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Abstract Spatial composition tables are fundamental tools for the realisation of
qualitative spatial reasoning techniques. Studying the properties of these tables in
relation to the spatial calculi they are based on is essential for understanding the
applicability of these calculi and how they can be extended and generalised. An
extensional interpretation of a spatial composition table is an important property
that has been studied in the literature and is used to determine the validity of the
table for the models it is proposed for. It provides means for consistency checking of
ground sets of relations and for addressing spatial constraint satisfaction problems.
Furthermore, two general conditions that can be used to test for extensionality of
spatial composition tables are proposed and applied to the RCC8 composition table
to verify the allowable models in this calculus.

1 Introduction

Qualitative Spatial Reasoning (QSR) is concerned with the qualitative aspects of
representing and reasoning about spatial entities. The challenge of QSR is to ”pro-
vide calculi which allow a machine to represent and reason with spatial entities of
higher dimension, without resorting to the traditional quantitative techniques preva-
lent in, for example, the computer graphics or computer vision communities” [3].
There are many possible applications of QSR, for examples, in Geographical Infor-
mation Systems (GIS), spatial query languages, natural languages and many other
fields.
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One of the most widely referenced formalisms for QSR is the Region Connection
Calculus (RCC), initially described in [11, 12] and intended to provide a logical
framework for spatial reasoning.

Given a fixed vocabulary of relations, Rels, the composition table allows the
answer of the following question by simple lookup: given two relational facts of the
forms R(a,b) and S(b,c), what are the possible relations (from the set Rels) that
can hold between a and c? Composition tables are essential tools for solving spatial
constraint satisfaction problems, for example checking the integrity of a database of
atomic assertions (involving relations in some set for which we have a composition
table) by testing whether every three relations are consistent with the table [3].

An extensional interpretation of composition tables (CT) is a property that checks
if the table is valid for the models it is associated with. The RCC theory allows re-
gions in topological space as models with no restriction on their complexity. Pre-
vious research work have raised questions on the extensionality of the RCC CT
and admitted that an extensional interpretation of the table is not compatible with
the RCC theory [2, 1]. The question of when would a composition table have an
extensional interpretation needs to be addressed. Answers to this question will al-
low for deeper understanding of current spatial calculi and their further develop-
ment. The property of extensionality is a reverse interpretation of the property of
composition. For example, one of the possible relations resulting from the compo-
sition EC(touch)(a,b)∧EC(b,c) is the relation EC(a,c). For extensionality to be
achieved for any configuration of the relations EC(a,c), there must exist a third
object b such that both relations EC(a,b) and EC(b,c) exist.

In this paper, different type of regions that are possible models of the RCC the-
ory are first identified and the extensionality problem is expressed in terms of the
composition triads over the different combinations of those regions. Two general
conditions are proposed that can be used to identify non-extensional cases in spatial
composition. These are based on the property of connectivity of objects and space.
The value of using these conditions are demonstrated through the application of a
representation and reasoning approach that encapsulates the explicit representation
of connection and hence always results in extensional compositions. Section 2 gives
a brief survey of related work. In section 3, the extensionality problem is expressed.
In section 4, the two general conditions for checking extensionality are proposed.
Application of the proposed conditions is presented in section 6 on the defined ex-
tensionality problem. Summary and conclusions are given in section 6.

2 Related Work

RCC8 [3] is a topological constraint language based on eight atomic relations be-
tween extended regions of a topological space. Regions are regular subsets of a
topological space, they can have holes and can consist of multiple disconnected
pieces. The eight atomic relations DC (disconnected), EC (externally connected),
PO (partial overlap), EQ (equal), TPP (tangential proper part),NTPP (non-tangential



Deriving Extensional Spatial Composition Tables

proper part) and their converse relations TPPi,NTPPi were originally defined in first-
order logic. In this theory regular closed regions are considered, i.e., regions that are
equivalent to the closure of their interior. The RCC8 theory does not distinguish
between open, semi-open, and closed regions. Regions do not have to be internally
connected, i.e. a regions may consist of different disconnected parts. It was shown
by Duntsch [5, 4, 10, 8], that the composition of RCC8 is actually only a weak
composition.

Weak composition (�) of two relations S and T is defined as the strongest
relation Rε2A which contains the true composition SoT , or formally, S � T =
RiεA|Ri∩ (SoT ) 6= φ [13].

Benett et al[1] call a weak composition table (entailed by Θ ) extensional pro-
vided that the fact CT (R,S) = {T1, · · · ,Tn} always implies Θ |= ∀x∀z

[
(T1(x,z)∨

·· ·∨Tn(x,z))↔∃y
[
R(x,y)∧S(y,z)

]]
. Semantically speaking, this assures that , for

any Θ model R and constants a,c ∈ R, the relational fact Ti(a,c) also implies that
there exists some constant b ∈ R such that R(a,b) and S(b,c) holds, where Ti is a
relation symbol taken from CT (R,S). That is to say, Θ entails an extensional weak
composition table if and only if each of its model is also an extensional model of
this composition table.

Bennett [2] has pointed out that an extensional interpretation is not compatible
with the RCC theory and had suggested the removal of the universal region u from
the domain of possible referents of the region constants.

However, Li and Ying [9] proved that Bennett’s conjecture is not valid and ex-
amined an RCC8 model comprising disks and regions with holes. They proved that
no full extensional interpretation is possible. The extensionality of the table in the
case of closed disks only has also been studied and proved [8]. Duntsch proposed
RCC11 by considering the complement of a disk as a closed region (complemented
closed disk algebra). Li and Ying [8] proved that the later algebra, whose domain
contains only the closed disks and closures of their complements in the real plan is
also an extensional model.

The above works so far have considered the extensionality of RCC8 for com-
position triads involving region with a hole. Because of the richness of the spatial
domain, the results are not yet complete [10]. The approaches are based on visual
reasoning with the triads and hence are not proven to be complete. They are also
specific to the types of regions considered and could not therefore be generalized
further to consider different models. Although exhaustive analysis was carried out
for the cases considered, resulting in detailed labeling of the problem triads, expla-
nations are lacking of when and under what conditions does the problem occur. The
contribution of this work is two-fold. First, a method is proposed to identify con-
ditions when extensionality is violated and secondly it is shown how extensional
composition tables can derived by preserving the connectivity properties of space
and its components.
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3 Extensionality Problem of Composition Tables

Basic Notations:
For any R,S,T ∈ R8, 〈R,T,S〉 denotes the fact that T is an entry in the cell speci-

fied by the ordered pair 〈R,S〉 in the RCC8 composition table, i.e. T ∈CT (R,S). As
in [9] 〈R,T,S〉 is denoted a composition triad.

Our task is to verify, for each RCC model R and each triad 〈R,T,S〉 whether or
not the following condition is true:

(∀x,z ∈ R)
[
Tx,z → (∃y ∈ R)[R(x,y)∧S(y,z)]

]
(1)

There are 178 possible triads in the RCC8 CT. If either R or S is the identity
relation ’=’, then condition 1 is always true.

Regions in the RCC theory do not have to be open or closed or indeed internally
connected and may consist of disconnected parts [3]. Three possible general con-
figurations for regions can be distinguished in this theory, namely, closed disks (D),
region with a hole (H) and a region with (at least two) disconnected parts (N), as
shown in figure 1.

Fig. 1 Possible configurations of regions in topological space; closed disks, region with a hole and
non-connected regions

Region triads are used to indicate the types of regions considered. Example of
possible models include, 〈D,H,N〉, to indicate relations between a disk (D), region
with a hole (H) and a region with non-connected parts (N), 〈H,H,N〉, 〈N,N,N〉,
etc. In total, there are 16 possible triads.

The extensionality problem need to consider all possible permutations of the
regions and hence verify condition 1 for all possible RCC models. The number of
composition triads that needs to be considered is therefore 2848 (16 x 178).

Li and Ying [9] considered the region triads 〈H,D,D〉 (also equivalent to 〈D,D,H〉
as well as 〈D,D,D〉 in [10]. All possible relationships T (x,z) satisfying these mod-
els were identified and then a visual search for region y was conducted to verify
extensionality.

An annotated composition table is constructed where a superscript T x is attached
to each cell entry that leads to a non-extensional interpretation, as shown in table
1. All 178 cell entries were examined and the work concluded that an extensional
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model of the RCC8 composition table is only possible if the domain of possible
regions is greatly restricted. In particular, regions with holes are disallowed. Also,
that it would not be enough to ”remove the universal region of the possible refer-
ents of the region constants” and suggested by Bennett [2]. The work also suggests
by means of an example that ”regions with two discrete components are possibly
disallowed”, but did not provide any evidence for it.

Fig. 2 Eight JEPD topological relations.

In what follows we use basic definitions for the interior, boundary and exterior
of regions in a topological space. Let U be a topological space, X ∈U be a subset
of U and p ∈U be a point in U .

• p is said to be an interior point of X if there is a neighborhood n of p contained
in X . The set of all interior points of X is called the interior of X , denoted i(X).

• p is said to be an exterior point of X if there is a neighborhood n of p that
contains no point of X . The set of all exterior points of X is called the exterior of
X , denoted e(X).

• p is said to be a boundary point of X if every neighborhood n of p contains at
least one point in X and one point not in X . The set of all boundary points of X
is called the boundary of X , denoted b(X).

• The closure of X , denoted c(X), is the smallest closed set which contains X . The
closure of a set is the union of its interior and its boundary.

Figure 3 shows the boundary, exterior and interior of the different regions con-
sidered in this work.

The question now is which of the 2484 triads imply non-extensional interpreta-
tion of the RCC8 CT.



Baher El-Geresy et al.

◦ DC EC PO TPP NTPP TPPi NTPPi

DC > DC ECx DC EC DC ECx DC EC DC DC
POx PO POx PO
TPPx TPP TPP TPP
NTPP NTPP NTPP NTPP

EC DC ECx DC ECx DC EC EC POx DC EC DC
POx POx = PO POx TPPx

TPPix TPP TPP TPPx

NTPPi TPPi NTPP NTPP NTPP

PO DC EC DC EC > PO PO DC EC DC EC
PO PO TPP TPP PO PO

TPPi TPPi NTPP NTPP TPPi TPPi
NTPPi NTPPi NTPPi NTPPi

TPP DC DC EC DC EC TPP NTPP DC = DC ECx

PO TPP NTPP ECx POx

NTPP POx TPPix

TPP NTPPi

NTPP DC DC EC DC EC NTPP NTPP DC ECx >
PO TPP POx

NTPP TPPx

NTPP

TPPi DC ECx EC PO POx POx TPPi NTPPi
POx POx TPPi TPP TPPx

TPPix TPPix NTPPi TPPi = NTPP
NTPPi

NTPPi DC EC POx PO POx PO = NTPPi NTPPi
PO TPPix TPPi TPPix TPP

TPPi NTPPi NTPPi NTPPi NTPP
NTPPi TPPi

NTPPi

Table 1 Extensional Composition table for the RCC8 relations. Rx indicate composition results
leading to non-extensional interpretation of the table .

Fig. 3 Boundaries, interiors and exteriors of regions.

4 Connection and Extensionality

In any composition table involving three objects (x,y,z), for an entry in the table
corresponding to objects x and z (T (x,z) ) to be extensional requires the existence
of another object y such that both relations R(x,y) and S(y,z) can be realised. If
the resulting spatial configuration makes it impossible for a self-connected object to
exist 1, then this entry is non-extensional.

1 Recall that a region is called selfconnected if there is a path between any two points of the region
that is completely contained in it.
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In what follows, this connection property is used to study the extensionality prop-
erties of the RCC8 composition table and identify cases where extensionality is
violated. If this property is explicitly modeled and considered in the reasoning for-
malism, the resulting composition table will always be extensional.

4.1 Extensionality of the Region Connection Calculus
Composition Table

Three basic types of regions are normally considered in the literature, namely,
a simple disk D, a region with a hole H and a disconnected region N. Sixteen
possible region triads (D,H,N) need to be considered. One way to manage the
study of the large number of possible relation triads in the composition table is
to group them into two more general subsets; one with the set of containment rela-
tionship (T PP,T PPi,NT PP,NT PPi), denoted (containment composition) and the
other group with the rest of possible relationships (DC,EC,PO), denoted (non-
containment composition). In what follows, conditions for an extensional interpre-
tation of the triad of relations, R(x,y), S(y,z) and T (x,z) are identified.

Non-Containment Composition Figure 4 shows possible scenarios in the case
of simple regions for objects x and z and their relationships with a common object
y, where T (x,z) ∈ {DC,EC,PO}.

The condition for an extensional interpretation of the relation triad (R,T,S) can
be informally expressed as follows. A connected line must exist outside both object
x and z which also intersects the boundaries of both objects. One possible such line
is shown as a dashed line is shown in figure 4.

Let δx and δ z represent the boundary components of both objects x and z respec-
tively and x◦ and z◦ are the exterior components. Let l be line object. The extension-
ality condition can be stated as follows: l∩δx 6= φ ∧ l∩δ z 6= phi∧ l∩{x◦,z◦} 6= φ

Fig. 4 x is touching, overlapping or disjoint from z. The connection constraint shown as a line
joining the boundaries of the 2 objects.
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Containment Composition A similar constraint can be defined for the case
where T (x,z) ∈ {T PP,T PPi,NT PP,NT PPi}. The condition for an extensional in-
terpretation of the relation triad (R,T,S) can be informally expressed as follows.
A connected line must exist that joins the boundaries between both contained and
container objects and this line must be completely embedded inside the container
object. One possible such line is shown as a dashed line in figure 5.

This extensionality condition can be stated as follows: l ∩ δx 6= phi∧ l ∩ δ z 6=
φ ∧ l∩{x◦,z◦} 6= φ

Fig. 5 x is contained in z. The connection constraint shown as a line embedded in z that joins the
two boundaries of the 2 objects.

In what follows, we investigate the extensionality for the 16 possible combina-
tions of region triads. We exclude the triad 〈D,D,D〉which has already been proved.

Triads 〈H,D,D〉, 〈D,N,H〉, 〈D,H,H〉
This case has been studied in detail by Li [9] who enumerated all composition

triads that will lead to non-extensional tables. 35 entries were identified, marked
with a subscript (x) in table 1.

However, they failed to identify 4 possible triads based on the containment condi-
tion that will lead to non-extensionality condition. These triads are: 〈DC,T PP,PO〉,
〈DC,T PPi,PO〉, 〈EC,T PP,PO〉 and 〈EC,T PPi,PO〉.

Triads 〈N,D,D〉, 〈D,H,N〉
Figure 6(a) shows the relation T PPi(N,D) that does not satisfy based on the

containment condition. Examining its entry in the CT reveals that the following
triads will therefore lead to non-extensional interpretations,
〈T PPi,T PPi,EC〉 , 〈T PPi,T PPi,PO〉, 〈T PP,T PP,EC〉, 〈T PP,T PP,PO〉.
Triads 〈D,N,D〉, 〈D,H,D〉
In this case, the relation T (D,D) will always satisfy both conditions and so will

always lead to extensional tables.
Triads 〈H,N,N〉, 〈N,H,H〉, 〈N,D,H〉
Figure 6(b) shows the relation T PPi(H,N) that does not satisfy the containment

condition. Examining its entry in the CT reveals that the following triads will there-
fore lead to non-extensional interpretations,
〈T PP,T PP,EC〉 , 〈T PP!,T PP!,EC〉, 〈T PP,T PP,PO〉, 〈T PPi,T PPi,PO〉.
Triad 〈N,H,N〉, 〈N,D,N〉
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(a) (b) (c)

(d) (e)

Fig. 6 Cases of relations failing the extensionality condition. (a) Relation T PPi(N,D) between
X and Z. (b) Relation EC(H,N) between X and Z. X is a non-connected region that completely
overlaps Z. (c) Relation PO(N,N) between X and Z. (d) Relation PO(H,H) and EC(H,H) between
X and Z. (e) Relation T PP(D,N) between X and Z.

The relation PO(N,N), as shown in figure 6(c) leads to non-extensionality based
on non-containment condition with the following triads: 〈EC,PO,T PP〉, 〈PO,PO,T PP〉
and 〈T PP,PO,PO〉

Triad 〈H,N,H〉 The composition table is extensional because the third object is
not connected.

Triad 〈H,D,H〉
Here, the triads: 〈EC,PO,EC〉 and 〈EC,EC,EC〉 are problematic as shown in

figure 6(d), due to violating the non-containment condition.
Triad 〈D,N,N〉
Here, the triads: 〈T PP,T PP,EC〉 and 〈T PP,T PP,PO〉 and 〈PO,T PPi,EC)〉 are

problematic as shown in figure 6(e), as the containment condition can not be satis-
fied.

5 Verifying the Extensionality of the Composition Table

Consider the region triad (D,D,H) and the relation triad (EC,EC,EC). This triad
has been shown to be non-extensional in the case of the relation in figure 7(III).
In this case, the disk x completely coincides with the hole in object z. This case is



Baher El-Geresy et al.

considered to be non-extensional as no object y can be found such that EC(x,y) and
EC(y,z).

z01 z1 z2 z3 z02
x0 1 1 1 0 0
x1 0 0 0 1 0
x2 0 0 0 0 1

(a) (b)

Fig. 7 (a) EC(x,z), where x is a disk and z is a region with a hole. (b) Corresponding intersection
matrix.

Here, we examine this composition table entry more closely. We identify all pos-
sible scenarios for the composition and use a representation and reasoning approach
that consider the connectivity of the space and its components to derive the resulting
relationships between x and z. It is shown how the method results only in extensional
relationships and hence demonstrates that the general treatment of objects as in the
case of RCC8 is limited and that more specific representation of object complexity
are needed.

In figure 8 the object and space components are labeled to indicate their different
interior, boundaries and exteriors. In figure 9(III) a diagrammatical representation
of the spatial relations for R(x,y) and S(y,z) are shown. Intersection matrices asso-
ciated with the relationships are also shown to depict the intersection between their
individual components. Three possible EC relationships can exist between y and z.

Fig. 8 Object and space components for regions x (disk), y (disk) and z (region with hole).

The non-extensional relationship between x and z is shown in figure 7 along with
its corresponding intersection matrix.
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x0 x1 x2
y0 1 1 1
y1 1 0 0
y2 1 0 0

z01 z1 z2 z3 z02
y0 1 1 1 1 1
y1 1 1 0 0 0
y2 1 0 0 0 0

Case I

z01 z1 z2 z3 z02
y0 1 1 1 1 1
y1 0 0 0 1 1
y2 0 0 0 0 1

z01 z1 z2 z3 z02
y0 1 1 1 0 0
y1 0 0 0 1 0
y2 0 0 0 0 1

Case II Case III

Fig. 9 EC(x,y) and three different possible relationships EC(y,z).

The composition R(x,y) ◦ S(y,z)→ T (x,z) is derived by composing their cor-
responding matrices and propagating the empty and non-empty intersections using
the formalism defined in [7, 6]. Using the representation scheme of object and space
as in figure 9, two reasoning rules are used to propagate empty and non-empty in-
tersections between object components and the result is encoded in an intersection
matrix. The rules are as follows.

Rule 1: Propagation of Non-Empty Intersections
Let x′ = {x1,x2, · · · ,xm′} be a subset of the set of components of space X whose

total number of components is m and m′ ≤ m; x′ ⊆ X. Let z′ = {z1,z2, · · · ,zn′} be a
subset of the set of components of space Z whose total number of components is n
and n′ ≤ n; z′ ⊆ Z. If y j is a component of space Y , the following is a governing rule
of interaction for the three spaces X, Y and Z.

(x′ w y j) ∧ (y j v z′)
→ (x′∩ z′ 6= φ)
≡ (x1∩ z1 6= φ ∨·· ·∨ x1∩ zn′ 6= φ)
∧(x2∩ z1 6= φ ∨·· ·∨ x2∩ zn′ 6= φ)
∧·· ·
∧(xm′ ∩ z1 6= φ ∨·· ·∨ xm′ ∩ zn′ 6= φ)

The above rule states that if the component y j in space Y has a positive intersection
with every component from the sets x′ and z′, then each component of the set x′ must
intersect with at least one component of the set z′ and vice versa.
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The constraint xi∩z1 6= φ ∨ xi∩z2 6= φ · · · ∨ xi∩zn′ 6= φ can be expressed in the
intersection matrix by a label, for example the label ar (r = 1 or 2) in the following
matrix indicates x1∩ (z2∪ z4) 6= φ (x1 has a positive intersection with z2, or with z4
or with both). A − in the matrix indicates that the intersection is either positive or
negative.

z1 z2 z3 z4 · · · zn
x1 − a1 − a2 − −

Rule 1 represents the propagation of non-empty intersections of components in
space. A different version of the rule for the propagation of empty intersections can
be stated as follows.

Rule 2: Propagation of Empty Intersections
Let z′ = {z1,z2, · · · ,zn′} be a subset of the set of components of space Z whose

total number of components is n and n′ < n; z′ ⊂ Z. Let y′ = {y1,y2, · · · ,yl′} be a
subset of the set of components of space Y whose total number of components is l
and l′ < l; y′ ⊂ Y . Let xi be a component of the space X. Then the following is a
governing rule for the spaces X , Y and Z.

(xi v y′) ∧ (y′ v z′)
→ (xi∩ (Z− z1− z2 · · ·− zn′) = φ)

Remark: if n′ = n, i.e. xi may intersect with every element in Z, or if m′ = m, i.e.
zk may intersect with every element in X , or if l′ = l, i.e. xi (or zk) may intersect
with every element in Y , then no empty intersections can be propagated for xi or
zk. Rules 1 and 2 are the two general rules for propagating empty and non-empty
intersections of components of spaces.

Note that in both rules the intermediate object (y) and its space components plays
the main role in the propagation of intersections. The first rule is applied a number
of times equal to the number of components of the space of the intermediate object.
Hence, the composition of spatial relations becomes a tractable problem which can
be performed in a defined limited number of steps.

The result intersection matrices for the three scenarios are shown below. In every
case, the matrix is shown not to propagate the non-extensional matrix in figure 7.

Case I:
The result matrix for case I is as follows.

z01 z1 z2 z3 z02
x0 1 b ? ? ?
x1 a a b ? ? ?
x2 ? ? ? ? ?
In the matrix above, ? is used to denote either 0 or 1. Letters are used to signify

related constraints. So, entries labeled a denotes that at least one of the entries x1,z0
and x1,z1 should be 1.

As can be seen, the matrix above holds the constraint, x1 ∩ (z01 ∪ z1) 6= φ .
This constraint contradicts with the non-extensional matrix, where the constraint is
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x1 ∩ (z01 ∪ z1) = φ . Hence, the composition will not propagate the non-extensional
relation.

Case II:
In a similar fashion to Case I, the result of composition for case II is as follows.

z01 z1 z2 z3 z02
x0 ? ? ? b ? 1
x1 ? ? ? a b a
x2 ? ? ? ? ?
Here, the contradictory constraint is x0∩z02 6= φ and hence, this composition will

not propagate non-extensional relations.
Case III:
Similarly for case III, the result matrix is as follows.

z01 z1 z2 z3 z02
x0 ? ? ? 1 1
x1 ? ? ? 1 0
x2 ? ? ? 0 0
Here, the contradictory constraints are x0∩ z3 6= φ and x0∩ z02 6= φ .
It all three cases it was shown how the representation and reasoning methods

result only in extensional relationships.

6 Conclusions

This paper addresses the question of extensionality of RCC8 composition table.
Sixteen possible region triads have been identified that needs to be studied for this
problem. Two of which have been addressed exhaustively in earlier works, but their
methods could not be easily extended or generalized. We demonstrate the value of
considering the connectivity of object and space components in deriving extensional
composition tables. Two general conditions for extensionality are proposed and used
to exhaustively test the exhaustively test the different types of regions in the RCC8
composition table. It is observed that the table will be extensional only in some
cases (〈D,D,D〉, 〈D,H,D〉, 〈D,N,D〉 and 〈H,N,H〉.). The result is important as
ignoring the types of regions in the application of the spatial logics may lead to the
propagation of non-valid reasoning results.

The results of this paper complements earlier work on regions with holes as well
as clarifies the fact that extensional interpretation is not violated automatically by
the existence of a non-disk object, but in fact will depend on the order in the com-
position triad. Further extension to this work is sought to investigate other existing
composition tables and models of spatial calculi.
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