X and m is the number of

components in Y � then a spatial relation R�x� y
 can be represented by one state of the following equation�

R�x� y
 � X � Y

�

�
n�
i��

xi

�
�

�
� m�

j��

yj

�
A

� �x� � y�� x� � y�� � � � � x� � ym� x� � y�� � � � � xn � ym


The intersection xi�yj can be an empty or a non
empty intersection� The above set of intersections shall

be represented by an intersection matrix� similar to that used in ���� as follows�

R�x� y� �

y� y� y� � � �

x�

x�

x�

���

For example� the intersection matrices corresponding to the spatial relationships in �gure � are shown in

�gure �� The components x� and x� have a non
empty intersection with y� in ��a
 and with y� in ��b
�

Di�erent combinations in the intersection matrix can represent di�erent qualitative relations� The set of

sound spatial relationships between objects is dependent on the particular domain studied� For example�

in considering relationships between two line objects in a network analysis application we might be

interested in only those relationships where end points of lines are in contact� Also� properties of the

objects would a�ect the set of possible spatial relationships that can exist between them� For example�

if one object is solid object and the other is permeable� there cannot be any intersection of the inside of

the solid object with any other component of the other object� Also� objects of di�erent size or shape

cannot be involved in certain spatial relations such as equal or contain between the smaller and the

larger object�

The example in �gure 	 demonstrates the spatial relations that can exist between two solid objects� one

having the shape of a convex region and the other a concave one� The example can be used to represent

	



R��� �

y� y� y� y�

x� � � � �

x� � � � �

x� � � � �

R� �

y� y� y� y�

x� � � � �

x� � � � �

x� � � � �

R� �

y� y� y� y�

x� � � � �

x� � � � �

x� � � � �

R� �

y� y� y� y�

x� � � � �

x� � � � �

x� � � � �

R� �

y� y� y� y�

x� � � � �

x� � � � �

x� � � � �

R� �

y� y� y� y�

x� � � � �

x� � � � �

x� � � � �

Figure 	� A set of � spatial relationships between two solid bodies simulating an example of a ball falling

into a container full of liquid� The container along with the liquid inside it constitute one object y and

the ball is object x� The decomposition of objects are as in �gure ��

many situations� for example� a solid object falling into a container full of liquid� a ball thrown into a

net� or a ship entering a bay of an island� etc� In the �gure the six possible spatial relationships that can

occur between the two solid objects are shown along with their intersection matrices�

��� The General Reasoning Formalism

The reasoning approach is composed of � a
 general constraints to govern the spatial relationships between

objects in space� and b
 general rules to propagate relationships between objects in space�

����� General Constraints

The intersection matrix is in fact a set of constraints whose values identi�es speci�c spatial relationships�

For example� the constraints used to represent the relationship in �gure ��a
 are x� � y� � �� x� � y� �

�� x� � y� � �� x� � y� � �� � � �

The process of spatial reasoning can be de�ned as the process of propagating the constraints of two spatial

relations �for examples� R��A�B
 and R��B�C

� to derive a new set of constraints between objects� The

derived constraints can then be mapped to a speci�c spatial relation �i�e� the relation R��A�C

�

A subset of the set of constraints de�ning all spatial relation are general and are applicable to any

relationship between any objects� These general constraints are a consequence of the initial assumptions

used in the de�nition of the object and space topology� The identi�cation of these constraints is useful

and can be used in checking the correctness of the relations and shall be used later in the paper to give

�



some insight in the propagation of spatial relations�

The two general constraints are�

�� Every unbounded �in�nite
 component of one space must intersect with at least one unbounded

�in�nite
 component of the other space�

Intuitively this rule says that it is impossible for an in�nite component in the space to only have

an intersection with �nite component�s
� In this case the in�nite component becomes a subset of

the �nite component�s
 which is not possible� In �gure 	� x� and y� always have a non
empty

intersection�

�� Every component from one space must intersect with at least one component from the other space�

If one component of one space does not intersect with any component of the other space� either the

two spaces are not equal or the spaces are not connected� Both conditions are excluded by the initial

assumptions� This implies that there cannot exist a row or a column in the intersection matrix

whose elements are all empty intersections� hence the combinatorial cases in the matrix where this

case exists can be ignored�

����� General Reasoning Rules over Qualitative Spatial Relationships

In this section two general reasoning rules for the propagation of intersection constraints are presented

which govern the composition of spatial relations� Composition of spatial relations is the process through

which the possible relationship�s
 between two object x and z is derived given two relationships� R�

between x and y and R� between y and z� The rules are characterized by the ability to reason over

spatial relationships between objects of arbitrary complexity in any space dimension� These rules allow

for the automatic derivation of the composition �transitivity
 tables between any spatial shapes ���
 a

task considered to be a challenge to automatic theorem provers �����

Reasoning Rules

Composition of spatial relations using the intersection�based representation approach is based on the

transitive property of the subset relations� In what follows the following subset notation is used� If x�

is a set of components �set of point
sets
 fx�� � � � � xng in a space X� and yj is a component in space Y �

then v denotes the following subset relationship�

� yj v x� denotes the subset relationship such that� �xi � x��yj�xi �� �
 � yj��X�x��x� � � ��xn
 �

� where i � �� � � �n� Intuitively� this symbol indicates that the component yj intersects with every

set in the set x� and does not intersect with any set outwith x��

If xi� yj and zk are components of objects x� y and z respectively� then if there is a non
empty intersection

between xi and yj � and yj is a subset of zk� then it can be concluded that there is also a non
empty

intersection between yj and zk�

�xi � yj �� �
 � �yj � zk
	 �xi � zk �� �


This relation can be generalized in the following two rules� The rules describe the propagation of inter


sections between the components of objects and their related spaces involved in the spatial composition�

�



Rule �� Propagation of Non�Empty Intersections

Let x� � fx�� x�� � � � � xm�g be a subset of the set of components of space X whose total number of com�

ponents is m and m� 
 m� x� � X� Let z� � fz�� z�� � � � � zn�g be a subset of the set of components of

space Z whose total number of components is n and n� 
 n� z� � Z� If yj is a component of space Y � the

following is a governing rule of interaction for the three spaces X� Y and Z�

�x� w yj
 � �yj v z�
 	 �x� � z� �� �


� �x� � z� �� � � x� � z� �� � � � � � � x� � zn� �� �


��x� � z� �� � � x� � z� �� � � � � � � x� � zn� �� �


� � � �

��xm� � z� �� � � xm� � z� �� � � � � � � xm� � zn� �� �


The above rule states that if the component yj in space Y has a positive intersection with every component

from the sets x� and z�� then each component of the set x� must intersect with at least one component of

the set z��

The constraint xi � z� �� � � xi � z� �� � � � � � xi � zn� �� � can be expressed in the intersection matrix

by a label� for example the label a in the following matrix indicates x� � �z� 
 z�
 �� � �x� has a positive

intersection with z�� or with z� or with both
� A � in the matrix indicates that the intersection is either

positive or negative�

z� z� z� z� � � � zn

x� � a � a � �

If the process of propagating the intersections produced two constraints which overlap� for example�

x� � z� �� � � x� � z� �� � � x� � z� �� � ��


x� � z� �� � � x� � z� �� � ��


only the stronger one� ���
 in this case
 has to be represented� Similarly� if the constraint x� � z� �� � is

derived� then both constraints � and � need not be represented� However� they shall be replace by a 


indicating non
de�nite intersection�

Rule � represents the propagation of non
empty intersections of components in space� A di�erent version

of the rule for the propagation of empty intersections can be stated as follows�

Rule �� Propagation of Empty Intersections

Let z� � fz�� z�� � � � � zn�g be a subset of the set of components of space Z whose total number of components

is n and n� � n� z� � Z� Let y� � fy�� y�� � � � � yl�g be a subset of the set of components of space Y whose

total number of components is m and l� � l� y� � Y � Let xi be a component of the space X� Then the

following is a governing rule for the spaces X� Y and Z�

�xi v y�
 � �y� v z�
 	 �xi � �Z � z� � z� � � � � zn�
 � �


Remark� if n� � n� i�e� xi may intersect with every element in Z� then no empty intersections can be

�
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relationship between y and simple convex region z�
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Figure �� Intersection matrices for representing the spatial relationships in �gure � respectively�

propagated� Rules � and � are the two general rules for propagating empty and non
empty intersections

of components of spaces�

Note that in both rules the intermediate object �y
 and its space components plays the main role in the

propagation of intersections� Indeed� it shall be shown in the next example how the above two rules are

applied a number of times equal to the number of components of the space of the intermediate object�

Hence� the composition of spatial relations using this method becomes a tractable problem which can be

performed in a de�nite limited number of steps�

��� Example of Spatial Reasoning with Complex Objects

The example in �gure � is used for demonstrating the composition of relations using non
simple spatial

objects� Figure ��a
 shows the relationship between a concave region x and a region with a hole y and

��b
 shows the relationship between object y and a simple convex region z where z touches the the hole

in y� The intersection matrices corresponding to the two relationships are shown in �gure ��a
 and ��b


respectively�

Given that the possible set of relationships that can occur between x and z in a certain domain are as

shown in �gure 	� it is required to derive the possible relationships between these two objects given the

situation in �gure ��

The reasoning rules are used to propagate the intersections between the components of objects x and z
as follows� From rule � we have�

�



� y� intersections	

fx� � x�� x�� x�g w y� � y� v fz�g � x� � z� �� � � x� � z� �� � � x� � z� �� � � x� � z� �� �

� y� intersections	

fx� � x�g w y� � y� v fz�g � x� � z� �� � � x� � z� �� �

� y� intersections	

fx� � x�g w y� � y� v fz� � z�� z�g � x� � �z� � z� � z�� �� � � x� � �z� � z� � z�� �� �

� y� intersections	

fx�g w y� � y� v fz� � z�g � x� � z� �� � � x� � z� �� �

� y� intersections	

fx�g w y� � y� v fz�g � x� � z� �� �

Applying rule 
 we get the following�

� x� w fy� � y�� y�g � fy� � y�� y�g v fz� � z�� z�g x� has no empty intersections with components in Z�

� x� w y� � y� v fz�g � x� � z� � � � x� � z� � �

� x� w y� � y� v fz�g � x� � z� � � � x� � z� � �

� x� w fy� � y�� y�� y�� y�g � fy� � y�� y�� y�� y�g v fz� � z�� z�g x� has no empty intersections with compo�
nents in Z�

Re�ning the above constraints� we get the following intersection matrix�

z� z� z�
x� � 
 a
x� � � �
x� � � �
x� � � a

Comparing the resulting matrix above with the matrices in �gure 	� it can be seen that the result matrix
corresponds to two possible relationships between objects x and z� namely the relationships R� and R��

A di�erent conclusion is obtained if the relationship between objects y and z is as shown in �gure ��a

with a corresponding intersection matrix in ��b
� The composition of the relationships between x� y and
z in this case will result in the de�nite matrix in �gure ��c
 which corresponds to R� in �gure 	�

� Analysis of Related Issues

In this section the reasoning approach developed is going to be used to explain two interesting aspects
of the spatial reasoning process� namely� when are the composition de�nite or inde�nite and the process
of conceptual neighbourhood� Also� the reasoning approach shall be shown to be applicable to reasoning
in time�

��
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Figure �� Given the relationship between objects x and y as in �gure � and ��a
 and the relation between
the objects y and z as de�ned in �a
 and �b
 in this �gure the composition shall result in the de�nite
intersection matrix between x and z shown in �c
�

��� De�nite and Inde�nite Compositions

As seen from the previous example inde�nite compositions are those where the the result of the spatial
reasoning problem is a set of disjunctive spatial relations as opposed to one de�nite relation� On the
other hand de�nite compositions result in only one relation� In fact in composition tables� which hold the
results of reasoning between all the possible set of relations between the concerned objects� many of the
entries are disjunctive sets of spatial relations ���� ���� Using Rule � �x� w yj
 � �yj v z�
	 �x��z� �� �
�
the following observations can be made�

�� If either x� or z� consist of only one element� then the rule shall propagate a de�nite set of inter

sections� For example� if yj intersects the only element of x�� then this element of x� must have
a non
empty intersection with every element from the set z�� Also� if yj intersects with the only
element of z�� then this element of z� must have a non
empty intersection with every element from
the set x�� If this property holds for every component of the intermediate space Y then the com

position must result in a de�nite relation� An example of this case is the composition of the inside
relationship between two simple convex polygons � inside�A�B
 � inside�B�C
	 inside�A�C


�� On the other hand� if at least one yj of the space Y has a non
empty intersection with non
singleton
sets x� and z�� no de�nite intersections are propagated �i�e� x� � z� �� �
� If after the application of
the reasoning rules this result still holds� then the composition shall produce a non
de�nite set of
disjunctive relations�

�� If in rule � x� is X and z� is Z� i�e� �X w yj
 � �yj v Z
� no distinguishing constraints can be
propagated from the component yj � as this case is an expression of the �rst general constraint in
section ������

�� If in rule � x� is an in�nite component and z� is an in�nite component� then the rule becomes an
expression of the second general constraint in section ������ i�e� no distinguishing constraint will be
propagated�

	� If all the propagated intersections for the set of components of the intermediate space are either of
type � or � above then the composition results in the universal relation �disjunction of set of all
possible relationships
 
 since the only constraints propagated are the general ones� An example
is the compositions� overlap�A�B
 � overlap�B�C
 and disjoint�A�B
 � disjoint�B�C
 for two
simple convex polygons�

��



��� Conceptual Neighbourhood

An observation made by Freksa ���� on examining the temporal composition table derived by Allen ���
is that the table entries which are a disjunctive set of relations are always sets of relations which are
conceptual neighbors� �Two relations between pairs of events are conceptual neighbors if they can be
directly transformed into one another by continuous deformation �i�e�� shortening or lengthening
 of the
events ������ The same observation was made for the composition tables derived in the spatial domain
���� and this property was utilized in making the reasoning process more e�cient�

However� there was no explanation on why this phenomenon occurs ����� In this section the reasoning
formalism developed shall be used to give an explanation on phenomenon of the conceptual neighbour

hood�

When two spatial relationships are conceptual neighbors� the transition between the two relationships
involves changing the intersection between one �or more
 component xi and another zj in one relationship
to the intersection between the same component xi and another zk in the other relationship where zj is
connected to zk�

The initial assumptions in our formalism states that all the components of the objects and the space are
dense and connected� Hence� from the rule �� if yj v x�� and yj is connected then all the elements of x�

must be connected� The same applies to yj v z� and hence the elements of z� must also be connected�
Rule � states that x� � z� �� �� This fact means that any element of x� can intersect only with connected
element�s
 of z� and vice versa�

In the case where the result of the composition is the possible intersection of one element xi of x� to more
than one element of zj � zk of z

�� the intersection possibilities �i�e�� �xi� zj �� �
� �xi� zk �� �
� �xi� zj ��
� � xi � zk �� �
 must yield relationships which are conceptual neighbors since� zj is connected to zk�

The following example illustrates the above argument� Consider the composition of the relationships
between simple convex regions in �gure �� By applying the reasoning rules we have that x�� �z�
z�
 �� �

z� is connected to z� and thus the possible relationships from this composition are conceptual neighbors
as shown in �gure ���

The only case where a composition may yield a disjunction of relationships which are not conceptual
neighbors is when one or more components of the intermediate object are not connected� This case was
given in Bennett ��� and is shown in �gure �� where it was used to illustrate an unexplained property of
the conceptual neighbourhood�

��� Applying the Reasoning formalism in the Temporal Domain

Consider an event e in an event space E as shown in �gure ��� e can be decomposed into the following
components� s� its start� f � its �nish� t� its duration� The event space E is composed of e and p�� a
semi
in�nite line representing the past of e and f�� a semi in�nite line representing the future of e� The
connectivity matrix for E is as shown in �gure ���b
�

The relationship between two events can be represented by an intersection matrix� For example the
overlap relationship in �gure �� can be represented by the matrix in the same �gure� Both the general
space constraints in section ����� are also applicable in the temporal domain� In the above example�
f�� � f�� �� � and p�� � p�� �� �� i�e� the future as well as the past of any two events must intersect�

The two reasoning rules proposed are also applicable in the temporal domain� For example� consider the
composition of the two relationships� overlap�e�� e�
 and overlap�e�� e�
 as shown in �gure ��� Applying
the two reasoning rules over the above matrices as in section ���� we get the result matrix in �gure
���a
 which can corresponds to one of the three relations in �gure ���b
� The 	 conclusions in ��� are
also applicable in the temporal domain �e�g� the composition of before�a� b
 and after�b� c
 giving the
universal relations as explained by conclusion 	
�

��
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Figure ��� �a
 An overlap relationship between two events� �b
 adjacency matrix corresponding to the

relationship in �a
�
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Figure ��� Result of the composition in �gure �� is a set of disjunctive relations before�e�� e�
�meet�e�� e�


or overlap�e�� e�
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� Approaches to Spatial Reasoning

Two general approaches for deriving the composition of spatial relations can be identi�ed� namely� tran�
sitive propagation and theorem proving�

� Transitive propagation� In this approach the transitive property of some spatial relations is utilized
to carry out the required reasoning� This applies to the order relations� such as before� after and
����� �
 �for example� a � b � b � c 	 a � c
� and to the subset relations such as contain
and inside �for example� inside�A�B
 � inside�B�C
	 inside�A�C
� east�A�B
 � east�B�C
	
east�A�C

�

Transitive property of the subset relations was employed by Egenhofer ���� ��� for reasoning over
topological relationships� Transitive property of the order relations has been utilized by Mukerjee
� Joe ����� Guesgen ����� Chang � Lu ���� Lee � Hsu ���� and Papadias � Sellis ����� The latter
proposed a picture algebra based on ordered relations of projection of objects�

Although order relations can be utilized in reasoning over point
shaped objects� they cannot be
directly applied when the actual shapes and proximity of objects are considered� In this case
spatial factors such as shape� size� and proximity of the objects disrupt the strict order on which
the precise reasoning is based and hence the derivation of the composition of spatial relationships
is no longer a systematic process in this case�

� Theorem proving �elimination
� where reasoning can be carried out by checking every relation in the
full set of sound relations in the domain to see whether it is a valid consequence of the composition
considered �theorems to be proved
 and eliminating the ones which are not consistent with the
composition�

Bennett ��� have proposed a propositional calculus for the derivation of the composition of topo

logical relations between simple regions using this method� However� checking each relation in the
composition table to prove or eliminate is not possible in general cases and is considered a challenge
for theorem provers �����

In this paper the transitivity property of the subset relations is used for the development of the general
spatial reasoning rules�

� Conclusions

A general approach for spatial reasoning is proposed� The approach consists of a set of two general
constraints to govern the spatial relationships between objects in space� and two general rules to propagate
relationships between objects in space� The following conclusions may be drawn�

� The reasoning process is general and can be applied on any types of objects with random complexity�

� The approach is simple and is based on the application of two rules for the propagation of empty
and non
empty intersections between object components�

� Conditions where de�nite and inde�nite compositions result are identi�ed�

� The reasoning method was used to explain the phenomenon of the conceptual neighbourhood�

� The approach was shown to be applicable in the representation and reasoning over events in the
temporal domain�

Finally� the method is applied in a �nite known number of steps �equal to the number of components of
the intermediate objects
 which allows its implementation in spatial information systems�

�	
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