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Abstract - This paper presents an approach to the development of a deductive object-oriented 
database system, describing the key design decisions and their consequences for implementation. The 
approach is novel, in that it integrates an object-oriented database system manipulated using an 
imperative programming language (ROCK) with a logic language for expressing queries and methods 
(ROLL). The integration is made seamless by deriving both the imperative and logic languages from a 
single formally defined data model, thereby avoiding impedance mismatches when they are integrated. 
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1. INTRODUCTION 

The two most prominent of the emerging approaches to database programming build upon the 
deductive and the object-oriented paradigms. Both of these approaches have significant strengths. 
Deductive databases (DDBs) have a formal basis in first order logic, support expressive declarative 
querying, and benefit from substantial experience with query optimisation strategies. Object- 
oriented databases (OODBs) support rich facilities for representing both structural and behavioural 
information, are normally associated with computationally complete programming languages, and 
are suitable for use in a range of applications where relational database systems have been found 
to be inappropriate. However, both of these categories of system also have weaknesses. Deductive 
databases lack expressive data structuring mechanisms, and normally support limited facilities for 
update or I/O. Object-oriented database systems are rarely based upon formal semantic models, 
and often lack declarative query languages. It would thus seem to be the case that deductive 
databases and object-oriented databases have complementary areas of strength and weakness, 
and that any system which can combine the two paradigms in a way which uses their respective 
strengths to overcome their respective weaknesses would be an effective platform for a range of novel 
and conventional applications. Such an endeavour has been recognised as worthwhile [2,43,271, but 
is not straightforward without sacrificing certain of the characteristic strengths of either category 
of system. 

This paper presents the design and implementation of a deductive object-oriented database 
(DOOD) which is built upon a formally defined data model described in section 3.1. This model 
has been formally specified as a set of axiomatic first-order theories, from which has been derived 
a corresponding set of Horn clauses. The object manager described in section 3.2 implements this 
data model, although the rule-based formalism is in fact implemented as a set of persistent C++ 
classes. Two languages have been derived from this model, an imperative database programming 
language described in section 4, and a logic query language described in section 5. The imperative 
programming language is used to provide a syntax for defining object classes, for writing application 
code as methods or free standing programs, and as the sole means of changing the state of the 
database. The query language is a conventional first-order logic language which can be used 
to define rules and to express queries over extensional databases which conform to the axioms 
that constrain valid database states. The semantics of the logic language stem from a syntactic 
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mapping onto function-free Horn clause programs presented in [23]. The integration of the logic and 
imperative languages is presented in section 6, where it is shown how, and with what restrictions, 
each language can call the other. Conclusions are presented in section 7. 
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Fig. 1: Relationship between the principal components in the architecture. 

The object manager and imperative programming language are referred to as OM and ROCK 
(Rule Object Computation Kernel) respectively. The logic language is known as ROLL (Rule 
Object Logic Language). The relationship between the principal components is depicted dia- 
grammatically in figure 1. This architecture is designed to support the synergy of the different 
components: the logic language can be used to support those parts of an application which are 
suitable for declarative rule-based expression; the imperative language can be used to support 
updates, input/output, and the expression of algorithms normally written in a procedural man- 
ner; both languages operate in the context of an expressive object-oriented data model which has 
facilities comparable to those supported by a number of semantic data models. 

A significant strength of the overall system is the conventionality of its individual components 
- it has not proved to be necessary to alter the defining principles of the component paradigms or 
to introduce any complex new concepts in order to achieve their integration. Thus the approach 
adopted can be seen as a judicious blending of existing OODB, DDB and database programming 
language technologies, to yield a system which provides effective support for advanced applications. 
Novelty is thus more manifest in the methodology adopted than in the individual components which 
have been implemented, although new results are presented regarding such issues as optimisation, 
type inference and language integration. 

The applicability of the ROCK & ROLL system has been evaluated in the context of a geo- 
graphic database system application [l]. In this domain, the comprehensive modelling facilities 
of OM have been used to support the structuring of complex geographic phenomena, the imper- 
ative language ROCK has been used for expressing geometric algorithms and for populating the 
database, and the logic language ROLL has been used to express derived relationships between 
extensionally defined concepts. The absence or dilution of any one of these components would have 
significantly impacted on the effectiveness with which this application could be supported. 

To give a flavour of the overall approach, a definition of the type segment is presented in figure 
2. The type definition indicates that segment is an aggregate of two points and that it has two 
public methods print and follows which are implemented in ROCK and ROLL respectively. The 
class definition gives code for the methods print and follows - print invokes the print method 
of the two point objects from which the segment is constructed, and follows indicates that one 
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segment follows another if the second point of one is the first point of the other. Both methods are 
statically type checked, can be inherited or overridden, and can be invoked from the same program 
or interactively. The integration of the two languages is discussed in detail in section 6. 

type segment 

<pointi:point, point2:point) 
interface: 

ROCK: printo; 
ROLL: follous(segment); 

end-type ; 

class segment 

public : 
print (> 
begin 

printQget_pointl; write ‘-->‘; printQget_point2; Write nl; 
end 

follous(segment) 
begin 

follous(OtherSegment)OThisSegment :- 
get_point20ThisSegment == get_pointl@OtherSegment; 

end 
end-class 

Fig. 2: Type and class definition for segment. 

The platform which has been used to implement ROCK & ROLL is the EXODUS extensible 
database system [13], and in particular the programming language E [42]. E is essentially a 
persistent C++ system, and has been chosen because it directly supports the linked storage of 
persistent objects, database indexing and transactions, thereby removing the need for such facilities 
to be implemented from scratch for ROCK & ROLL. 

2. CONTEXT 

2.1. Related Work 

Research into deductive object-oriented databases (DOODs) has been conducted using a range 
of different strategies. The most radical departure from earlier work on deductive databases is 
characterised by F-Logic [28], where a new logic language is proposed incorporating such object- 
oriented features as inheritance and a notion of identity. The proposal is technically quite complex, 
and it is far from clear how it could be implemented and taken as the basis of a practical database 
system. For example, not only the language does not have all the functionality required for 
application development, there is also no mention of a strategy, such as embedding or the use of 
external functions, for achieving that functionality. In comparison with that of Datalog (and hence 
with ROLL), the metatheory of F-Logic is significantly more complex to grasp. More importantly, 
many desirable properties of Datalog are lost. For example, the low complexity of the unification 
algorithm is threatened by the presence of set terms. Also, the feasibility of a theorem-proving 
approach is reduced because inheritance is modelled by inference rules, which may adversely impact 
on the efficiency of the proof procedure by introducing multiple choices as to which rule to apply 
at each inference step. Finally, F-Logic is only structurally object-oriented. There is no attempt 
to tackle the behavioural aspects that make object-orientation a distinctive paradigm. 

A less radical approach is to extend the semantics of Datalog with facilities associated with 
object-oriented databases (OODBs). This is the course taken in IQL+ [2] and Logres [ll, 121. 
This general approach has the advantage that it can directly reuse earlier work on the design 
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and implementation of deductive relational databases, but tends to lead to systems with limited 
semantic data modelling facilities and logic language semantics complicated by the introduction of 
updates. 

For example, IQL+ (i.e. , the version of IQL in [2]) does not model sequences, does not cater 
for multiple inheritance and has no behavioural inheritance. Its predecessors, IQL [4] and COL 
[3] are more restricted, the latter being classifiable as non-first-normal-form relational, rather than 
object-oriented. The latest version of IQL has only been given the fixpoint semantics of COL. Since 
the language makes use of functions to model sets and tuples, and hence departs from Datalog in 
a crucial way, it is not immediately clear what form the model-theoretic and procedural semantics 
of the language will take. Although the metatheory of this language family is much closer to 
that of Datalog than the metatheory of F-Logic, some loss of desirable properties can still be 
detected, the most important of which are the lack of guaranteed termination which results from 
the reintroduction of function symbols, and the lack of alternative equivalent semantics. 

Another approach endeavours to reuse earlier work on deductive databases by developing a 
mapping from a DOOD language onto an existing deductive database system which is used to 
provide both a semantics for the mapped language and an implementation. Examples are the 
Bertino-Montesi proposal [lo], OOLP+ [18], and OIL [46]. This is a practical route to the de- 
velopment of DOOD systems, but tends to be associated with similar drawbacks to the extended 
Datalog approach. 

Of these three approaches, the work described here is most closely related to the mapping ap- 
proach, in that the logic language has been formally defined by devising a mapping onto Datalog 
in the context of an axiom set which characterises the data model. However, in our approach the 
data model is a separately identifiable component supporting a wide range of semantic modelling 
constructs (see section 3.1), and the mapping is from a logic language which has not been compli- 
cated by the introduction of updates or control. Furthermore, broader applicability is obtained by 
the mismatch-free integration with an imperative programming language. This approach results in 
functionality that is at least as powerful as that provided by embedding of external-function calls, 
with none of the associated impedance mismatches. 

The need for an update mechanism in the logic language has been obviated by using a sepa- 
rate language component for data manipulation. The approach of integrating different language 
components in a database context has been explored before. In Glue/Nail [38] it is shown how an 
imperative language Glue can be used to perform manipulation of the data stored in the deductive 
relational database Nail. Although this approach has been influential in our work, the research 
presented here is significant in that it brings together deductive, object-oriented and imperative 
approaches via a common theoretical model, has a more comprehensive imperative language and 
provides static type checking with type inference. More recently, Peplomd [19] has also taken this 
two-language-component approach. 

Further examples of integration include PFL [40], in which a deductive query language is 
embedded in a lazy functional programming language, and Coral++ [43] in which C++ data 
structures are made accessible from the deductive database Coral. Our approach differs from PFL 
in the nature of the underlying data model and in the use of an imperative language alongside the 
deductive component. The principal difference between ROCK & ROLL and Coral++ stems from 
the fact that only in the former does a single underlying data model specify all the types that can 
be accessed by the logic language and manipulated by the imperative language. This uniformity 
is lacking in Coral++, where the types which can be manipulated by the logic language and the 
imperative language overlap, but are not identical. As such, Coral++ can be seen as a coupling 
of two language components, rather than an integration. Issues related to language integration 
arising in this context are discussed in detail in [7]. 

The DOOD system presented here builds directly on earlier work on deductive databases [14] 
and on database programming languages [S]. The logic language is conventional, in that it is both 
first order and function free, and furthermore has not been extended with facilities for updates 
or control. The database programming language is a conventional imperative persistent program- 
ming language, with both extensional and intensional information stored in the database. The 
integration of the two systems uses type inference to enable type-safe embedding, adapting earlier 
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work on type inference (351 for use in the deductive object-oriented context. The logic language is 
optimised using an extension of static filtering [29], in which this technique has been revised for 
use in the context of a richer data model. By building upon such a wide range of earlier research 
activities, it has been possible to exploit prior theoretical and practical experience to yield a system 
which is both pragmatic and formally sound. A more extensive review of approaches to the design 
of DOODs is given in [22]. 

2%'. ROCK&ROLLasaDOOD 

ROCK & ROLL embodies a number of design decisions specifically meant to preempt certain 
semantic hurdles that have slowed progress in achieving an extension of the deductive paradigm 
with object-oriented notions. The two most important of those decisions are: 

1. To anchor ROCK & ROLL on an object-oriented model of structure and behaviour that 
underpins, but is wholly independent of, its sublanguages. This decision guarantees that 
multiple language components are inherently amenable to mismatch-free integration. 

2. To form&se the model as a system of first-order logic. This decision guarantees that a clear 
path exists with which to instill object-oriented notions into a logical query language. 

Other pragmatic decisions are also essential in order to make ROCK & ROLL a realistic option 
for advanced database applications, among which: the definition and manipulation sublanguages 
are serviced by a storage layer tightly coupled to them in the context of orthogonal persistence; 
all manipulation (including logical querying) is statically type-checked, and a type-inference mech- 
anism takes most of the burden associated with this functionality; programmers retain as much 
control as they want and if all control is delegated, i.e. if code is purely declarative, optimisation 
is not hindered by impure features. 

These decisions made it possible both to steer the implementation effort away from trouble 
spots and to cover more ground than most comparable research projects. This implementation 
effort has been concluded very recently and is being evaluated using an application in the area of 
geographical information systems [l]. It is already possible to report that the resulting system, 
besides being endowed with comprehensive and well-understood theoretical foundations, exhibits 
more functionality that many alternative proposals, as follows: 

l ROCK & ROLL provides a full object-oriented model of structural knowledge. This includes 
rich mechanisms for the definition of collection types and complex types whose values possess 
an identity distinct from their state. Thus, ROCK & ROLL offers more comprehensive 
modelling facilities than deductive languages using complex values, based on non-first normal- 
form relations such as HILOG [15] and Nested Datalog [16], or based on constructor functions 
such as COL [3], C-Logic [17] or O-Logic [30]. 

l ROCK offers full support for explicit object creation, liberating ROLL from the need to 
become involved in the special semantics of object creation that have to be tackled in LIVING 
IN A LATTICE [25], O-Logic, and OIL [46]. 

l By axiomatizing their semantics, both collection types and complex types are handled within 
the logic without the complications of grouping constructs, as present in tZ>C [371, and with- 
out relinquishing finiteness of interpretation domains caused by the introduction of function 
symbols to denote constructors, a problem faced by both F-Logic (and predecessors) and by 
IQL+ (and predecessors). 

l ROCK & ROLL provides a full object-oriented model of behavioural knowledge, in which 
there is a clear distinction between the interface to and the implementation of a type. Few 
proposals tackle this problem, of which ConceptBase [26] and LLO [33] are well-known exem- 
plars. This is a necessary feature for a system to be classified as behaviourally object-oriented, 
and has origins in the notion of abstract data types. In a DOOD context, it implies devising 
ways of distinguishing within the database theory the declaration that instances of a type will 
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respond to certain operations and the implementation, by deductive rules or otherwise, of 
those operations. This gives rise to the notion of encapsulation, and is a significant departure 
from deductive databases over a relational data model. 

l ROCK & ROLL supports overriding and dynamic (or late) binding of methods. Any method 
can be implemented using ROCK. However, if a method is dominated by data retrieval, it 
will probably be best implemented in ROLL, insofar as it would undergo optimisation (once, 
at compile time) with a potential gain in efficiency that would be harder to achieve using 
ROCK. A distinctive feature of ROCK & ROLL is that a method implemented in ROLL 
abides by encapsulation, and may be overridden and late-bound just as if it had been written 
in ROCK. Attempts to model one or more of encapsulation, overriding and dynamic binding 
in F-Logic and in IQL+ are not as intuitive and not as integrated as in ROCK & ROLL. 

a Most proposals for DOODs ignore the provision of facilities for control resembling those of 
imperative programming languages. Exceptions to this are IQL+ and Logres. ROCK also 
provides a comprehensive set of control facilities. ROLL does not lose declarativeness, and 
the evaluation of ROLL-coded methods is not disturbed by the fact that ROCK evaluation is 
under control of the programmer. In this way, maximal opportunities are preserved both with 
respect to optimisation and to freedom in the choice of whether to evaluate an invocation 
bottom-up or top-down 

l With respect to effecting state transitions, a well-known idea used both in the various lan- 
guages defined by [5] and in Logres is to introduce transition-effecting annotations in the 
heads of rules. However, handling state transition directly in the rules makes them non- 
declarative. This precludes many optimisation opportunities and incurs the penalty of possi- 
bly non-terminating programs. In ROCK & ROLL, state transitions are performed with full 
imperative control; retrieval of data in a single state can be done imperatively or declaratively, 
at the discretion of programmers. 

l ROCK & ROLL provides full structural and behavioural inheritance (possibly multiple) for 
subtyping and subclassing, allowing, on the one hand, the specification of constraints on the 
inclusion relationship between sub- and superclass, and, on the other, catering for overriding 
of overloaded methods through late-binding. This is more expressive than any other DOOD 
proposal, and has again been achieved through axiomatization, at practically no additional 
cost in terms of a more complex semantics (as, for a contrast, is the case with F-Logic). 

l ROCK & ROLL provides static type-checking and SML-like type inferencing [35] for both 

language components in both directions of embedding - type inferences flow from ROCK to 
ROLL, and vice-versa. No other proposal for DOODs (compare, e.g. IQL+ and Coral++) is 
nearly as flexible or comprehensive in its treatment of typing. 

l There is no type-system or evaluation-strategy impedance mismatch in ROCK & ROLL: every 
ROCK defined type can be used in a ROLL query, and vice-versa; also, the result of evaluating 
a method call in ROCK can be passed to a ROLL query, and vice-versa. In both cases no 
intermediate type-conversion is required of the programmer. No other DOOD proposal offers 
this functionality. Some provide no foreign-language interface (e.g. F-Logic), some (e.g. 
IQL+) provide hooks that may incur impedance mismatches, yet others (e.g. ConceptBase 
and Coral++) provide some smoothing out of conflicts, but only unidirectionally. 

l Finally, ROCK & ROLL is fully implemented as a persistent-programming environment. 
Only two other DOOD proposals are known to us to be implemented, viz. ConceptBase and 
Coral++. 

These contrasts demonstrate that ROCK & ROLL contributes a strategy for paradigm inte- 
gration that is both more general and encompasses more functionality from each paradigm than 
proposed alternatives. In particular, it shows that trying to handle too much on one arm of the 



Design and Implementation of ROCK & ROLL: A Deductive Object-Oriented Database System 191 

scale may be self-defeating, and that novel ways of using proven techniques can do much better 
than one would at first expect. 

Methodologically speaking, ROCK & ROLL achieves its result by synergy. Its component parts 
in isolation are less daring than their counterparts in other proposals, but the whole is revealed to 
be harmonious and, most definitely, greater than its parts. 

3. THE DATA MODEL (OM) 

3.1. Design of the Data Model 

This section gives an informal overview of the concepts used to model an application domain 
both structurally and behaviourally. The object-oriented model informally described below has 
been formalised in [23] as a class of first-order theories [34] called object theories (OTs). For each 
application domain D, an OT is an applied first-order theory whose language is fully determined 
by the constant symbols used to denote entities of interest in D. Predicate symbols are fixed 
for all OTs and denote semantic-modelling relationships as well as unacceptable configurations of 
declared facts. An OT A comprises three subsets: a set of ground tioms A(D) that represent 
D at both schema- and instance-level, a set of modelling axioms M that characterise implicit 
information deducible from A(D), and a set of ezceptaon axioms E that characterise unacceptable 
configurations within A(D). An object-oriented database (OODB) A’ can then be formally defined 
as an interpretation of an OT A = A(D) U M U E such that all axioms in M are true in A’ and all 
axioms in E are false in A’. Axioms in A(D) are assumed to be true by definition. 

As an example, the following axioms specify the origin and transitivity of the is-a relationship: 

(Vzyz)(speciaZizatianof(z, y) V generalization-of(y, X) V partitionedby(y, z) =S is_a(s, y)) 

(Vsyz)(is-eG Y) A isa(y, z) =+ is_u(z, .z)) 

As described in detail in [23], any OT can be recast as a Horn theory (241, thus extending 
conventional OODBs with a logic-programming style of deduction that has the classical declarative, 
operational and fixpoint semantics of [21]. An informal description of the formalism is now given. 

The model distinguishes between primitive typpes and object types. There is a fixed set of 
primitive types supported by the system, namely integer, real, string and boolean. An instance 
of a primitive type is called a primary object, and is denoted by its value. 

An object type is defined by the user to model some aspect of an application domain, Examples 
of such types in a geographic information system are landparcel, road and polygon. An object 
type may be defined in one of two ways. Firstly, and somewhat trivially, an object type may 
be defined as taking primary objects as its instances, in which case the object type acts as an 
application-specific synonym for the primitive type. Secondly, and more interestingly, an object 
type may be used as a conceptual model of some part of the application domain. An instance 
of an object type is called a secondary object, and is named by a unique object identifier (oid). A 
secondary object is simply called an object in the rest of this section. 

The state of an object comprises references of up to three kinds. First, and foremost, an object 
refers to, or is an instance of, one or more object types t. Second, depending on the structure 
determined by the types of which it is an instance, an object refers to objects, secondary or not, 
as values of its properties. Third, again depending on its types, an object may refer to objects, 
secondary or not, as its construction elements. As an example, consider an object named by the 
oid ! 1. It is assigned to object type road. As its roadName property it refers to “M8”. Finally, as its 
component elements it refers to roadsegments ! 5, ! 12, and ! 3, where the nature of the relationship 
with its components is described using the structural abstraction mechanisms described below. 

The basic abstraction mechanisms available to model real-world entities in the application 
domain are: 

tAn object is directly assigned a single type when it is created, and is associated with additional types by 
inheritance. 
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l Classijication, which declares that an object is an instance of some object type. 

l Specialisation, generalisation, and partition, which are used to place object types into the 
abstract structure known as the is-a hierarchy. Specialisation and generalisation differ only 
in that specialisation places an object type in the hierarchy in terms of previously-defined 
supertype whereas generalisation does so in terms of previously-defined subtype(s). Parti- 
tion is a special case of generalisation with the additional constraint that the extensions of the 
subtypes are disjoint. Multiple inheritance from more than one supertype is also supported. 

The structural abstraction-mechanisms available to model real-word entities in the appli- 
cation domain have the following characteristics: 

l Attribution declares, for an object type t, which object types name properties oft. In other 
words, if t has a property t’, the value oft’ in the state of t is an instance of t’. For example, 
assume that roadName is a property of road and that the object identified by ! 5 is an instance 
of road, then ! 5 contains in its state a reference to the primary object identified by “M8”, as 
the value of its property roadName. 

l Association, sequentiation, and aggregation determine how an instance of an object type is 
constructed from instances of other object types. An object type is said to be constructed 
from another when an instance of the former will contain in its state a number of construction 
references to instances of the latter. The three abstraction mechanisms are: 

- association, in which the constructed object references an unordered set of component 
objects (e.g. a road is constructed as an association of roadSegments). 

- sequentiation, in which the constructed object references an ordered collection of com- 
ponent objects indexed by the natural numbers (e.g. a polygon is constructed as a 
sequence of Segments). 

- aggregation, in which the constructed object references one or more component objects 
by the set of types which are the coordinates of the aggregation. As a result, aggrega- 
tions have the same properties as records in programming languages (e.g. a Segment is 
constructed as an aggregation of two Points). 

The separation of the construction of an object from its attributes makes explicit a distinction 
between the fundamental characteristic of an object and its other structural features. 

The single behavioural abstraction-mechanism available to model real-word entities in the 
application domain is called an operatiok An operation has two detached components: an interface 
and an implementation, the latter expressed as code in ROCK or ROLL. An operation interface 
defines that an operation name abides by an operation signature in the context of an object type. 
This behavioural model allows for the overloading of operation names with respect to interfaces and 
implementations. The detachment of interfaces and implementations induces the notion of object 
class. To every object type there corresponds one and only one object class with identical name. 
An object class declares a single operation implementation or method for every operation interface 
declared in the object type corresponding to the class. Methods are defined in a framework which 
supports overriding, and late-binding is used to select the most specialised definition which is 
applicable to the message recipient. A most specific implementation is guaranteed to exist and to 
be unique by a well-formedness constraint on the declaration of object types. Concrete examples 
of type and class definitions are given in section 4. 

Schema diagrams for the data model can be constructed using the following notation. Sec- 
ondary object types are represented using rectangles, and primary object types using ellipses. 
Labelled directed edges represent modelling features thus: 0 - attribution, @) - generahsation, 
@ - partition, Q - specialisation, @ - aggregation, @ - association, and @ - sequentiation. An 
example which uses this notation to describe part of a geographic database is given in figure 3. 
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I publicRoad 

Fig. 3: Schema diagram for a fragment of a geographic database 

3.2. Implementation of the Data Model 

The data model is supported in E by two principal class hierarchies which describe OM types 
and instances respectively. For example, the main E classes used to describe the intension of a OM 
database are presented in figure 4. The E class m-Type has attributes which store the name of the 
OM type, descriptions of its attributes, references to supertypes/subtypes, a list of instances, and 
a collection of indexes into the set of instances. There is also a collection of member functions for 
creating OM types, adding attributes, deleting indexes, etc. 

m_Association m_Sequmtiation m_Aggmgation 
m_GmundedOn 

Type 

Fig. 4: E classes for describing OM types 

Instances of OM types are described using a separate hierarchy of E classes which shadows 
the hierarchy in figure 4. The E class m-Instance has attributes which reference its m-Type, its 
attribute values, and the m-Instance objects which describe the OM object in different roles (for 
example, a privateRoad object which is also a road (because privateRoad is-a road) would be 
represented by two m-Instance objects). 

To give a flavour of the interface to the object manager, the following E code fragment iterates 
over the instances of the type pointed to by T: 



194 

m-Type *T; 

m-Instance *I; 

. . . 

m_lnstance_lter iterator = 

while (I = iterator.next()) 

// operations on I 

. . . 
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T- >getall_instances(); 

{ 

In the above, T is a reference to an OM object type definition, and I is a reference to an OM 
instance object. The E object iterator is an instance of the E class m_lnstance_lter, which enables 
iteration through the extension of a type, in this case T. In the while loop test, I is assigned a new 
instance of T in each iteration, as a result of the invocation of the next operation on iterator. 

It can be seen from the above that the object model is essentially implemented as a collection of 
abstract data types which support primitive operations on OM types and instances. An example 
of how the object manager is invoked from the ROCK interpreter is presented in section 4.2. 

4. ROCK 

4.1. Design of ROCK 

The database programming language provides an environment in which both persistent and 
transient data are created and manipulated in a uniform way. By integrating ROCK with the logic 
language ROLL described in section 5, this programming environment is further enriched with 
declarative querying and method definition facilities, as described in section 6. ROCK is based on 
the data model described in section 3, and is an imperative object-oriented programming language. 
It supports strong compile time type checking which offers advantages such as software integrity, 
consistency and efficiency. 

ROCK can be regarded as the conjunction of a data definition language for schema declarations, 
and a data manipulation language that allows operations to be performed on the objects stored 
in the database, The types which can be defined using the data definition language are exactly 
those which are supported by the data model described in section 3.1. The data manipulation 
language provides powerful constructs for processing such data, and as such is the vehicle for 
the development of application code through support for the creation, manipulation and explicit 
deletion of objects. The facilities available for data manipulation include: 

the object creation operator new 

assignment 

I/O operations (read, write, . . .) 

control structures such as selection (if . . . then . . . else), iteration (while, f oreach) and 
blocks (begin . . . end). The f oreach construct provides for iteration over the instances of 
a class or over the elements of an association or sequentiation. 

All control structures have a mode of operation in which they return an object, or a set of 
objects in the case of the iterative constructs. 

Operations on objects are classified into two groups: built-in (or system generated) and methods 
(or user-defined). The model of computation adopted in both cases is the messaging one, where 
the symbol “@” is the message sending operator. The message recipient is an object expression. 
An object expression is an expression in the language which evaluates to an object. For example, 
the following expression assigns to the variable s the StartJunction of the roadSegment rs. 

s := get_startJunction@rs 

Method calls can be nested, and inside a method messages can also be sent to self and super. 
Support for encapsulation is strict, i.e. the structure of objects can only be accessed through 
operations, whether system-generated or user-defined. 
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l System-generated operations 

For each property attributed to a type and for each coordinate in an aggregate construc- 
tion, the compiler generates a pair of methods whose names are those of the corresponding 
property/coordinate prefixed respectively by get- and put-. These methods allow the ob- 
ject referenced by a property/coordinate to be retrieved or updated, and their visibility is 
determined by that of the corresponding property/construction. 

l User defined operations 

User defined operations are given in the form of methods. Methods have a visibility which 
is either public or private. Methods that are private to a class can only be invoked from 
other methods attached to that class. The signatures of public methods are defined in the 
interface part of the corresponding type definition. 

To illustrate class and method definition as well as the use of built-in operations, consider the 
definition of classes roadsegment and road, whose structures are as defined by the types depicted 
in the schema diagram in figure 3. Both classes define a public method length which computes 
the length of the roadsegment and the length of the road (i.e. a set of roadsegments), as shown 
in figure 5. 

4.1.1. Semantics 

The semantics of ROCK is fully defined in [8] using Structural Operational Semantics [39, 451. 

Structural operational semantics describes how each individual step of a computation takes place 
by defining a transition system whose steps describe the evaluation of programs. Inference rules 
are used to describe the axioms of a transition system, and propagation of information is achieved 
by pattern matching. 

This formalism is used both for describing the static semantics of the language, as well as the 
dynamic semantics by syntax directed rules. The static semantics of the language is given by 
means of a set of type rules. These rules are used to derive semantic properties of phrases in the 
language, and form the basis of a type inferencing mechanism. They define how to check the type 
of a phrase as a result of type checking its components, as well as the compatibility of types. The 
dynamic semantics of the language takes the form of a set of state transition rules which precisely 
define the evaluation of expressions and statements. 

4.1.2. Model of Persistence 

The model of persistence supported by ROCK defines classes as the unit of persistence, and 
therefore provides for the persistence not only of data but also of code. The type definition 
corresponding to a persistent class persists along with the class, and the instances of persistent 
classes also persist. Persistent class and type definitions do not need to be rewritten in a program 
which uses them in order to verify consistency - it is only necessary for a program to name the 
persistent environments in which the appropriate information is stored. Other classes and types 
referenced from a persistent class or its associated type must be persistent in the same persistence 
environment. The support for persistence is uniform, that is the degree of persistence of the objects 
manipulated by a program does not affect the ways in which the objects can be manipulated. 

4.2. Implementation of ROCK 

The creation, modification and retrieval of data is achieved by the ROCK interpreter invoking 
the object manager described in section 3.2. 

Both the type checker and interpreter are structured in an object-oriented fashion. The imple- 
mentation is based on a direct correspondence between classes in E and the syntactic constructs of 
the language [9]. Thus, the class hierarchy defined in E mirrors the relationship between syntactic 
categories defined for the language, where each E class defines its own methods for type checking 
and evaluation. In this way, each node of the tree can type check and evaluate itself - syntax trees 
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type roadsegment 
properties : 

StartJunction, endJunction; 
interface : 

ROCK: lengtho: real; 
. . . 

end-type ; 

type road 
properties: 

roadName, roadType ; 
C roadsegment I; 
interface : 

ROCK: lengtho: real; 
. . . 

end-type ; 

class roadsegment 
length0 : real 
begin 

var startj := get_StartJunctionQself; 
var endj := get_EndJunction@self; 
vax x-1 := get_xCoordinate@startj; 
var y-1 := get_yCoordinate@startj; 
vax x-2 := get_xCoordinate@endj; 
var y-2 := get_yCoordinate@endj; 
sqrt((x_1 - x-2)+*2 + (y-1 - y_2)**2) 

end 
end-class 

class road 
length<): real 
begin 

var len: real 
len := 0; 
foreach r in self do 

len := len + length@r; 
len 

end 

end-class 

Fig. 5: Type and class definitions showing method implementation. 

are traversed in an object-oriented fashion, by sending a message to the root which in turn sends 
messages to its children and so on. For example, the foreach statement in ROCK can be used to 
iterate over the instances of a class thus: 

foreach <iter> in <class> do <statement> 

The f oreach statement is represented as a node in the syntax tree, which is used to represent 
the structure of a program internally. This tree is modelled as a hierarchy of E classes, as depicted 
graphically in figure 6. Member functions associated with each node of the tree are then used 
to support type checking and evaluation of statements. For example, in figure 7, the member 
function TypeCheck verifies that the class to be iterated over is in scope, and if so it records that 
the variable iter is of class classid. The type checking process then continues through the invocation 
of the TypeCheck member function on the statement. 
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AssignStat controwat 

ForeachStat I 

Fig. 6: Class hierarchy for representing programs internally. 

The iteration process facilitated by foreach is implemented by the Eva1 member function also 
shown in figure 7. This member function calls the object manager to get-all_instances of the class 
classid, via an iterator called theinsts. The statement is then evaluated for every object instance in 
the class. 

This implementation strategy has allowed a close correspondence to be maintained between the 
formal specification of the language and its implementation as object classes, and has the added 
advantage of facilitating the addition and removal of language constructs. 

5. ROLL 

ROLL is the logic language of the ROCK & ROLL DOOD system. As such, ROLL is not 
intended to be used in isolation for supporting complete data intensive applications. As a result, 
a comparison of ROLL with other deductive database languages could lead to the conclusion that 
ROLL is somewhat spartan. This is because ROCK is the sole vehicle for performing certain tasks 
in ROCK & ROLL, whereas in single-language systems (such as J~C [37] or Coral[41]) the logic 
language must support all the requirements of an application. In ROCK & ROLL certain tasks 
can be performed by both ROCK and ROLL, but the area of overlap is restricted to the retrieval 
of data from the database. ROLL contains no facilities for building new objects, changing existing 
objects, or expressing control. The advantage of this approach is that the semantics of ROLL is 
straightforward compared with certain other deductive database languages, which makes ROLL 
easier to learn and implement. ROLL could certainly be extended with additional features by 
following the example set in earlier deductive relational database systems, but this would serve 
only to extend the range of functionalities supported by both ROCK and ROLL. It is possible that, 
in future, certain extensions will be made to ROLL which reduce its dependence upon ROCK for 
complex applications, but decisions as to which extensions, if any, are most appropriate await 
further experimentation with the present system. 

5.1. Design of ROLL 

ROLL is a Horn clause language. Familiarity with the latter subclass of first-order languages 
is assumed at the level of [14]. 

The domain-dependent subset of the ROLL alphabet consists of constant symbols and predicate 
symbols. The ROLL alphabet is function-free. The set of constant symbols is the set of values of 
primitive types (e.g. 5, “Edinburgh”, true). Note that there is no need for object identifiers to 
appeclr as constant symbols in ROLL expressions, as specific objects are either passed into a ROLL 
expression from ROCK, or are retrieved from the extensional database. 
II 20-3-l 
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class ForeachStat: public ControlStat { 

IterIdent iter; 
ClassId classid; 
Stat *statement; 
. . . 

public: 
void TypeCheckO; 
void EvalO; 

void ForeachStat :: TypeCheck { 

. 9 . 
if ((ClassesStack - > Find(classid)) 

ObjNameStacb - > Pushciter, classid); 
else TError(this. "Undeclared class"). s 

statement - > TypeChecko; 
. . . 

1 

void ForeachStat :: Eva10 { 
. . . 
m-Instance* instance; 
m_AttVal* obj = ValuesStack - > Findtiter); 

mJnstance_Iter theinsts = Getsa_Type(classid) - > Eet_allinstances(); 

while (instance = theinsts.nextO) 

{ 
obj - > PutValue(instance); 
statement - > EvalO; 

Fig. 7: Example type checking and evaluation member functions for ROCK 

The set of predicate symbols is the set of operation names declared by operation interfaces. It 
follows that ROLL queries abide by strict encapsulation. 

A ROLL term -r is either a ROLL constant or a (logical) variable. A ROLL atom has one of 

the following forms: 

1. P(n,. . * , T&a(Y 

2. P(n,..., T73_l)@a == 711 

where ,f3 is an (n + 1)-ary ROLL predicate symbol, each T;, 1 5 i 5 n, is a ROLL term, and (Y is a 
ROLL term appearing as the (n + l)-th argument of ,f3. 

The first form is used when the operation /3 is implemented in ROLL, which requires no distinc- 
tion to be made between input and output parameters. A ROLL atom of the above form is read 
as “send the message p with the arguments ri, . . . , r,, to the object 12’. An operation interface 
p : Tl x . . . x T, is assumed to be defined, such that each ri denotes an instance of T,!, where T,! 
5 Ti, where 5 denotes type subsumption. 

The second form is used when ,L? is implemented in ROCK, where the (optional) result is 
explicitly distinguished from any input parameters. An operation interface @ : TI x . . . x T,,_l + T,., 
is assumed to exist, such that each ri denotes an instance of T,!, T,f 5 T;. In this case, the result 
of evaluating the ROCK method /3 with the given parameters is unified with r,,. If n = 0 then 
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P@Q z&f p()Ocr. The above forms exist to support the integration of ROCK & ROLL, as 
discussed further in section 6. 

A ROLL atom can be negated, using the me&logical symbol ‘I’, hence negation is allowed, 
either in queries or in rule bodies. The semantics for negation that is implemented in the ROCK & 
ROLL system is stratified semantics. Alternatives such as those discussed in [44], e.g. well-founded 
models, stable models, modularly stratified semantics, are also admissible in the context of ROLL 
but, for the purposes of implementation, are either plagued by anomalies or cannot be computed 
in acceptable time (for details on both these problems, see [44]). 

A ROLL clause is a disjunction of literals of which at most one is positive. A clause containing 
a single literal is called a unit clause. The notion of a ROLL fact (a positive unit clause) though 
well-defined [23], is not relevant in the context of the ROCK & ROLL system because the asserted 
facts that describe the state of an object at any point in time are encapsulated and are only made 
available in computations as responses to message-sends. A ROLL rule is a clause with exactly 
one positive literal and with at least one negative literal. The positive literal is referred to as 
the head, the set of negative literals is referred to as the body. Finally, a ROLL query is a clause 
containing negative literals only. The usual convention is followed of rewriting a clause as a reverse 
implication, i.e. head ‘ : -’ body, and replacing disjunctions by commas. 

5.1.1. Example Query 

The following is an example of a ROLL query which retrieves as bindings for L all available 
landParcel objects connected to the particular landParcel represented by ! yt. The operator == 
denotes unification. 

connected( ! y)OL, get_availability@L == “yes” 

5.1.2. Example Rules 

The following example rules implement the connected relation referred to in the above query. 
The rule for adjacent defines a binary relation between polygons, while connected defines the 
transitive closure of this adjacency relation. 

adjacent(PolyB)OPolyA :- 
PolyA 0 PolyB. 
get_member@PolyA == Segment, 
getslember@PolyB == Segment; 

connected(PolyZ)OPolyA :- 
adjacent(PolyZ)OPolyA; 

connected(PolyZ)QPolyA :- 
adjacent(PolyB)OPolyA, 
connected(PolyZ)aPolyB; 

In practice, although the notion of a ROLL program as a finite set of ROLL clauses, is well- 
defined [23], it is not relevant in the context of the ROCK & ROLL system because, in the 
integrated language, programs are defined in the context of classes as methods, using the syntactic 
form described in section 6.2.1. 

5.2. Implementation of ROLL 

Although ROLL operates over a more expressive data model than conventional deductive 
database languages, it is based on first-order Horn clauses. This allows the implementation of 
ROLL to build upon earlier work on query optimisation and evaluation in deductive relational 
databases, as surveyed in [14]. The presence of more comprehensive modelling constructs than in 
earlier deductive database languages impacts on the optimisation and evaluation processes thus: 

tNote that the ! indicates that a ROCK program variable y is supplied as input to the query which generates 
bindings for the logic variable L. 
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Optimisation: Increased information is available on the types of values that can be stored in 
variables, and access paths to objects are navigational rather than value based. 

Evaluation: Object-oriented behavioural features such as overriding impact upon the flow of 
information at runtime, and value-based joins are largely replaced by navigational exploration 
of the object base. 

While different optimisation strategies (e.g. magic sets, query-subquery) could potentially be 
adapted for use with ROLL, the strategy adopted is based upon static filtering [29], adapted 
in a way that supports new kinds of constraints on logic variables. The evaluation strategy that 
has been implemented executes queries bottom-up using a graph structure which is essentially an 
object algebra. 

As different evaluation strategies seem to be be most suitable for different types of query, 
we have also designed a top-down evaluation strategy based on an extended form of the Warren 
Abstract Machine (WAM) [20]. As this has not yet been implemented, it is not described further 
here. 

5.2.1. Bottom-Up Evaluation of ROLL 

The principal evaluation strategy for ROLL is bottom-up, and enables the use of bulk operations 
which trawl the database or operate over highly interconnected sets of objects. It is based around 
a modified form of Processing Zkee aa defined by [32]. This is a form of query execution plan which 
represents query evaluation by means of dataflows. Processing Trees are constructed from System 
Graphs [29] which are an internal form used to represent a parsed query and the underlying ROLL 
rules which implement it. 

An approach based on Static Filtering [29] is used to perform global optimisation of Processing 
Trees prior to execution. In Static filtering, constraints appearing within a query are propagated 
down through the Processing Tree. In certain circumstances a constraint appearing in a calling 
rule may be moved into the called rule, allowing it to be applied earlier. A typical example is 
where a binding from a query argument is propagated down the graph as a binding constraint. 
This allows the combinatorial explosion of goal solutions to be nipped in the bud. 

After static filtering, a second stage of Processing Tree optimisation attempts to reorganise 
nodes within a given section of the tree. A heuristic search is used to consider alternative order- 
ings for bulk operations in the processing tree. A cost estimate is used to compare alternative 
arrangements for each tree section and this cost is used to control the search process. This part of 
the optimisation process works from the bottom of the tree upwards, using the best cost estimate 
for subordinate tree sections as inputs to the cost function for the parent tree section. 

The stages in the ROLL compilation process are as follows: 

Parsing of methods and queries. 

Type-checking of methods and queries. 

Construction of system graphs for each method and query. 

Verifying stratification of negated goals in system graphs. 

Construction of processing tree from each system graph. 

Global optimization of each processing tree. 

Local optimization of each processing tree. 
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5.2.2. System Gmphs 

201 

A System Graph is a form of rule-call graph rooted at a query. Nodes in successive levels 
of the tree alternate between god nodes aud constraint nodes. In the context of RDBs, goal 
nodes correspond to intensional predicates or stored relations. Constraint nodes represent rulea 
implementing intensional predicates; they are linked above to the goal they define and below to 
the goals they call; they also mention constraints, restrictions on goal solutions such it9 equalities 
or bindings of arguments. 

f \ 
Y == !y, 

X.availahility = “yes” 

\ / 
h 

X/P ,lyA 

YIP ,lyZ 

WyA 

PolyA.memher = Segment 

Fig. 8: Example system graph for ROLL rule. 

ROLL System Graphs can use relationships defined by the object model either as constraints 
or as primitives which generate bindings. For example, an attribute relation between two goal 
arguments serves to constrain solutions. If only one argument is generated by another goal then 
the attribute constraint generates bindings for its other argument. If neither argument appears 
in other goals then a type generator goal is added, producing candidate bindings for one of the 
arguments. 

The example query and rules in section 5.1 give rise to the system graph in figure 8. Ovals 
represent goal nodes and boxes constraint nodes. Where necessary, goal node outputs are labelled 
with aliases of the form ConstVar/GoalVar which relabel goal variables to the appropriate con- 
straint variable. The type generator for PolyA at the bottom of the tree drives the getmember 
attribute constraint producing bindings for the other variables. The base clause for the recursive 
definition of connected does not constrain its inputs, hence the corresponding constraint predicate 
is true. 
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52.3. Query Execution via Processing ties 

Processing Trees can be viewed as a query execution plan for a ROLL query. They are imple- 
mented using the E class pt_I!Yee which stores a linked set of Processing Tree Nodes. Each Node is 
an (indirect) instance of the abstract E class pt_Node. Subclasses of pt_Node represent particular 
database operations. The hierarchy of node classes is detailed in figure 9. 

< 

Dt_%DW3C.Xl 

Dt_SCM 
Dt_AZl”.SC~ 

< 

Dt_ZWiJOin 
Dt_JOin 

Dt_~rodUCt 

Dt_PiXhint 
\ 

Dt_d-Wd 

Dt_~lO” 
< 

Dt_Attr 

Dt_=YD. 

Dt_TbriOn 

Dt_k3al 

Fig. 9: E Class hierarchy for internal representation of processing trees. 

Query evaluation is based upon a dataflow execution model. Binding tuples which represent 
solutions to query goals flow upwards from the leaves of the processing tree to the root. Each tuple 
is an instance of the E class Tzlple, a vector of references to OM objects. Nodes receive tuples from 
input nodes lower down the tree and combine them or filter them, as appropriate, passing on valid 
solution tuples to nodes further up the tree. An example processing tree is detailed in figure 10, 
implementing the system graph given in figure 8. 

Leaf nodes in the processing tree are either pt_EnumScans, which generate tuples containing 
individual objects (query arguments or constants mentioned in the rules), pt_TypeScans which gen- 
erate tuples containing all instances of a given type or pt_NegTypeScans which are like TypeScans 
but avoid generation of instances for types which specialise a rule (see also fixed feed nodes below). 
In the example tree the bottom left node is a pt_TypeScan producing singleton tuples containing 
instances of the class polygon. 

Join nodes are used to combine solutions from subgoals. All joins are binary, combining pairs 
of input tuples to generate an output tuple. A cascade of joins is used to combine solutions from 
multiple goals. A join is either a pt_XProduct which merely concatenates its input tuples, or a 
pt_EquiJoin which also imposes an equality constraint on its input tuples’ arguments. Join nodes 
keep copies of all input tuples SO that they can remove duplicates, avoiding unnecessary propagation 
of repeated solutions. In the example tree a pt_Equijoin combines tuples from the adjacent and 
connected relations where the second element of the left tuple equals the first element of the right 
tuple. 



Design and Implementation of ROCK & ROLL: A Deductiive Object-Oriented Database System 203 

Fig. 10: Example processing tree for ROLL rule. 

pt_Constraint nodes filter their input stream removing tuples which fail to satisfy constraints 
expressed in the rules. The simplest constraints are implemented by pt_Equal and pt_Alias nodes, 
which arise from unifications in rule bodies. They only propagate tuples which, respectively, have 
either a particular value for a given entry or the same value in two entries. In the example tree 
an assignment constraint at the top of the tree enforces the constraint that query solutions have 
a given value (!y) for the second argument. Other nodes, (e.g. pt_Attr nodes) ensure that tuple 
entries are related according to structure relations defined in the OM data model (e.g. that one is 
an attribute of the other). &Type nodes are used to remove tuples whose entries are not members 
of a subtype. This is necessary where a subgoal produces solutions of a generic type and it is 
known from type inference in the calling rule that the type of the goal argument is a subtype. 
Conversely, pt_NegQpe constraint nodes are required in the presence of overriding to filter out 
tuples containing instances of subtypes. 

pt_FixPoint nodes are used to propagate solutions to recursive queries back down the graph for 
recursive combination. pt_FixFeed nodes occur as leaf nodes in place of recursive subgoals in the 
tree. They are fed with solutions as they arrive at the corresponding fixed point node. Fixed point 
nodes retain copies of all input tuples in order to avoid propagating repeat solutions to their feed 
nodes. This avoids unnecessary work and also allows the fixed point computation to be terminated 
when propagation of solutions to feed nodes results in no new solutions arriving at the fixed point 
node. In the example tree the pt_FixPoint node in the middle of the graph feeds new solutions 
to the connected relation back to the pt_Fiqfeed node in the bottom right of the tree for recursive 
combination with solutions to ancestor. 

pt_Project nodes project a subset of entries from their input tuples and pass these on as outputs. 
This allows intermediate references required for constraint checking to be dropped when they are 
no longer required. It has the added benefit of reducing the number of tuples stored in join and 
fix point nodes since solution tuples which differ before projection may be equal after projection. 
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In the example graph project nodes occur above the tree sections corresponding to each of the 
original rules, projecting out tuple entries which correspond to the formal parameters of each rule. 

pt_Union nodes are used to merge solutions arising from different rules. They merely propagate 
tuples arising from their inputs without processing them. pt_Goal nodes do not perform processing 
either, passing on their input tuples directly to their outputs - their function is to mark boundaries 
in the tree during optimisation. 

5.24. Processing Tkee Optimization 

Optimization of processing trees proceeds in two stages. Global optimization is analogous to 
the static filtering optimization of [29]. Constraint nodes appearing in one section of the tree 
are moved through join and goal nodes to subordinate constraint sections, thereby performing 
the associated selection operations early. The propagation algorithm ensures that constraints 
propagated through a goal are valid in the presence of multiple invocations of the goal, including 
recursive invocations. If necessary, alternative propagated constraints are added in parallel rather 
than in series, implementing a disjunctive constraint. 

Fig. 11: Example processing tree after global optimization 

For example, the equality constraint #2 =!y in the example processing tree in figure 10 can 
be propagated through the connected/2 goal (note that the index is remapped in accordance with 
the projection). This constraint remains valid when propagated through the recursion, so it is 
legitimate to add it to each branch below the project nodes. Since all solutions output by the 
connected/2 node will satisfy the assignment, it may be removed from the top of the tree. The 
constraint on the value of the availability attribute cannot be propagated since it does not remain 
valid when pushed down through the recursive call. The Equal node does not propagate further 
down through the adjacent/2 goal since the invocation via the join node is unconstrained. The 
tree resulting from global optimization is shown in figure 11. 
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Local optimization partitions the tree into sections bounded above by a goal node (or the top 
node for the query) and below by directly invoked subordinate goal nodes. A heuristic search is 
used to reorder join nodes in each section and to move constraint nodes down into the join tree. 
The search is guided by a cost function which estimates a cost for the current tree section using the 
cost estimate for subordinate sections and estimates for the number of solutions processed by the 
current section’s join and constraint nodes. Since global optimization will have identified where 
it is possible to propagate constraints into subordinate tree sections, it is only necessary for the 
search process to consider local orders. This partitioning of the optimization process limits the 
danger of a combinatoric explosion in the search process. 

6. INTEGRATING ROCK & ROLL 

The integration of ROCK and ROLL overcomes both aspects of the impedance mismatch which 
commonly results from embedding one language in another: 

fipe system mismatch: which is overcome because both languages share the same underlying 
data model, and have the same type system realised in OM. It is thus possible to perform 
strong type checking across the interface. 

Evaluation strategy mismatch: which is overcome because the data values retrieved by one 
language can be handled directly by the other, thereby removing the need for copying between 
formats or for special treatment of temporarily unassigned results. 

We are left with a paradigm or stylistic mismatch which implies that the user has to have an 
understanding of the two different paradigms supported by the integrated system. This form of 
mismatch is unavoidable in any system which brings together distinct computational paradigms. 
The nature of the integration in ROCK & ROLL is that the user can switch between using the 
imperative language and the logic language without suffering from the conventional manifestations 
of the impedance mismatch, and without having to learn substantially different syntaxes for the two 
languages. However, it as necessary for programmers to change their way of thinking to conform to 
the style which suits the paradigm being used for any particular task. Thus ROCK & ROLL can 
be seen as facilitating the development of complete data-intensive applications in which different 
parts of the application are most naturally expressed using different computational styles. 

The integration of the two languages is such that the imperative language can embed any 
expression in the logic language as long as the type inferred for that expression conforms to the 
type rules. The logic language can invoke any method defined in the imperative language as long 
as that method is side-effect free. 

A type inference mechanism is used with ROLL queries - ROLL can be used both as an 
interactive query language and as an embedded language. The decision to use type inference for 
ROLL is motivated by: 

The need to minimise the amount of type definition syntax in an interactive query language, 
where conciseness of expression is an important practical consideration. 

The need to retain strong type checking in ROCK programs which invoke embedded ROLL 
queries. 

The need to have as similar a syntax as possible for the interactive and embedded forms of 
ROLL. 

The need to conform to the expectations of logic programmers using ROLL, who are not 
accustomed to entering type definitions in other logic programming languages. 

The need to identify type information for use in query optimisation. 
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It is possible to explicitly associate a type with a ROLL variable using the operator :, as 
in L : landParcel. This explicit association of a type with a ROLL variable is sometimes neces- 
sary to allow the compiler to infer a unique type for an expression, or can be used as a form of 
documentation. 

The process of integration has two aspects: the embedding of the imperative language in the 
logic one and vice-versa. 

6.1. Embedding ROCK in ROLL 

ROLL may invoke any ROCK method as long as the method is side-effect free. A method 
is sideeffect free if it does not update, directly or indirectly, any non-local data. Any method 
which may itself update any non-local data, or which is overridden by a method which may update 
non-local data, is considered to have side-effects. The classification of a method according to this 
criterion can be determined at compile time. There is no additional syntax associated with the 
invocation of a ROCK method from ROLL (examples are given in section 6.2.2). 

6.2. Embedding ROLL in ROCK 

6.2.1. Method definition using ROLL 

In the integrated system, it is possible to define methods in the logic language as well as in the 
imperative one. ROCK requires signatures of methods to explicitly distinguish between input and 
output parameters. This conflicts with the fact that in logic programming no such distinction is 
required. 

The solution adopted is to define ROLL methods within classes with the types of the parameters 
given by the signature of the method in the corresponding type definition. However, no distinction 
is made in the definition of a ROLL method between input and output parameters. Thus ROLL 
methods can be invoked with different binding patterns for their arguments, as illustrated in section 
6.2.2. 

Overloading and overriding of ROLL methods is allowed, and the process of binding a call to 
an implementation is handled in a way analogous to that for methods defined in the imperative 
language. 

polygons are adjacent to each other if th”ey 
transitive closure of ad j acent. 

As an examnle. the ROLL method adiacent attached to the class polygon indicates that two 
share a common segment, whereas connected is the 

class polygon 
public : 

adjacent (polygon) 
begin 

adjacent(OtherPolp)@ThisPoly 
OtherPoly <> ThisPoly, 

:- 

get_memberQDtherPoly == get_member@ThisPoly; 
end 

connected(polygon) 
begin 

connected(OtherPoly)WhisPoly :- 
adjacent(OtherPoly)QThisPoly; 

connected(OtherPoly)OThisPoly :- 
adjacent(IntermediatePoly)6ThisPoly, 
connected(OtherPoly)OIntermediatePoly; 

end 
. . . 

end-class 
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62.2. Querying 

A query expression belongs to the syntactic class of object expressions of ROCK, and can 
therefore be used in any context in which an object expression is appropriate. 

Queries are delimited by square brackets. A query expression can take one of three forms: 

1. [ ROLL goal ] 

Returns true if the ROLL goal succeeds, else false. 

2. [ { Projected V ariables} 1 ROLL goal ] 

All the projected variable bindings which satisfy the goal are collected in an association. 

3. [any Projected Variables 1 ROLL goal ] 

This form is a variant of the previous one, in which rather than collecting all solutions 
together as a set, a single solution is selected nondeterministically. 

The following are examples of ROLL queries embedded in ROCK: 

l Retrieve all the landparcels which are adjacent to those owned by ICI. 

resl := [ {Y) I adjacent(X)QY, get_ownerBameQget_ownerQX == "ICI" 1 

In this example, the result resl must have been previously declared to be an association of 
landparcels. The type inference system will verify that the result of the embedded ROLL 
statement is of appropriate type. 

The result of the ROLL query is a new object constructed by association. The persistence 
of this association is determined by resl - it will only persist if resl is an instance of a 
persistent class. 

l Retrieve all the land parcels which are availabIe in road R7 with price less or equal to 10000. 

l 

var res2 := C {LPI I 
get_roadIhuneQget_roadQLoc == "R7", 
get_landParcel@Loc == LP, 
get_availability@LP == "yes", 
get_priceOLP == Price, 
Price <= 10000 1 

In this example, the type of res2 is inferred to be an association of land parcels, as this is the 
type of the result of the embedded ROLL query. It is then possible for ROCK to manipulate 
the objects retrieved by the query. For example, the following ROCK code fragment increases 
by 10% the price of all the landParcels retrieved: 

foreach 1 in res2 do 
put_price(get_price01*1.1)61; 

Retrieve objects which are adjacent to various existing land parcels: 

var pi:= new landParcel(....); 
var p2:= new landParcel(....); 
. . . 

var re83:= [ {X) I adjacent(X)@!pl 1 

var res4:= C adjacent(!pl)Q!P2 1 

var resS := [ I<Y,R>) I adjacento[)QY, 1 
get_availabilityQX =* "yes", 
get_landParcelQLoc =* Y, 
get_road@Loc == R 1 
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In this example, the ROCK variables pl and p2 are assigned to particular (newly created) 
landparcel objects. 

The ROCK variable res3 is then assigned the set of landParcels which are adjacent to the 
object referenced by pl. The value of the ROCK variable pi is obtained by the ROLL query 
by embedding pl in the ROLL goal (an embedded variable is distinguished by the prefix ! ). 

The ROCK variable res4 is assigned either true or false, depending upon whether or not 
pl and p2 are adjacent. 

The ROCK variable res5 is assigned a set of aggregates of type landparcel x road rep- 
resenting roads that have a location next to landParcels that are adjacent to available 
landparcels. 

The examples which assign to res3, res4 and res5 illustrate how the ROLL method adjacent 
can be called using different binding patterns. In the example which assigns to res3, the 
message-recipient is bound but the argument is free. In the example which assigns to res4 
both the message recipient and the argument are bound. In the example which assigns to 
res5, both the message recipient and the argument are free. The optimiser can exploit such 
binding information, as shown in section 5.2.4. 

In fact, it is also possible to use ROCK methods from within ROLL with different binding 
patterns, although in this case the evaluator must actually call the ROCK method with all 
input parameters and the message recipient bound. 

A more detailed discussion on the nature of the integration of ROCK & ROLL is given in [7]. 

6.9. Implementation of Integration 

The additional implementation work associated with the integration of ROLL and ROCK is 
quite modest, as each of the integrated components retains its principal features. The following 
are the principal implementation tasks not mentioned earlier in the paper, but it is noteworthy 
that much of the work associated with these tasks would be required to support a free-standing 
ROLL interface to a database described using OM and manipulated using ROCK: 

1. ROLL front-end: The ROLL parser and type inference system have been implemented within 
the structural framework described for the ROCK compiler in section 4.2. At the design level, 
a whole new set of semantic objects (e.g. Goal, SubGoal, Clause etc.) are introduced. For 
each of these semantic objects, a new E class is defined which implements the methods for 
type checking/inference. 

The type inference algorithm defined for ROLL is based on: 

l Using type information provided by the context. 

l Assigning generic types to logic variables. 

a Gradual derivation of specific types from more general ones. 

The concept of generic type is implemented as an E class PolyType which references a type 
expression. This type is replaced as more specific types are inferred. The way PolyTypes are 
used is now described by way of an example. Assume the following query, which returns the 
set of polygons that are adjacent to polygons with an area greater than 10000: 

[ {X} I adjacent(X)@Y, getarea@Y )= 10000 ] 

Initially, the type of the logic variables X and Y is assumed to be a PolyType, whose body is 
NULL. From the subgoal adjacent (X)@Y, it can be inferred that both X and Y have the type 
polygon, as this method is defined in the class polygon, and takes as parameter a polygon. 
Thus the PolyType associated with each of these variables is made to point to that type. 
If it were the case that the next subgoal allowed a more specialised type to be inferred for 
one or both of the variables, this more specific type would replace polygon in the PolyType 
reference. 
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2. ROCK/ROLL evaluation: The ROCK interpreter must be extended to invoke the ROLL 
evaluator on embedded ROLL queries, and the ROLL evaluator must be able to invoke the 
ROCK interpreter to handle ROCK calls from within ROLL queries. This process is eased by 
the fact that both languages build upon the same object manager, and thus the translation 
of values passing between the two interpreters is minimal and completely transparent to the 
programmer. 

The extensions to the ROCK implementation with respect to evaluation only relate to the 
creation of the corresponding objects (according to the projection expression of the query) 
from the set of bindings returned by ROLL. A query expression defines an Eva1 method, 
which invokes the ROLL’ engine to compute a set of bindings for each variable projected in 
the query, and collects the result into the appropriate structures. 

7. CONCLUSIONS 

7.1. Current Position 

A complete implementation of ROCK & ROLL, as described in this paper, has been devel- 
oped, such that the individual components consist of approximately the following number of 
lines of E (persistent C++) code: OM = 3,000; ROCK = 16,000; ROLL = 13,000. The sys- 
tem is available over the Internet - for more information see the following World Wide Web page: 
http://www.cee.hw.ac.uk/Databases. 

7.2. Sunma y 

This paper has presented a novel approach to the design and implementation of a deductive 
object-oriented database system. The overall design builds upon a semantically expressive object- 
oriented data model from which two languages have been derived, one an imperative manipulation 
language and the other a logic query language. It has also been shown how these two languages 
can be integrated without introducing classical impedance mismatches. 

The resulting system retains the traditional strengths of both paradigms. In step with other 
object-oriented databases, application data can be described using a powerful data model and 
manipulated by a computationally complete programming language, thereby allowing a close inte- 
gration of programs and the data on which they operate. Object-oriented facilities can be used for 
structuring and sharing both programs and data in a uniform context. In step with other deductive 
databases, both queries and rules can be expressed using a logic language which is firmly within 
the formal framework provided by first-order logic. The logic language is thus amenable to opti- 
misation and evaluation using extensions to existing techniques developed for deductive relational 
databases. 

Not only are traditional strengths maintained, widely recognised weaknesses of the respective 
paradigms have been overcome. The object-oriented aspects of the system benefit from a for- 
mally defined data model and logic query language, thereby allowing rule-based applications to 
be developed in the context of an object-oriented database. The deductive aspects of the system 
are enhanced by the expressive data model, by strong type checking of logic queries and meth- 
ods, and by an integrated data manipulation language which allows updates, I/O and procedural 
computation without complicating the semantics of the logic language, which remains side-effect 
free. 
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