
Pefgamon hfomation Systems Vol. 20, No. 3, pp. 185-211, 1995

0~06-437~(95)00009-7
Copyright@ 1905 Else&r Science Ltd

Printed in Great Britain. All rights reserved
0306-4379/96 $9.50 + 0.00

DESIGN AND IMPLEMENTATION OF ROCK & ROLL:
A DEDUCTIVE OBJECT-ORIENTED DATABASE SYSTEM+

MARIA L. BARJA, ALVARO A.A. FERNANDES, NORMAN W. PATON, M. HOWARD WILLIAMS,

ANDREW DINN and ALIA I. ABDELMOTY

Department of Computing and Electrical Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK

(Received 30 May1994; in final revised form 10 January 1995)

Abstract - This paper presents an approach to the development of a deductive object-oriented
database system, describing the key design decisions and their consequences for implementation. The
approach is novel, in that it integrates an object-oriented database system manipulated using an
imperative programming language (ROCK) with a logic language for expressing queries and methods
(ROLL). The integration is made seamless by deriving both the imperative and logic languages from a
single formally defined data model, thereby avoiding impedance mismatches when they are integrated.

Key words: Deductive Object-Oriented Databases, Deductive Databases, Object-Oriented Databases,
Database Programming, Logic Programming.

1. INTRODUCTION

The two most prominent of the emerging approaches to database programming build upon the
deductive and the object-oriented paradigms. Both of these approaches have significant strengths.
Deductive databases (DDBs) have a formal basis in first order logic, support expressive declarative
querying, and benefit from substantial experience with query optimisation strategies. Object-
oriented databases (OODBs) support rich facilities for representing both structural and behavioural
information, are normally associated with computationally complete programming languages, and
are suitable for use in a range of applications where relational database systems have been found
to be inappropriate. However, both of these categories of system also have weaknesses. Deductive
databases lack expressive data structuring mechanisms, and normally support limited facilities for
update or I/O. Object-oriented database systems are rarely based upon formal semantic models,
and often lack declarative query languages. It would thus seem to be the case that deductive
databases and object-oriented databases have complementary areas of strength and weakness,
and that any system which can combine the two paradigms in a way which uses their respective
strengths to overcome their respective weaknesses would be an effective platform for a range of novel
and conventional applications. Such an endeavour has been recognised as worthwhile [2,43,271, but
is not straightforward without sacrificing certain of the characteristic strengths of either category
of system.

This paper presents the design and implementation of a deductive object-oriented database
(DOOD) which is built upon a formally defined data model described in section 3.1. This model
has been formally specified as a set of axiomatic first-order theories, from which has been derived
a corresponding set of Horn clauses. The object manager described in section 3.2 implements this
data model, although the rule-based formalism is in fact implemented as a set of persistent C++
classes. Two languages have been derived from this model, an imperative database programming
language described in section 4, and a logic query language described in section 5. The imperative
programming language is used to provide a syntax for defining object classes, for writing application
code as methods or free standing programs, and as the sole means of changing the state of the
database. The query language is a conventional first-order logic language which can be used
to define rules and to express queries over extensional databases which conform to the axioms
that constrain valid database states. The semantics of the logic language stem from a syntactic

tRecommended by Klaus R. Dittrich

185

186 MARIA L. BARJA et al

mapping onto function-free Horn clause programs presented in [23]. The integration of the logic and
imperative languages is presented in section 6, where it is shown how, and with what restrictions,
each language can call the other. Conclusions are presented in section 7.

.-_.

\
\ : r 00 Data Model

OM

Fig. 1: Relationship between the principal components in the architecture.

The object manager and imperative programming language are referred to as OM and ROCK
(Rule Object Computation Kernel) respectively. The logic language is known as ROLL (Rule
Object Logic Language). The relationship between the principal components is depicted dia-
grammatically in figure 1. This architecture is designed to support the synergy of the different
components: the logic language can be used to support those parts of an application which are
suitable for declarative rule-based expression; the imperative language can be used to support
updates, input/output, and the expression of algorithms normally written in a procedural man-
ner; both languages operate in the context of an expressive object-oriented data model which has
facilities comparable to those supported by a number of semantic data models.

A significant strength of the overall system is the conventionality of its individual components
- it has not proved to be necessary to alter the defining principles of the component paradigms or
to introduce any complex new concepts in order to achieve their integration. Thus the approach
adopted can be seen as a judicious blending of existing OODB, DDB and database programming
language technologies, to yield a system which provides effective support for advanced applications.
Novelty is thus more manifest in the methodology adopted than in the individual components which
have been implemented, although new results are presented regarding such issues as optimisation,
type inference and language integration.

The applicability of the ROCK & ROLL system has been evaluated in the context of a geo-
graphic database system application [l]. In this domain, the comprehensive modelling facilities
of OM have been used to support the structuring of complex geographic phenomena, the imper-
ative language ROCK has been used for expressing geometric algorithms and for populating the
database, and the logic language ROLL has been used to express derived relationships between
extensionally defined concepts. The absence or dilution of any one of these components would have
significantly impacted on the effectiveness with which this application could be supported.

To give a flavour of the overall approach, a definition of the type segment is presented in figure
2. The type definition indicates that segment is an aggregate of two points and that it has two
public methods print and follows which are implemented in ROCK and ROLL respectively. The
class definition gives code for the methods print and follows - print invokes the print method
of the two point objects from which the segment is constructed, and follows indicates that one

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 187

segment follows another if the second point of one is the first point of the other. Both methods are
statically type checked, can be inherited or overridden, and can be invoked from the same program
or interactively. The integration of the two languages is discussed in detail in section 6.

type segment

<pointi:point, point2:point)
interface:

ROCK: printo;
ROLL: follous(segment);

end-type ;

class segment

public :
print (>
begin

printQget_pointl; write ‘-->‘; printQget_point2; Write nl;
end

follous(segment)
begin

follous(OtherSegment)OThisSegment :-
get_point20ThisSegment == get_pointl@OtherSegment;

end
end-class

Fig. 2: Type and class definition for segment.

The platform which has been used to implement ROCK & ROLL is the EXODUS extensible
database system [13], and in particular the programming language E [42]. E is essentially a
persistent C++ system, and has been chosen because it directly supports the linked storage of
persistent objects, database indexing and transactions, thereby removing the need for such facilities
to be implemented from scratch for ROCK & ROLL.

2. CONTEXT

2.1. Related Work

Research into deductive object-oriented databases (DOODs) has been conducted using a range
of different strategies. The most radical departure from earlier work on deductive databases is
characterised by F-Logic [28], where a new logic language is proposed incorporating such object-
oriented features as inheritance and a notion of identity. The proposal is technically quite complex,
and it is far from clear how it could be implemented and taken as the basis of a practical database
system. For example, not only the language does not have all the functionality required for
application development, there is also no mention of a strategy, such as embedding or the use of
external functions, for achieving that functionality. In comparison with that of Datalog (and hence
with ROLL), the metatheory of F-Logic is significantly more complex to grasp. More importantly,
many desirable properties of Datalog are lost. For example, the low complexity of the unification
algorithm is threatened by the presence of set terms. Also, the feasibility of a theorem-proving
approach is reduced because inheritance is modelled by inference rules, which may adversely impact
on the efficiency of the proof procedure by introducing multiple choices as to which rule to apply
at each inference step. Finally, F-Logic is only structurally object-oriented. There is no attempt
to tackle the behavioural aspects that make object-orientation a distinctive paradigm.

A less radical approach is to extend the semantics of Datalog with facilities associated with
object-oriented databases (OODBs). This is the course taken in IQL+ [2] and Logres [ll, 121.
This general approach has the advantage that it can directly reuse earlier work on the design

188 MARIA L. BARJA et al

and implementation of deductive relational databases, but tends to lead to systems with limited
semantic data modelling facilities and logic language semantics complicated by the introduction of
updates.

For example, IQL+ (i.e. , the version of IQL in [2]) does not model sequences, does not cater
for multiple inheritance and has no behavioural inheritance. Its predecessors, IQL [4] and COL
[3] are more restricted, the latter being classifiable as non-first-normal-form relational, rather than
object-oriented. The latest version of IQL has only been given the fixpoint semantics of COL. Since
the language makes use of functions to model sets and tuples, and hence departs from Datalog in
a crucial way, it is not immediately clear what form the model-theoretic and procedural semantics
of the language will take. Although the metatheory of this language family is much closer to
that of Datalog than the metatheory of F-Logic, some loss of desirable properties can still be
detected, the most important of which are the lack of guaranteed termination which results from
the reintroduction of function symbols, and the lack of alternative equivalent semantics.

Another approach endeavours to reuse earlier work on deductive databases by developing a
mapping from a DOOD language onto an existing deductive database system which is used to
provide both a semantics for the mapped language and an implementation. Examples are the
Bertino-Montesi proposal [lo], OOLP+ [18], and OIL [46]. This is a practical route to the de-
velopment of DOOD systems, but tends to be associated with similar drawbacks to the extended
Datalog approach.

Of these three approaches, the work described here is most closely related to the mapping ap-
proach, in that the logic language has been formally defined by devising a mapping onto Datalog
in the context of an axiom set which characterises the data model. However, in our approach the
data model is a separately identifiable component supporting a wide range of semantic modelling
constructs (see section 3.1), and the mapping is from a logic language which has not been compli-
cated by the introduction of updates or control. Furthermore, broader applicability is obtained by
the mismatch-free integration with an imperative programming language. This approach results in
functionality that is at least as powerful as that provided by embedding of external-function calls,
with none of the associated impedance mismatches.

The need for an update mechanism in the logic language has been obviated by using a sepa-
rate language component for data manipulation. The approach of integrating different language
components in a database context has been explored before. In Glue/Nail [38] it is shown how an
imperative language Glue can be used to perform manipulation of the data stored in the deductive
relational database Nail. Although this approach has been influential in our work, the research
presented here is significant in that it brings together deductive, object-oriented and imperative
approaches via a common theoretical model, has a more comprehensive imperative language and
provides static type checking with type inference. More recently, Peplomd [19] has also taken this
two-language-component approach.

Further examples of integration include PFL [40], in which a deductive query language is
embedded in a lazy functional programming language, and Coral++ [43] in which C++ data
structures are made accessible from the deductive database Coral. Our approach differs from PFL
in the nature of the underlying data model and in the use of an imperative language alongside the
deductive component. The principal difference between ROCK & ROLL and Coral++ stems from
the fact that only in the former does a single underlying data model specify all the types that can
be accessed by the logic language and manipulated by the imperative language. This uniformity
is lacking in Coral++, where the types which can be manipulated by the logic language and the
imperative language overlap, but are not identical. As such, Coral++ can be seen as a coupling
of two language components, rather than an integration. Issues related to language integration
arising in this context are discussed in detail in [7].

The DOOD system presented here builds directly on earlier work on deductive databases [14]
and on database programming languages [S]. The logic language is conventional, in that it is both
first order and function free, and furthermore has not been extended with facilities for updates
or control. The database programming language is a conventional imperative persistent program-
ming language, with both extensional and intensional information stored in the database. The
integration of the two systems uses type inference to enable type-safe embedding, adapting earlier

Design and Implementation of ROCK 8z ROLL: A Deductive Object-Oriented Database System 189

work on type inference (351 for use in the deductive object-oriented context. The logic language is
optimised using an extension of static filtering [29], in which this technique has been revised for
use in the context of a richer data model. By building upon such a wide range of earlier research
activities, it has been possible to exploit prior theoretical and practical experience to yield a system
which is both pragmatic and formally sound. A more extensive review of approaches to the design
of DOODs is given in [22].

2%'. ROCK&ROLLasaDOOD

ROCK & ROLL embodies a number of design decisions specifically meant to preempt certain
semantic hurdles that have slowed progress in achieving an extension of the deductive paradigm
with object-oriented notions. The two most important of those decisions are:

1. To anchor ROCK & ROLL on an object-oriented model of structure and behaviour that
underpins, but is wholly independent of, its sublanguages. This decision guarantees that
multiple language components are inherently amenable to mismatch-free integration.

2. To form&se the model as a system of first-order logic. This decision guarantees that a clear
path exists with which to instill object-oriented notions into a logical query language.

Other pragmatic decisions are also essential in order to make ROCK & ROLL a realistic option
for advanced database applications, among which: the definition and manipulation sublanguages
are serviced by a storage layer tightly coupled to them in the context of orthogonal persistence;
all manipulation (including logical querying) is statically type-checked, and a type-inference mech-
anism takes most of the burden associated with this functionality; programmers retain as much
control as they want and if all control is delegated, i.e. if code is purely declarative, optimisation
is not hindered by impure features.

These decisions made it possible both to steer the implementation effort away from trouble
spots and to cover more ground than most comparable research projects. This implementation
effort has been concluded very recently and is being evaluated using an application in the area of
geographical information systems [l]. It is already possible to report that the resulting system,
besides being endowed with comprehensive and well-understood theoretical foundations, exhibits
more functionality that many alternative proposals, as follows:

l ROCK & ROLL provides a full object-oriented model of structural knowledge. This includes
rich mechanisms for the definition of collection types and complex types whose values possess
an identity distinct from their state. Thus, ROCK & ROLL offers more comprehensive
modelling facilities than deductive languages using complex values, based on non-first normal-
form relations such as HILOG [15] and Nested Datalog [16], or based on constructor functions
such as COL [3], C-Logic [17] or O-Logic [30].

l ROCK offers full support for explicit object creation, liberating ROLL from the need to
become involved in the special semantics of object creation that have to be tackled in LIVING
IN A LATTICE [25], O-Logic, and OIL [46].

l By axiomatizing their semantics, both collection types and complex types are handled within
the logic without the complications of grouping constructs, as present in tZ>C [371, and with-
out relinquishing finiteness of interpretation domains caused by the introduction of function
symbols to denote constructors, a problem faced by both F-Logic (and predecessors) and by
IQL+ (and predecessors).

l ROCK & ROLL provides a full object-oriented model of behavioural knowledge, in which
there is a clear distinction between the interface to and the implementation of a type. Few
proposals tackle this problem, of which ConceptBase [26] and LLO [33] are well-known exem-
plars. This is a necessary feature for a system to be classified as behaviourally object-oriented,
and has origins in the notion of abstract data types. In a DOOD context, it implies devising
ways of distinguishing within the database theory the declaration that instances of a type will

190 MARIA L. BARJA et al

respond to certain operations and the implementation, by deductive rules or otherwise, of
those operations. This gives rise to the notion of encapsulation, and is a significant departure
from deductive databases over a relational data model.

l ROCK & ROLL supports overriding and dynamic (or late) binding of methods. Any method
can be implemented using ROCK. However, if a method is dominated by data retrieval, it
will probably be best implemented in ROLL, insofar as it would undergo optimisation (once,
at compile time) with a potential gain in efficiency that would be harder to achieve using
ROCK. A distinctive feature of ROCK & ROLL is that a method implemented in ROLL
abides by encapsulation, and may be overridden and late-bound just as if it had been written
in ROCK. Attempts to model one or more of encapsulation, overriding and dynamic binding
in F-Logic and in IQL+ are not as intuitive and not as integrated as in ROCK & ROLL.

a Most proposals for DOODs ignore the provision of facilities for control resembling those of
imperative programming languages. Exceptions to this are IQL+ and Logres. ROCK also
provides a comprehensive set of control facilities. ROLL does not lose declarativeness, and
the evaluation of ROLL-coded methods is not disturbed by the fact that ROCK evaluation is
under control of the programmer. In this way, maximal opportunities are preserved both with
respect to optimisation and to freedom in the choice of whether to evaluate an invocation
bottom-up or top-down

l With respect to effecting state transitions, a well-known idea used both in the various lan-
guages defined by [5] and in Logres is to introduce transition-effecting annotations in the
heads of rules. However, handling state transition directly in the rules makes them non-
declarative. This precludes many optimisation opportunities and incurs the penalty of possi-
bly non-terminating programs. In ROCK & ROLL, state transitions are performed with full
imperative control; retrieval of data in a single state can be done imperatively or declaratively,
at the discretion of programmers.

l ROCK & ROLL provides full structural and behavioural inheritance (possibly multiple) for
subtyping and subclassing, allowing, on the one hand, the specification of constraints on the
inclusion relationship between sub- and superclass, and, on the other, catering for overriding
of overloaded methods through late-binding. This is more expressive than any other DOOD
proposal, and has again been achieved through axiomatization, at practically no additional
cost in terms of a more complex semantics (as, for a contrast, is the case with F-Logic).

l ROCK & ROLL provides static type-checking and SML-like type inferencing [35] for both

language components in both directions of embedding - type inferences flow from ROCK to
ROLL, and vice-versa. No other proposal for DOODs (compare, e.g. IQL+ and Coral++) is
nearly as flexible or comprehensive in its treatment of typing.

l There is no type-system or evaluation-strategy impedance mismatch in ROCK & ROLL: every
ROCK defined type can be used in a ROLL query, and vice-versa; also, the result of evaluating
a method call in ROCK can be passed to a ROLL query, and vice-versa. In both cases no
intermediate type-conversion is required of the programmer. No other DOOD proposal offers
this functionality. Some provide no foreign-language interface (e.g. F-Logic), some (e.g.
IQL+) provide hooks that may incur impedance mismatches, yet others (e.g. ConceptBase
and Coral++) provide some smoothing out of conflicts, but only unidirectionally.

l Finally, ROCK & ROLL is fully implemented as a persistent-programming environment.
Only two other DOOD proposals are known to us to be implemented, viz. ConceptBase and
Coral++.

These contrasts demonstrate that ROCK & ROLL contributes a strategy for paradigm inte-
gration that is both more general and encompasses more functionality from each paradigm than
proposed alternatives. In particular, it shows that trying to handle too much on one arm of the

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 191

scale may be self-defeating, and that novel ways of using proven techniques can do much better
than one would at first expect.

Methodologically speaking, ROCK & ROLL achieves its result by synergy. Its component parts
in isolation are less daring than their counterparts in other proposals, but the whole is revealed to
be harmonious and, most definitely, greater than its parts.

3. THE DATA MODEL (OM)

3.1. Design of the Data Model

This section gives an informal overview of the concepts used to model an application domain
both structurally and behaviourally. The object-oriented model informally described below has
been formalised in [23] as a class of first-order theories [34] called object theories (OTs). For each
application domain D, an OT is an applied first-order theory whose language is fully determined
by the constant symbols used to denote entities of interest in D. Predicate symbols are fixed
for all OTs and denote semantic-modelling relationships as well as unacceptable configurations of
declared facts. An OT A comprises three subsets: a set of ground tioms A(D) that represent
D at both schema- and instance-level, a set of modelling axioms M that characterise implicit
information deducible from A(D), and a set of ezceptaon axioms E that characterise unacceptable
configurations within A(D). An object-oriented database (OODB) A’ can then be formally defined
as an interpretation of an OT A = A(D) U M U E such that all axioms in M are true in A’ and all
axioms in E are false in A’. Axioms in A(D) are assumed to be true by definition.

As an example, the following axioms specify the origin and transitivity of the is-a relationship:

(Vzyz)(speciaZizatianof(z, y) V generalization-of(y, X) V partitionedby(y, z) =S is_a(s, y))

(Vsyz)(is-eG Y) A isa(y, z) =+ is_u(z, .z))

As described in detail in [23], any OT can be recast as a Horn theory (241, thus extending
conventional OODBs with a logic-programming style of deduction that has the classical declarative,
operational and fixpoint semantics of [21]. An informal description of the formalism is now given.

The model distinguishes between primitive typpes and object types. There is a fixed set of
primitive types supported by the system, namely integer, real, string and boolean. An instance
of a primitive type is called a primary object, and is denoted by its value.

An object type is defined by the user to model some aspect of an application domain, Examples
of such types in a geographic information system are landparcel, road and polygon. An object
type may be defined in one of two ways. Firstly, and somewhat trivially, an object type may
be defined as taking primary objects as its instances, in which case the object type acts as an
application-specific synonym for the primitive type. Secondly, and more interestingly, an object
type may be used as a conceptual model of some part of the application domain. An instance
of an object type is called a secondary object, and is named by a unique object identifier (oid). A
secondary object is simply called an object in the rest of this section.

The state of an object comprises references of up to three kinds. First, and foremost, an object
refers to, or is an instance of, one or more object types t. Second, depending on the structure
determined by the types of which it is an instance, an object refers to objects, secondary or not,
as values of its properties. Third, again depending on its types, an object may refer to objects,
secondary or not, as its construction elements. As an example, consider an object named by the
oid ! 1. It is assigned to object type road. As its roadName property it refers to “M8”. Finally, as its
component elements it refers to roadsegments ! 5, ! 12, and ! 3, where the nature of the relationship
with its components is described using the structural abstraction mechanisms described below.

The basic abstraction mechanisms available to model real-world entities in the application
domain are:

tAn object is directly assigned a single type when it is created, and is associated with additional types by
inheritance.

192 MARIA L. BARJA et al

l Classijication, which declares that an object is an instance of some object type.

l Specialisation, generalisation, and partition, which are used to place object types into the
abstract structure known as the is-a hierarchy. Specialisation and generalisation differ only
in that specialisation places an object type in the hierarchy in terms of previously-defined
supertype whereas generalisation does so in terms of previously-defined subtype(s). Parti-
tion is a special case of generalisation with the additional constraint that the extensions of the
subtypes are disjoint. Multiple inheritance from more than one supertype is also supported.

The structural abstraction-mechanisms available to model real-word entities in the appli-
cation domain have the following characteristics:

l Attribution declares, for an object type t, which object types name properties oft. In other
words, if t has a property t’, the value oft’ in the state of t is an instance of t’. For example,
assume that roadName is a property of road and that the object identified by ! 5 is an instance
of road, then ! 5 contains in its state a reference to the primary object identified by “M8”, as
the value of its property roadName.

l Association, sequentiation, and aggregation determine how an instance of an object type is
constructed from instances of other object types. An object type is said to be constructed
from another when an instance of the former will contain in its state a number of construction
references to instances of the latter. The three abstraction mechanisms are:

- association, in which the constructed object references an unordered set of component
objects (e.g. a road is constructed as an association of roadSegments).

- sequentiation, in which the constructed object references an ordered collection of com-
ponent objects indexed by the natural numbers (e.g. a polygon is constructed as a
sequence of Segments).

- aggregation, in which the constructed object references one or more component objects
by the set of types which are the coordinates of the aggregation. As a result, aggrega-
tions have the same properties as records in programming languages (e.g. a Segment is
constructed as an aggregation of two Points).

The separation of the construction of an object from its attributes makes explicit a distinction
between the fundamental characteristic of an object and its other structural features.

The single behavioural abstraction-mechanism available to model real-word entities in the
application domain is called an operatiok An operation has two detached components: an interface
and an implementation, the latter expressed as code in ROCK or ROLL. An operation interface
defines that an operation name abides by an operation signature in the context of an object type.
This behavioural model allows for the overloading of operation names with respect to interfaces and
implementations. The detachment of interfaces and implementations induces the notion of object
class. To every object type there corresponds one and only one object class with identical name.
An object class declares a single operation implementation or method for every operation interface
declared in the object type corresponding to the class. Methods are defined in a framework which
supports overriding, and late-binding is used to select the most specialised definition which is
applicable to the message recipient. A most specific implementation is guaranteed to exist and to
be unique by a well-formedness constraint on the declaration of object types. Concrete examples
of type and class definitions are given in section 4.

Schema diagrams for the data model can be constructed using the following notation. Sec-
ondary object types are represented using rectangles, and primary object types using ellipses.
Labelled directed edges represent modelling features thus: 0 - attribution, @) - generahsation,
@ - partition, Q - specialisation, @ - aggregation, @ - association, and @ - sequentiation. An
example which uses this notation to describe part of a geographic database is given in figure 3.

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 193

I publicRoad

Fig. 3: Schema diagram for a fragment of a geographic database

3.2. Implementation of the Data Model

The data model is supported in E by two principal class hierarchies which describe OM types
and instances respectively. For example, the main E classes used to describe the intension of a OM
database are presented in figure 4. The E class m-Type has attributes which store the name of the
OM type, descriptions of its attributes, references to supertypes/subtypes, a list of instances, and
a collection of indexes into the set of instances. There is also a collection of member functions for
creating OM types, adding attributes, deleting indexes, etc.

m_Association m_Sequmtiation m_Aggmgation
m_GmundedOn

Type

Fig. 4: E classes for describing OM types

Instances of OM types are described using a separate hierarchy of E classes which shadows
the hierarchy in figure 4. The E class m-Instance has attributes which reference its m-Type, its
attribute values, and the m-Instance objects which describe the OM object in different roles (for
example, a privateRoad object which is also a road (because privateRoad is-a road) would be
represented by two m-Instance objects).

To give a flavour of the interface to the object manager, the following E code fragment iterates
over the instances of the type pointed to by T:

194

m-Type *T;

m-Instance *I;

. . .

m_lnstance_lter iterator =

while (I = iterator.next())

// operations on I

. . .

MARIA L. BARJA et al

T- >getall_instances();

{

In the above, T is a reference to an OM object type definition, and I is a reference to an OM
instance object. The E object iterator is an instance of the E class m_lnstance_lter, which enables
iteration through the extension of a type, in this case T. In the while loop test, I is assigned a new
instance of T in each iteration, as a result of the invocation of the next operation on iterator.

It can be seen from the above that the object model is essentially implemented as a collection of
abstract data types which support primitive operations on OM types and instances. An example
of how the object manager is invoked from the ROCK interpreter is presented in section 4.2.

4. ROCK

4.1. Design of ROCK

The database programming language provides an environment in which both persistent and
transient data are created and manipulated in a uniform way. By integrating ROCK with the logic
language ROLL described in section 5, this programming environment is further enriched with
declarative querying and method definition facilities, as described in section 6. ROCK is based on
the data model described in section 3, and is an imperative object-oriented programming language.
It supports strong compile time type checking which offers advantages such as software integrity,
consistency and efficiency.

ROCK can be regarded as the conjunction of a data definition language for schema declarations,
and a data manipulation language that allows operations to be performed on the objects stored
in the database, The types which can be defined using the data definition language are exactly
those which are supported by the data model described in section 3.1. The data manipulation
language provides powerful constructs for processing such data, and as such is the vehicle for
the development of application code through support for the creation, manipulation and explicit
deletion of objects. The facilities available for data manipulation include:

the object creation operator new

assignment

I/O operations (read, write, . . .)

control structures such as selection (if . . . then . . . else), iteration (while, f oreach) and
blocks (begin . . . end). The f oreach construct provides for iteration over the instances of
a class or over the elements of an association or sequentiation.

All control structures have a mode of operation in which they return an object, or a set of
objects in the case of the iterative constructs.

Operations on objects are classified into two groups: built-in (or system generated) and methods
(or user-defined). The model of computation adopted in both cases is the messaging one, where
the symbol “@” is the message sending operator. The message recipient is an object expression.
An object expression is an expression in the language which evaluates to an object. For example,
the following expression assigns to the variable s the StartJunction of the roadSegment rs.

s := get_startJunction@rs

Method calls can be nested, and inside a method messages can also be sent to self and super.
Support for encapsulation is strict, i.e. the structure of objects can only be accessed through
operations, whether system-generated or user-defined.

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 195

l System-generated operations

For each property attributed to a type and for each coordinate in an aggregate construc-
tion, the compiler generates a pair of methods whose names are those of the corresponding
property/coordinate prefixed respectively by get- and put-. These methods allow the ob-
ject referenced by a property/coordinate to be retrieved or updated, and their visibility is
determined by that of the corresponding property/construction.

l User defined operations

User defined operations are given in the form of methods. Methods have a visibility which
is either public or private. Methods that are private to a class can only be invoked from
other methods attached to that class. The signatures of public methods are defined in the
interface part of the corresponding type definition.

To illustrate class and method definition as well as the use of built-in operations, consider the
definition of classes roadsegment and road, whose structures are as defined by the types depicted
in the schema diagram in figure 3. Both classes define a public method length which computes
the length of the roadsegment and the length of the road (i.e. a set of roadsegments), as shown
in figure 5.

4.1.1. Semantics

The semantics of ROCK is fully defined in [8] using Structural Operational Semantics [39, 451.

Structural operational semantics describes how each individual step of a computation takes place
by defining a transition system whose steps describe the evaluation of programs. Inference rules
are used to describe the axioms of a transition system, and propagation of information is achieved
by pattern matching.

This formalism is used both for describing the static semantics of the language, as well as the
dynamic semantics by syntax directed rules. The static semantics of the language is given by
means of a set of type rules. These rules are used to derive semantic properties of phrases in the
language, and form the basis of a type inferencing mechanism. They define how to check the type
of a phrase as a result of type checking its components, as well as the compatibility of types. The
dynamic semantics of the language takes the form of a set of state transition rules which precisely
define the evaluation of expressions and statements.

4.1.2. Model of Persistence

The model of persistence supported by ROCK defines classes as the unit of persistence, and
therefore provides for the persistence not only of data but also of code. The type definition
corresponding to a persistent class persists along with the class, and the instances of persistent
classes also persist. Persistent class and type definitions do not need to be rewritten in a program
which uses them in order to verify consistency - it is only necessary for a program to name the
persistent environments in which the appropriate information is stored. Other classes and types
referenced from a persistent class or its associated type must be persistent in the same persistence
environment. The support for persistence is uniform, that is the degree of persistence of the objects
manipulated by a program does not affect the ways in which the objects can be manipulated.

4.2. Implementation of ROCK

The creation, modification and retrieval of data is achieved by the ROCK interpreter invoking
the object manager described in section 3.2.

Both the type checker and interpreter are structured in an object-oriented fashion. The imple-
mentation is based on a direct correspondence between classes in E and the syntactic constructs of
the language [9]. Thus, the class hierarchy defined in E mirrors the relationship between syntactic
categories defined for the language, where each E class defines its own methods for type checking
and evaluation. In this way, each node of the tree can type check and evaluate itself - syntax trees

196 MARIA L. BARJA et al

type roadsegment
properties :

StartJunction, endJunction;
interface :

ROCK: lengtho: real;
. . .

end-type ;

type road
properties:

roadName, roadType ;
C roadsegment I;
interface :

ROCK: lengtho: real;
. . .

end-type ;

class roadsegment
length0 : real
begin

var startj := get_StartJunctionQself;
var endj := get_EndJunction@self;
vax x-1 := get_xCoordinate@startj;
var y-1 := get_yCoordinate@startj;
vax x-2 := get_xCoordinate@endj;
var y-2 := get_yCoordinate@endj;
sqrt((x_1 - x-2)+*2 + (y-1 - y_2)**2)

end
end-class

class road
length<): real
begin

var len: real
len := 0;
foreach r in self do

len := len + length@r;
len

end

end-class

Fig. 5: Type and class definitions showing method implementation.

are traversed in an object-oriented fashion, by sending a message to the root which in turn sends
messages to its children and so on. For example, the foreach statement in ROCK can be used to
iterate over the instances of a class thus:

foreach <iter> in <class> do <statement>

The f oreach statement is represented as a node in the syntax tree, which is used to represent
the structure of a program internally. This tree is modelled as a hierarchy of E classes, as depicted
graphically in figure 6. Member functions associated with each node of the tree are then used
to support type checking and evaluation of statements. For example, in figure 7, the member
function TypeCheck verifies that the class to be iterated over is in scope, and if so it records that
the variable iter is of class classid. The type checking process then continues through the invocation
of the TypeCheck member function on the statement.

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 197

AssignStat controwat

ForeachStat I

Fig. 6: Class hierarchy for representing programs internally.

The iteration process facilitated by foreach is implemented by the Eva1 member function also
shown in figure 7. This member function calls the object manager to get-all_instances of the class
classid, via an iterator called theinsts. The statement is then evaluated for every object instance in
the class.

This implementation strategy has allowed a close correspondence to be maintained between the
formal specification of the language and its implementation as object classes, and has the added
advantage of facilitating the addition and removal of language constructs.

5. ROLL

ROLL is the logic language of the ROCK & ROLL DOOD system. As such, ROLL is not
intended to be used in isolation for supporting complete data intensive applications. As a result,
a comparison of ROLL with other deductive database languages could lead to the conclusion that
ROLL is somewhat spartan. This is because ROCK is the sole vehicle for performing certain tasks
in ROCK & ROLL, whereas in single-language systems (such as J~C [37] or Coral[41]) the logic
language must support all the requirements of an application. In ROCK & ROLL certain tasks
can be performed by both ROCK and ROLL, but the area of overlap is restricted to the retrieval
of data from the database. ROLL contains no facilities for building new objects, changing existing
objects, or expressing control. The advantage of this approach is that the semantics of ROLL is
straightforward compared with certain other deductive database languages, which makes ROLL
easier to learn and implement. ROLL could certainly be extended with additional features by
following the example set in earlier deductive relational database systems, but this would serve
only to extend the range of functionalities supported by both ROCK and ROLL. It is possible that,
in future, certain extensions will be made to ROLL which reduce its dependence upon ROCK for
complex applications, but decisions as to which extensions, if any, are most appropriate await
further experimentation with the present system.

5.1. Design of ROLL

ROLL is a Horn clause language. Familiarity with the latter subclass of first-order languages
is assumed at the level of [14].

The domain-dependent subset of the ROLL alphabet consists of constant symbols and predicate
symbols. The ROLL alphabet is function-free. The set of constant symbols is the set of values of
primitive types (e.g. 5, “Edinburgh”, true). Note that there is no need for object identifiers to
appeclr as constant symbols in ROLL expressions, as specific objects are either passed into a ROLL
expression from ROCK, or are retrieved from the extensional database.
II 20-3-l

198 MARIA L. BARJA etal

class ForeachStat: public ControlStat {

IterIdent iter;
ClassId classid;
Stat *statement;
. . .

public:
void TypeCheckO;
void EvalO;

void ForeachStat :: TypeCheck {

. 9 .
if ((ClassesStack - > Find(classid))

ObjNameStacb - > Pushciter, classid);
else TError(this. "Undeclared class"). s

statement - > TypeChecko;
. . .

1

void ForeachStat :: Eva10 {
. . .
m-Instance* instance;
m_AttVal* obj = ValuesStack - > Findtiter);

mJnstance_Iter theinsts = Getsa_Type(classid) - > Eet_allinstances();

while (instance = theinsts.nextO)

{
obj - > PutValue(instance);
statement - > EvalO;

Fig. 7: Example type checking and evaluation member functions for ROCK

The set of predicate symbols is the set of operation names declared by operation interfaces. It
follows that ROLL queries abide by strict encapsulation.

A ROLL term -r is either a ROLL constant or a (logical) variable. A ROLL atom has one of

the following forms:

1. P(n,. . * , T&a(Y

2. P(n,..., T73_l)@a == 711

where ,f3 is an (n + 1)-ary ROLL predicate symbol, each T;, 1 5 i 5 n, is a ROLL term, and (Y is a
ROLL term appearing as the (n + l)-th argument of ,f3.

The first form is used when the operation /3 is implemented in ROLL, which requires no distinc-
tion to be made between input and output parameters. A ROLL atom of the above form is read
as “send the message p with the arguments ri, . . . , r,, to the object 12’. An operation interface
p : Tl x . . . x T, is assumed to be defined, such that each ri denotes an instance of T,!, where T,!
5 Ti, where 5 denotes type subsumption.

The second form is used when ,L? is implemented in ROCK, where the (optional) result is
explicitly distinguished from any input parameters. An operation interface @ : TI x . . . x T,,_l + T,.,
is assumed to exist, such that each ri denotes an instance of T,!, T,f 5 T;. In this case, the result
of evaluating the ROCK method /3 with the given parameters is unified with r,,. If n = 0 then

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 199

P@Q z&f p()Ocr. The above forms exist to support the integration of ROCK & ROLL, as
discussed further in section 6.

A ROLL atom can be negated, using the me&logical symbol ‘I’, hence negation is allowed,
either in queries or in rule bodies. The semantics for negation that is implemented in the ROCK &
ROLL system is stratified semantics. Alternatives such as those discussed in [44], e.g. well-founded
models, stable models, modularly stratified semantics, are also admissible in the context of ROLL
but, for the purposes of implementation, are either plagued by anomalies or cannot be computed
in acceptable time (for details on both these problems, see [44]).

A ROLL clause is a disjunction of literals of which at most one is positive. A clause containing
a single literal is called a unit clause. The notion of a ROLL fact (a positive unit clause) though
well-defined [23], is not relevant in the context of the ROCK & ROLL system because the asserted
facts that describe the state of an object at any point in time are encapsulated and are only made
available in computations as responses to message-sends. A ROLL rule is a clause with exactly
one positive literal and with at least one negative literal. The positive literal is referred to as
the head, the set of negative literals is referred to as the body. Finally, a ROLL query is a clause
containing negative literals only. The usual convention is followed of rewriting a clause as a reverse
implication, i.e. head ‘ : -’ body, and replacing disjunctions by commas.

5.1.1. Example Query

The following is an example of a ROLL query which retrieves as bindings for L all available
landParcel objects connected to the particular landParcel represented by ! yt. The operator ==
denotes unification.

connected(! y)OL, get_availability@L == “yes”

5.1.2. Example Rules

The following example rules implement the connected relation referred to in the above query.
The rule for adjacent defines a binary relation between polygons, while connected defines the
transitive closure of this adjacency relation.

adjacent(PolyB)OPolyA :-
PolyA 0 PolyB.
get_member@PolyA == Segment,
getslember@PolyB == Segment;

connected(PolyZ)OPolyA :-
adjacent(PolyZ)OPolyA;

connected(PolyZ)QPolyA :-
adjacent(PolyB)OPolyA,
connected(PolyZ)aPolyB;

In practice, although the notion of a ROLL program as a finite set of ROLL clauses, is well-
defined [23], it is not relevant in the context of the ROCK & ROLL system because, in the
integrated language, programs are defined in the context of classes as methods, using the syntactic
form described in section 6.2.1.

5.2. Implementation of ROLL

Although ROLL operates over a more expressive data model than conventional deductive
database languages, it is based on first-order Horn clauses. This allows the implementation of
ROLL to build upon earlier work on query optimisation and evaluation in deductive relational
databases, as surveyed in [14]. The presence of more comprehensive modelling constructs than in
earlier deductive database languages impacts on the optimisation and evaluation processes thus:

tNote that the ! indicates that a ROCK program variable y is supplied as input to the query which generates
bindings for the logic variable L.

200 MARIA L. BAIWA et al

Optimisation: Increased information is available on the types of values that can be stored in
variables, and access paths to objects are navigational rather than value based.

Evaluation: Object-oriented behavioural features such as overriding impact upon the flow of
information at runtime, and value-based joins are largely replaced by navigational exploration
of the object base.

While different optimisation strategies (e.g. magic sets, query-subquery) could potentially be
adapted for use with ROLL, the strategy adopted is based upon static filtering [29], adapted
in a way that supports new kinds of constraints on logic variables. The evaluation strategy that
has been implemented executes queries bottom-up using a graph structure which is essentially an
object algebra.

As different evaluation strategies seem to be be most suitable for different types of query,
we have also designed a top-down evaluation strategy based on an extended form of the Warren
Abstract Machine (WAM) [20]. As this has not yet been implemented, it is not described further
here.

5.2.1. Bottom-Up Evaluation of ROLL

The principal evaluation strategy for ROLL is bottom-up, and enables the use of bulk operations
which trawl the database or operate over highly interconnected sets of objects. It is based around
a modified form of Processing Zkee aa defined by [32]. This is a form of query execution plan which
represents query evaluation by means of dataflows. Processing Trees are constructed from System
Graphs [29] which are an internal form used to represent a parsed query and the underlying ROLL
rules which implement it.

An approach based on Static Filtering [29] is used to perform global optimisation of Processing
Trees prior to execution. In Static filtering, constraints appearing within a query are propagated
down through the Processing Tree. In certain circumstances a constraint appearing in a calling
rule may be moved into the called rule, allowing it to be applied earlier. A typical example is
where a binding from a query argument is propagated down the graph as a binding constraint.
This allows the combinatorial explosion of goal solutions to be nipped in the bud.

After static filtering, a second stage of Processing Tree optimisation attempts to reorganise
nodes within a given section of the tree. A heuristic search is used to consider alternative order-
ings for bulk operations in the processing tree. A cost estimate is used to compare alternative
arrangements for each tree section and this cost is used to control the search process. This part of
the optimisation process works from the bottom of the tree upwards, using the best cost estimate
for subordinate tree sections as inputs to the cost function for the parent tree section.

The stages in the ROLL compilation process are as follows:

Parsing of methods and queries.

Type-checking of methods and queries.

Construction of system graphs for each method and query.

Verifying stratification of negated goals in system graphs.

Construction of processing tree from each system graph.

Global optimization of each processing tree.

Local optimization of each processing tree.

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System

5.2.2. System Gmphs

201

A System Graph is a form of rule-call graph rooted at a query. Nodes in successive levels
of the tree alternate between god nodes aud constraint nodes. In the context of RDBs, goal
nodes correspond to intensional predicates or stored relations. Constraint nodes represent rulea
implementing intensional predicates; they are linked above to the goal they define and below to
the goals they call; they also mention constraints, restrictions on goal solutions such it9 equalities
or bindings of arguments.

f \
Y == !y,

X.availahility = “yes”

\ /
h

X/P ,lyA

YIP ,lyZ

WyA

PolyA.memher = Segment

Fig. 8: Example system graph for ROLL rule.

ROLL System Graphs can use relationships defined by the object model either as constraints
or as primitives which generate bindings. For example, an attribute relation between two goal
arguments serves to constrain solutions. If only one argument is generated by another goal then
the attribute constraint generates bindings for its other argument. If neither argument appears
in other goals then a type generator goal is added, producing candidate bindings for one of the
arguments.

The example query and rules in section 5.1 give rise to the system graph in figure 8. Ovals
represent goal nodes and boxes constraint nodes. Where necessary, goal node outputs are labelled
with aliases of the form ConstVar/GoalVar which relabel goal variables to the appropriate con-
straint variable. The type generator for PolyA at the bottom of the tree drives the getmember
attribute constraint producing bindings for the other variables. The base clause for the recursive
definition of connected does not constrain its inputs, hence the corresponding constraint predicate
is true.

202 MARIA L. BAFIJA et al

52.3. Query Execution via Processing ties

Processing Trees can be viewed as a query execution plan for a ROLL query. They are imple-
mented using the E class pt_I!Yee which stores a linked set of Processing Tree Nodes. Each Node is
an (indirect) instance of the abstract E class pt_Node. Subclasses of pt_Node represent particular
database operations. The hierarchy of node classes is detailed in figure 9.

<

Dt_%DW3C.Xl

Dt_SCM
Dt_AZl”.SC~

<

Dt_ZWiJOin
Dt_JOin

Dt_~rodUCt

Dt_PiXhint
\

Dt_d-Wd

Dt_~lO”
<

Dt_Attr

Dt_=YD.

Dt_TbriOn

Dt_k3al

Fig. 9: E Class hierarchy for internal representation of processing trees.

Query evaluation is based upon a dataflow execution model. Binding tuples which represent
solutions to query goals flow upwards from the leaves of the processing tree to the root. Each tuple
is an instance of the E class Tzlple, a vector of references to OM objects. Nodes receive tuples from
input nodes lower down the tree and combine them or filter them, as appropriate, passing on valid
solution tuples to nodes further up the tree. An example processing tree is detailed in figure 10,
implementing the system graph given in figure 8.

Leaf nodes in the processing tree are either pt_EnumScans, which generate tuples containing
individual objects (query arguments or constants mentioned in the rules), pt_TypeScans which gen-
erate tuples containing all instances of a given type or pt_NegTypeScans which are like TypeScans
but avoid generation of instances for types which specialise a rule (see also fixed feed nodes below).
In the example tree the bottom left node is a pt_TypeScan producing singleton tuples containing
instances of the class polygon.

Join nodes are used to combine solutions from subgoals. All joins are binary, combining pairs
of input tuples to generate an output tuple. A cascade of joins is used to combine solutions from
multiple goals. A join is either a pt_XProduct which merely concatenates its input tuples, or a
pt_EquiJoin which also imposes an equality constraint on its input tuples’ arguments. Join nodes
keep copies of all input tuples SO that they can remove duplicates, avoiding unnecessary propagation
of repeated solutions. In the example tree a pt_Equijoin combines tuples from the adjacent and
connected relations where the second element of the left tuple equals the first element of the right
tuple.

Design and Implementation of ROCK & ROLL: A Deductiive Object-Oriented Database System 203

Fig. 10: Example processing tree for ROLL rule.

pt_Constraint nodes filter their input stream removing tuples which fail to satisfy constraints
expressed in the rules. The simplest constraints are implemented by pt_Equal and pt_Alias nodes,
which arise from unifications in rule bodies. They only propagate tuples which, respectively, have
either a particular value for a given entry or the same value in two entries. In the example tree
an assignment constraint at the top of the tree enforces the constraint that query solutions have
a given value (!y) for the second argument. Other nodes, (e.g. pt_Attr nodes) ensure that tuple
entries are related according to structure relations defined in the OM data model (e.g. that one is
an attribute of the other). &Type nodes are used to remove tuples whose entries are not members
of a subtype. This is necessary where a subgoal produces solutions of a generic type and it is
known from type inference in the calling rule that the type of the goal argument is a subtype.
Conversely, pt_NegQpe constraint nodes are required in the presence of overriding to filter out
tuples containing instances of subtypes.

pt_FixPoint nodes are used to propagate solutions to recursive queries back down the graph for
recursive combination. pt_FixFeed nodes occur as leaf nodes in place of recursive subgoals in the
tree. They are fed with solutions as they arrive at the corresponding fixed point node. Fixed point
nodes retain copies of all input tuples in order to avoid propagating repeat solutions to their feed
nodes. This avoids unnecessary work and also allows the fixed point computation to be terminated
when propagation of solutions to feed nodes results in no new solutions arriving at the fixed point
node. In the example tree the pt_FixPoint node in the middle of the graph feeds new solutions
to the connected relation back to the pt_Fiqfeed node in the bottom right of the tree for recursive
combination with solutions to ancestor.

pt_Project nodes project a subset of entries from their input tuples and pass these on as outputs.
This allows intermediate references required for constraint checking to be dropped when they are
no longer required. It has the added benefit of reducing the number of tuples stored in join and
fix point nodes since solution tuples which differ before projection may be equal after projection.

204 MARIA L. BARJA et al

In the example graph project nodes occur above the tree sections corresponding to each of the
original rules, projecting out tuple entries which correspond to the formal parameters of each rule.

pt_Union nodes are used to merge solutions arising from different rules. They merely propagate
tuples arising from their inputs without processing them. pt_Goal nodes do not perform processing
either, passing on their input tuples directly to their outputs - their function is to mark boundaries
in the tree during optimisation.

5.24. Processing Tkee Optimization

Optimization of processing trees proceeds in two stages. Global optimization is analogous to
the static filtering optimization of [29]. Constraint nodes appearing in one section of the tree
are moved through join and goal nodes to subordinate constraint sections, thereby performing
the associated selection operations early. The propagation algorithm ensures that constraints
propagated through a goal are valid in the presence of multiple invocations of the goal, including
recursive invocations. If necessary, alternative propagated constraints are added in parallel rather
than in series, implementing a disjunctive constraint.

Fig. 11: Example processing tree after global optimization

For example, the equality constraint #2 =!y in the example processing tree in figure 10 can
be propagated through the connected/2 goal (note that the index is remapped in accordance with
the projection). This constraint remains valid when propagated through the recursion, so it is
legitimate to add it to each branch below the project nodes. Since all solutions output by the
connected/2 node will satisfy the assignment, it may be removed from the top of the tree. The
constraint on the value of the availability attribute cannot be propagated since it does not remain
valid when pushed down through the recursive call. The Equal node does not propagate further
down through the adjacent/2 goal since the invocation via the join node is unconstrained. The
tree resulting from global optimization is shown in figure 11.

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 205

Local optimization partitions the tree into sections bounded above by a goal node (or the top
node for the query) and below by directly invoked subordinate goal nodes. A heuristic search is
used to reorder join nodes in each section and to move constraint nodes down into the join tree.
The search is guided by a cost function which estimates a cost for the current tree section using the
cost estimate for subordinate sections and estimates for the number of solutions processed by the
current section’s join and constraint nodes. Since global optimization will have identified where
it is possible to propagate constraints into subordinate tree sections, it is only necessary for the
search process to consider local orders. This partitioning of the optimization process limits the
danger of a combinatoric explosion in the search process.

6. INTEGRATING ROCK & ROLL

The integration of ROCK and ROLL overcomes both aspects of the impedance mismatch which
commonly results from embedding one language in another:

fipe system mismatch: which is overcome because both languages share the same underlying
data model, and have the same type system realised in OM. It is thus possible to perform
strong type checking across the interface.

Evaluation strategy mismatch: which is overcome because the data values retrieved by one
language can be handled directly by the other, thereby removing the need for copying between
formats or for special treatment of temporarily unassigned results.

We are left with a paradigm or stylistic mismatch which implies that the user has to have an
understanding of the two different paradigms supported by the integrated system. This form of
mismatch is unavoidable in any system which brings together distinct computational paradigms.
The nature of the integration in ROCK & ROLL is that the user can switch between using the
imperative language and the logic language without suffering from the conventional manifestations
of the impedance mismatch, and without having to learn substantially different syntaxes for the two
languages. However, it as necessary for programmers to change their way of thinking to conform to
the style which suits the paradigm being used for any particular task. Thus ROCK & ROLL can
be seen as facilitating the development of complete data-intensive applications in which different
parts of the application are most naturally expressed using different computational styles.

The integration of the two languages is such that the imperative language can embed any
expression in the logic language as long as the type inferred for that expression conforms to the
type rules. The logic language can invoke any method defined in the imperative language as long
as that method is side-effect free.

A type inference mechanism is used with ROLL queries - ROLL can be used both as an
interactive query language and as an embedded language. The decision to use type inference for
ROLL is motivated by:

The need to minimise the amount of type definition syntax in an interactive query language,
where conciseness of expression is an important practical consideration.

The need to retain strong type checking in ROCK programs which invoke embedded ROLL
queries.

The need to have as similar a syntax as possible for the interactive and embedded forms of
ROLL.

The need to conform to the expectations of logic programmers using ROLL, who are not
accustomed to entering type definitions in other logic programming languages.

The need to identify type information for use in query optimisation.

206 MARIA L. BARJA et al

It is possible to explicitly associate a type with a ROLL variable using the operator :, as
in L : landParcel. This explicit association of a type with a ROLL variable is sometimes neces-
sary to allow the compiler to infer a unique type for an expression, or can be used as a form of
documentation.

The process of integration has two aspects: the embedding of the imperative language in the
logic one and vice-versa.

6.1. Embedding ROCK in ROLL

ROLL may invoke any ROCK method as long as the method is side-effect free. A method
is sideeffect free if it does not update, directly or indirectly, any non-local data. Any method
which may itself update any non-local data, or which is overridden by a method which may update
non-local data, is considered to have side-effects. The classification of a method according to this
criterion can be determined at compile time. There is no additional syntax associated with the
invocation of a ROCK method from ROLL (examples are given in section 6.2.2).

6.2. Embedding ROLL in ROCK

6.2.1. Method definition using ROLL

In the integrated system, it is possible to define methods in the logic language as well as in the
imperative one. ROCK requires signatures of methods to explicitly distinguish between input and
output parameters. This conflicts with the fact that in logic programming no such distinction is
required.

The solution adopted is to define ROLL methods within classes with the types of the parameters
given by the signature of the method in the corresponding type definition. However, no distinction
is made in the definition of a ROLL method between input and output parameters. Thus ROLL
methods can be invoked with different binding patterns for their arguments, as illustrated in section
6.2.2.

Overloading and overriding of ROLL methods is allowed, and the process of binding a call to
an implementation is handled in a way analogous to that for methods defined in the imperative
language.

polygons are adjacent to each other if th”ey
transitive closure of ad j acent.

As an examnle. the ROLL method adiacent attached to the class polygon indicates that two
share a common segment, whereas connected is the

class polygon
public :

adjacent (polygon)
begin

adjacent(OtherPolp)@ThisPoly
OtherPoly <> ThisPoly,

:-

get_memberQDtherPoly == get_member@ThisPoly;
end

connected(polygon)
begin

connected(OtherPoly)WhisPoly :-
adjacent(OtherPoly)QThisPoly;

connected(OtherPoly)OThisPoly :-
adjacent(IntermediatePoly)6ThisPoly,
connected(OtherPoly)OIntermediatePoly;

end
. . .

end-class

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 207

62.2. Querying

A query expression belongs to the syntactic class of object expressions of ROCK, and can
therefore be used in any context in which an object expression is appropriate.

Queries are delimited by square brackets. A query expression can take one of three forms:

1. [ROLL goal]

Returns true if the ROLL goal succeeds, else false.

2. [{ Projected V ariables} 1 ROLL goal]

All the projected variable bindings which satisfy the goal are collected in an association.

3. [any Projected Variables 1 ROLL goal]

This form is a variant of the previous one, in which rather than collecting all solutions
together as a set, a single solution is selected nondeterministically.

The following are examples of ROLL queries embedded in ROCK:

l Retrieve all the landparcels which are adjacent to those owned by ICI.

resl := [{Y) I adjacent(X)QY, get_ownerBameQget_ownerQX == "ICI" 1

In this example, the result resl must have been previously declared to be an association of
landparcels. The type inference system will verify that the result of the embedded ROLL
statement is of appropriate type.

The result of the ROLL query is a new object constructed by association. The persistence
of this association is determined by resl - it will only persist if resl is an instance of a
persistent class.

l Retrieve all the land parcels which are availabIe in road R7 with price less or equal to 10000.

l

var res2 := C {LPI I
get_roadIhuneQget_roadQLoc == "R7",
get_landParcel@Loc == LP,
get_availability@LP == "yes",
get_priceOLP == Price,
Price <= 10000 1

In this example, the type of res2 is inferred to be an association of land parcels, as this is the
type of the result of the embedded ROLL query. It is then possible for ROCK to manipulate
the objects retrieved by the query. For example, the following ROCK code fragment increases
by 10% the price of all the landParcels retrieved:

foreach 1 in res2 do
put_price(get_price01*1.1)61;

Retrieve objects which are adjacent to various existing land parcels:

var pi:= new landParcel(....);
var p2:= new landParcel(....);
. . .

var re83:= [{X) I adjacent(X)@!pl 1

var res4:= C adjacent(!pl)Q!P2 1

var resS := [I<Y,R>) I adjacento[)QY, 1
get_availabilityQX =* "yes",
get_landParcelQLoc =* Y,
get_road@Loc == R 1

208 MARIA L. BARJA et al

In this example, the ROCK variables pl and p2 are assigned to particular (newly created)
landparcel objects.

The ROCK variable res3 is then assigned the set of landParcels which are adjacent to the
object referenced by pl. The value of the ROCK variable pi is obtained by the ROLL query
by embedding pl in the ROLL goal (an embedded variable is distinguished by the prefix !).

The ROCK variable res4 is assigned either true or false, depending upon whether or not
pl and p2 are adjacent.

The ROCK variable res5 is assigned a set of aggregates of type landparcel x road rep-
resenting roads that have a location next to landParcels that are adjacent to available
landparcels.

The examples which assign to res3, res4 and res5 illustrate how the ROLL method adjacent
can be called using different binding patterns. In the example which assigns to res3, the
message-recipient is bound but the argument is free. In the example which assigns to res4
both the message recipient and the argument are bound. In the example which assigns to
res5, both the message recipient and the argument are free. The optimiser can exploit such
binding information, as shown in section 5.2.4.

In fact, it is also possible to use ROCK methods from within ROLL with different binding
patterns, although in this case the evaluator must actually call the ROCK method with all
input parameters and the message recipient bound.

A more detailed discussion on the nature of the integration of ROCK & ROLL is given in [7].

6.9. Implementation of Integration

The additional implementation work associated with the integration of ROLL and ROCK is
quite modest, as each of the integrated components retains its principal features. The following
are the principal implementation tasks not mentioned earlier in the paper, but it is noteworthy
that much of the work associated with these tasks would be required to support a free-standing
ROLL interface to a database described using OM and manipulated using ROCK:

1. ROLL front-end: The ROLL parser and type inference system have been implemented within
the structural framework described for the ROCK compiler in section 4.2. At the design level,
a whole new set of semantic objects (e.g. Goal, SubGoal, Clause etc.) are introduced. For
each of these semantic objects, a new E class is defined which implements the methods for
type checking/inference.

The type inference algorithm defined for ROLL is based on:

l Using type information provided by the context.

l Assigning generic types to logic variables.

a Gradual derivation of specific types from more general ones.

The concept of generic type is implemented as an E class PolyType which references a type
expression. This type is replaced as more specific types are inferred. The way PolyTypes are
used is now described by way of an example. Assume the following query, which returns the
set of polygons that are adjacent to polygons with an area greater than 10000:

[{X} I adjacent(X)@Y, getarea@Y)= 10000]

Initially, the type of the logic variables X and Y is assumed to be a PolyType, whose body is
NULL. From the subgoal adjacent (X)@Y, it can be inferred that both X and Y have the type
polygon, as this method is defined in the class polygon, and takes as parameter a polygon.
Thus the PolyType associated with each of these variables is made to point to that type.
If it were the case that the next subgoal allowed a more specialised type to be inferred for
one or both of the variables, this more specific type would replace polygon in the PolyType
reference.

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 209

2. ROCK/ROLL evaluation: The ROCK interpreter must be extended to invoke the ROLL
evaluator on embedded ROLL queries, and the ROLL evaluator must be able to invoke the
ROCK interpreter to handle ROCK calls from within ROLL queries. This process is eased by
the fact that both languages build upon the same object manager, and thus the translation
of values passing between the two interpreters is minimal and completely transparent to the
programmer.

The extensions to the ROCK implementation with respect to evaluation only relate to the
creation of the corresponding objects (according to the projection expression of the query)
from the set of bindings returned by ROLL. A query expression defines an Eva1 method,
which invokes the ROLL’ engine to compute a set of bindings for each variable projected in
the query, and collects the result into the appropriate structures.

7. CONCLUSIONS

7.1. Current Position

A complete implementation of ROCK & ROLL, as described in this paper, has been devel-
oped, such that the individual components consist of approximately the following number of
lines of E (persistent C++) code: OM = 3,000; ROCK = 16,000; ROLL = 13,000. The sys-
tem is available over the Internet - for more information see the following World Wide Web page:
http://www.cee.hw.ac.uk/Databases.

7.2. Sunma y

This paper has presented a novel approach to the design and implementation of a deductive
object-oriented database system. The overall design builds upon a semantically expressive object-
oriented data model from which two languages have been derived, one an imperative manipulation
language and the other a logic query language. It has also been shown how these two languages
can be integrated without introducing classical impedance mismatches.

The resulting system retains the traditional strengths of both paradigms. In step with other
object-oriented databases, application data can be described using a powerful data model and
manipulated by a computationally complete programming language, thereby allowing a close inte-
gration of programs and the data on which they operate. Object-oriented facilities can be used for
structuring and sharing both programs and data in a uniform context. In step with other deductive
databases, both queries and rules can be expressed using a logic language which is firmly within
the formal framework provided by first-order logic. The logic language is thus amenable to opti-
misation and evaluation using extensions to existing techniques developed for deductive relational
databases.

Not only are traditional strengths maintained, widely recognised weaknesses of the respective
paradigms have been overcome. The object-oriented aspects of the system benefit from a for-
mally defined data model and logic query language, thereby allowing rule-based applications to
be developed in the context of an object-oriented database. The deductive aspects of the system
are enhanced by the expressive data model, by strong type checking of logic queries and meth-
ods, and by an integrated data manipulation language which allows updates, I/O and procedural
computation without complicating the semantics of the logic language, which remains side-effect
free.

Acknowledgements - The work that resulted in this paper has been funded by the UK Engineering and Physical
Sciences Research Council through the IEATP programme, and their support is duly acknowledged. We would also
like to thank Prof. Keith G. Jeffery of Rutherford Appleton Laboratory for useful discussions on the subject of this
paper, and Dr. J.M.P. Quinn representing ICL and Mr Neil Smith of Ordnance Survey as the industrial partners
in the project.

210 MARIA L. BARJA et al

REFERENCES

[I] A.I. Abdelmoty, N.W. Paton, M.H. Williams, A.A.A. Fernandes, M.L. Barja, and A. Dinn. Geographic data
handling in a deductive object-oriented database. In D. Karagiannis, editor, Proc. 5th Int. Conf. on Databases
and Expert Syslems Applications (DEXA), pp. 445-454. Springer-Verlag (1994).

[2] S. Abiteboul. Towards a deductive object-oriented database language. Data d Knowledge Engineering, 6:263-
287 (1990).

[3] S. Abiteboul and S. Grumbach. COL: A logic-based language for complex objects. In Joachim W.Schmidt,
Stefano Ceri, and Michele Missikoff, editors, Advances in Database Technology - EDBT’88, Internalional
Conference OIL Extending Database Technology, LNCS 303, pp. 271-293, Venice, Italy. Springer-Verlag (1988).

[4J S. Abiteboul and P.C. Kanellakis. Object identity ss a query language*primitive. In James Clifford, Bruce
Lindsay, and David Maier, editors, Proceedings of Ihe 1989 ACM SIGMOD International Conference on the
Management of Data, pp. 159-173, Portland,OR.. ACM Press (1989).

[5] S. Abiteboul and V. Vianu. Procedural and declarative database update languages (Extended Abstract). In
Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp.
240-250, Austin,TX. ACM Press (1988).

[6] M.P. Atkinson and O.P. Buneman. Types and persistence in database programming languages. ACM Com-
puting Sunteya, 19(1):105-190 (1987).

[7] M.L. Barja, N.W. Paton, A.A.A. Fernandes, M.H. Williams, and A. Dinn. An effective deductive object-
oriented database through language integration. In J. Bocca, M. Jarke, and C. Zaniolo, editors, Proc. 20th Int.
Conf. on Very Large Data Bases (VLDB), pp. 463-474. Morgan-Kaufmann (1994).

[8] M.L. Barja, N.W. Paton, and M.H. Williams. Design of an object-oriented database programming language
for a DOOD. Technical Report TR92016, Department of Computing and Electrical Engineering,Heriot-Watt
University (1992).

[9] M.L. Barja, N.W. Paton, and M.H. Williams. Semantics based implementation of a deductive object-oriented
database programming language. J. Programming Languages, 2(2):93-108 (1994).

[IO] E. Bertino and D. Montesi. Towards a logical-object oriented pogramming language for databases. In Alain
Pirotte, Claude Delobel, and Georg Gottlob, editors, Advances in Database Technology - EDBT’g2, 3rd Inter-
national Conference ou Extending Database Technology, LNCS 580, pp. 168-183. Springer-Verlag (1992).

[ll] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating object-oriented data modeling with
a rule-based programming paradigm. In Proc. ACM SIGMOD International Conference on the Management
of Data, pp. 225-236. ACM Press (1990).

[12] F. C&ace, S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. An overview of the logres system. In [36], pp.
31-43 (1993).

[13] M. Carey, D. Dewitt, G. Graefe, D. Haight, J. Richardson, D. Schuh, E. Shekita, and S. Vandenberg. The
EXODUS extensible DBMS project: An overview. In S. Zdonik and D. Maier, editors, Readings in Object-
Oriented Databases, pp. 474-499, CA 94303-9953. Morgan Kaufman Publishers, Inc. (1990).

[14] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-Verlag, Berlin (1990).

[15] Q. Chen and W.W. Chu. HILOG: A high-order logic programming language for non-1NF deductive databases.
In 1311, pp. 431-452 (1990).

[16] Q. Chen and G. Gardarin. Nested datalog: A rule language for complex objects. In Proceedings of the 1988
ACM SIGMOD International Conference on the Management of Data, Chicago,IL. ACM Press (1988).

[17] W. Chen and D.S. Warren. C-logic of complex objects. In Proceedings of the 8th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pp. 369-378, Philadelphia,PA. ACM Press (1989).

[18] M. Dalal and D. Gangopadhyay. OOLP: A translation approach to object-oriented logic programming. In (311,
pp. 593-606 (1990).

[19] P. Dechamboux and C. Roncancio. Peplomd: An object-oriented database programming language extended
with deductive capabilities. In Dimitri Karagiannis, editor, Database and Expert System Applications - 5th
International Conference, DEXA ‘94, Proceedings, LNCS 856, pp. 2-14, Athens, Greece. Springer-Verlag,
ISBN 3-540-58435-8 (1994).

[20] A. Dinn. Top-down evaluation of roll. Technical report, Department of Computing and Electrical Engineering,
Heriot-Watt University (1993).

[21] M.H. Van Emden and R.A. Kowalski. The semantics of predicate logic as a programming language. Journal
of the ACM, 23(4):733-742 (1976).

[22] A. A. A. Fernandes, N. W. Paton, M. H. Williams, and A. Bowles. Approaches to deductive object-oriented
databases. Information and Software Technology, 34(12):787-803 (1992).

[23] A.A.A. Fernandes, M.H. Williams, and N.W. Paton. An Axiomatic approach to deductive object-oriented
databases. Technical Report TR.93002, Department of Computing and Electrical Engineering, Heriot-Watt
University (1993).

Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 211

[24] J. Grant and J. Minker. Deductive database theories. The Knowledge Engineering Review, 4(4):267-304
(1989).

[25] A. Heuer and P. Sander. The LIVING IN A LATTICE rule language. Date & Knowledge Engineering,
9:249-286 (1992).

[26] M. Jarke, S. Eherer, R. Gallersdoerfer, M.A. Jeusfeld, and M. Staudt. ConceptBase - A deductive object base
manager. Technical Report 93-14, Aachener Informatik-Berichte/RWTH Aachen (1993).

[27] M. Kifer and G. Lausen. F-logic: A higher-order language for reasoning about objects, inheritance and scheme.
In James Clifford, Bruce Lindsay, and David Maier, editors, Proc. ACM SIGMOD International Conference
on the Management of Data, pp. 134-146. ACM Press, A revised and extended version exists as [28] (1989).

(281 M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages. Technical
Report 93/06, Department of Computer Science, State University of New York at Stony Brook (SUNY), Revised
June 1993 (1993).

(291 M. Kifer and E. Lozinskii. On compile-time query optimization in deductive databases by means of static
filtering. TODS, 15(3):385-426 (1990).

[30] M. Kifer and J. Wu. A logic for object-oriented logic programming (Maier’s O-logic: Revisited). In Proceedings
of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 379-383,
Philadelphia,PA. ACM Press (1989).

[31] W. Kim, J.-M. Nicolas, and S. Nishio, editors. Deductive and object-oriented databases (First International
Conference 0000’89, Kyoto). Elsevier Science Press (North-Holland), Amsterdam (1990).

[32] R. Lanzelotte and P. Vslduriez. Optimization of object-oriented recursive queries using cost controlled strate-
gies. In Proceedings of the ACM SIGMOD International Conference on the Management of Data, pp. 256-265.
ACM Press (1992).

[33] Y. Lou and Z.M. Ozsoyoglu. LLO: An object-oriented deductive language with methods and method inher-
itance. In James Clifford and Roger King, editors, Proc. ACM SIGMOD International Conference on the
Management of Data, pp. 198-207. ACM Press (1991).

[34] E. Mendelson. Introduction to Mathematical Logic. Mathematics Series. The Wadsworth & Brooks/Cole,
Monterey,CA, 3rd edition, (1987).

[35] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press (1990).

[36] I.S. Mumick, editor. Proceedings of the Workshop on Combining Declamtive and Object-Oriented Databases,
Washington, DC (1993).

[37] S.A. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases. Computer Science Press, Rockville,
MD (1989).

[38] G. Phipps, M.A. Derr, and K.A. Ross. Glue-nail: A deductive database system. In James Clifford and Roger
King, editors, Proc. ACM SIGMOD International Conference on the Management of Data, pp. 308-317. ACM
Press (1991).

[39] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus
University, Dept. of Computer Science, Aarhus, Denmark (1981).

[40] A. Poulovsssilis and C. Small. A functional programming approach to deductive databases. In G.M. Lohman,
A. Sernsdis, and R. Camps, editors, Proceedings of Very Large Data Bases Conf., pp. 491-500. Morgan
Kaufmann (1991).

(411 R. Ramakrishnan, D. Srivsstava, and S. Sudarshan. CORAL - Control, relations and logic. In Li-Yan Yuan, edi-
tor, Proceedings of the 18th International Conference on Very Large Databases, pp. 239-250. Morgan Kaufman
(1992).

[42] J. Richardson and M. Carey. Implementing persistence in E. In J. Rosanberg and D. Koch, editors, Persistent
Object Systems, pp. 175-199. Springer-Verlag (1989).

(431 D. Srivastava, R. Ramakrishnan, P. Seshadri, and S. Sudarshan. Coral++: Adding object-orientation to a logic
database language. In R. Agrawal, S. Baker, and D. Bell, editors, Proceedings of the Nineteenth International
Conference on Very Large Data Bases, pp. 158-170. Morgan Kaufmann Publishers (1993).

[44] J.D. Ullman. Assigning an appropriate meaning to database logic with negation. Technical report, Department
of Computer Science, Stanford University, USA. (1994).

[45] G. Winskel. The Formal Semantics of Programming Languages. The MIT Press (1993).

(461 C. Zaniolo. Object identity and inheritance in deductive databases - An evolutionary approach. In [9f], pp.
7-24 (1990).

