
1

Untangling the Semantic Web

Alun Preece

http://www.csd.abdn.ac.uk/~apreece

The Semantic Web defined

“An extension of the current Web in which information is given
well-defined meaning, better enabling computers and people to
work in cooperation.

“It is the idea of having data on the Web defined and linked in a
way that it can be used for more effective discovery, automation,
integration, and reuse across various applications.”

 Tim Berners-Lee, James Hendler and Ora Lassila
The Semantic Web, Scientific American, May 2001

2

The SW: up for grabs

When they look at the SW, different people see different things:
• WWW community: a means to enrich the way information is

interlinked on the global network
• Knowledge engineers: the potential to automate problem-

solving and information-seeking tasks
• Logicians and ontologists: the challenge of representing

meaning and performing inference on a massive scale.

This tutorial aims to untangle these various perspectives on the
Semantic Web, while demonstrating that they are essentially
compatible.

Roadmap

Part 1 “Untangling the Semantic Web”
• Semantic Web origins: Metadata & RDF
• RDF Schema & data modelling
• Creating a homepage on the Semantic Web

Part 2 “Untangling the Semantic Web”
• The Semantic Web architecture stack
• Ontologies, OWL, & reasoning
• Illustrative Semantic Web applications

3

Roadmap

Part 1 “Untangling the Semantic Web”
• Semantic Web origins: Metadata & RDF
• RDF Schema & data modelling
• Creating a homepage on the Semantic Web

Part 2 “Untangling the Semantic Web”
• The Semantic Web architecture stack
• Ontologies, OWL, & reasoning
• Illustrative Semantic Web applications

Starting point: metadata

Metadata is “data about data” – it describes the resources
available in an information system.
On the Web, metadata is information about the resources
available on the Web.
Metadata makes those resources machine-processable – it
facilitates the finding & fusing of information on the Web.
As the Web grows in size, and also grows in importance to
business, the value of metadata becomes greater.
Websites using metadata become more useful than those that
don't.
The increased use of metadata, and the corresponding
improvements in Web services, are now seen as a key feature of
the next stage in the Web's evolution.

4

Metadata in HTML

The original approach to adding metadata to Web resources was
the HTML <meta> element.
The <meta> element is used to add
• keywords
• descriptive summaries

to Web page headers, for use by search engines and Website
management tools.
The content of <meta> tags is just plain text – processable in limited
ways.
Still, some sites (e.g. BBC news) push this technique to its limits:
<meta name="Headline" content="Creator of the web turns knight" />
<meta name="Section" content="Technology" />
<meta name="Description" content="Tim Berners-Lee, the "father of
the web", officially receives his knighthood from the Queen." />

XML: making <meta> better

Consider searching the Web for “pages created by Tim Berners-
Lee”.
One page - the BBC news example - contains a <meta> tag:
<meta name="Description" content="Tim Berners-Lee, the "father of
the web", officially receives his knighthood from the Queen." />
Another page may contain some metadata marked-up with an
XML element:
<creator>Tim Berners-Lee</creator>
Clearly, given a well-defined interpretation for the <creator>
element, a search engine that uses the second piece of metadata
will return a more accurate result.
We need vocabularies of metadata terms that we can use to
mark-up Web resources with XML elements that correspond to
these terms….

5

Metadata example: vCard

vCard is a standard for electronic business cards.
A vCard typically includes:
name organisation
address department
email URI
phone & fax numbers

The original encoding was as a MIME type for attachment to email
messages.
But this is processable only by software programmed to recognise the
specific vCard syntax.
More recently, XML encodings of the vCard vocabulary have been
defined.
These allow more universal access to the various fields of a vCard, and
also allow the vCard data to be embedded in Web pages.

An example vCard

The following (abbreviated) example uses the W3C RDF vCard XML
encoding:

<rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:vc = "http://www.w3.org/2001/vcard-rdf/3.0#">

 <rdf:Description rdf:about="http://www.csd.abdn.ac.uk/~apreece">
 <vc:FN>Alun Preece</vc:FN>
 <vc:PHOTO>http://www.csd.abdn.ac.uk/~apreece/images/
 apreece.jpg</vc:PHOTO>
 <vc:EMAIL>apreece@csd.abdn.ac.uk</vc:EMAIL>
 <vc:TITLE>Senior Lecturer</vc:TITLE>
 </rdf:Description>

</rdf:RDF>

Full version: http://www.csd.abdn.ac.uk/~apreece/apreece.rdf

6

Metadata example: Dublin Core

The Dublin Core Metadata Initiative originated with the library
community, intended to cover the properties of information
artefacts in a library (including digital libraries).
The DC element set spans the contents of an electronic "library
card":
title date
creator type
subject format
description language
publisher etc

Most Web information resources have these common properties,
so the Dublin Core element set has wide applicability to Web
metadata….

RDF

RDF – the Resource Description Framework – is the W3C’s data
model for representing metadata about Web resources.
The RDF specification has several components, including:
• the data model
• an XML serialization syntax

The RDF data model is similar to an entity-relational model, using:
• URIs to unambiguously denote entities (objects)
• properties to describe relationships between entities, and also

information about entities (literal text)

Metadata about a specific resource (URI) is expressed in RDF as a
collection of properties associated with that resource.
To be useful, these properties are usually from a standard source,
such as vCard (as we've seen) or Dublin Core….

7

RDF example (1)

We'd like to say in RDF that the resource
http://www.csd.abdn.ac.uk/~apreece/talks/UntanglingTheSemanticWeb
has the following properties
• it's the AI-2004 tutorial slides (literal text)
• it's created by Alun Preece (an entity)

The Dublin Core metadata standard covers this sort of thing:
• its description property covers the former
• its creator property covers the latter

To use these properties in RDF, we need to refer to them
unambiguously as URIs (so they're globally unique):
• http://purl.org/dc/elements/1.1/description
• http://purl.org/dc/elements/1.1/creator

We also need to refer unambiguously to “Alun Preece” by a URI:
• http://www.csd.abdn.ac.uk/~apreece

RDF example (2)

We'll use the standard XML syntax for RDF (though this is not the
only syntax). An XML RDF document has the following structure:

<?xml version = "1.0"?>
<rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 <!-- any other namespaces go here --> >
 <!-- then a sequence of one or more RDF Description elements -->
 <rdf:Description … > … </rdf:Description>
 …
</rdf:RDF>

Each RDF Description element:
• has an attribute indicating the resource it describes, for example

<rdf:Description about="http:www.somewhere.com/something">
• contains the property elements for that resource

8

RDF example (3)

<?xml version = "1.0"?>
<rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description rdf:about="http://www.csd.abdn.ac.uk/~apreece/
talks/UntanglingTheSemanticWeb">

 <dc:description>AI-2004 tutorial slides</dc:description>
 <dc:creator rdf:resource="http://www.csd.abdn.ac.uk/~apreece"/>
 </rdf:Description>
</rdf:RDF> These 2 properties are

associated with the Dublin
Core namespace

RDF graphical syntax

AI-2004 tutorial slides

http://purl.org/dc/elements/1.1/creator

http://purl.org/dc/elements/1.1/description

http://www.csd.abdn.ac.uk/~apreece

http://www.csd.abdn.ac.uk/~apreece/
talks/UntanglingTheSemanticWeb

resource
text ("literal")

property

Note: this is a valid alternative syntax for
RDF. The meaning of the graph is the same as
the previous XML version.

9

vCard example revisited

The vCard RDF example can also be shown graphically:

Alun Preece

http://www.w3.org/2001/
vcard-rdf/3.0#FN

http://www.csd.abdn.ac.uk/~apreece/images/apreece.jpg

http://www.csd.abdn.ac.uk/~apreece

http://www.w3.org/2001/
vcard-rdf/3.0#PHOTO

apreece@csd.
abdn.ac.uk

Senior Lecturer

http://www.w3.org/2001/
vcard-rdf/3.0#EMAIL

http://www.w3.org/2001/
vcard-rdf/3.0#TITLE

A Web of RDF

AI-2004 tutorial slides

http://purl.org/dc/elements/1.1/creator

http://purl.org/dc/elements/1.1/description

http://www.csd.abdn.ac.uk/~apreece

http://www.csd.abdn.ac.uk/~apreece/
talks/UntanglingTheSemanticWeb

Alun Preece

http://www.w3.org/2001/
vcard-rdf/3.0#FN

http://www.csd.abdn.ac.uk/~apreece/images/apreece.jpg

http://www.csd.abdn.ac.uk/~apreece

http://www.w3.org/2001/
vcard-rdf/3.0#PHOTO

apreece@csd.a
bdn.ac.uk

Senior Lecturer

http://www.w3.org/2001/
vcard-rdf/3.0#EMAIL

http://www.w3.org/2001/
vcard-rdf/3.0#TITLE

The two example
graphs are
actually part of a
Web of linked
RDF.

10

Merging the RDF in XML (1)
<rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:vc="http://www.w3.org/2001/vcard-rdf/3.0#">

 <rdf:Description rdf:about="http://www.csd.abdn.ac.uk/~apreece/
talks/UntanglingTheSemanticWeb">

 <dc:description>AI-2004 tutorial slides</dc:description>
 <dc:creator rdf:resource="http://www.csd.abdn.ac.uk/~apreece"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.csd.abdn.ac.uk/~apreece">
 <vc:FN>Alun Preece</vc:FN>
 <vc:PHOTO>http://www.csd.abdn.ac.uk/~apreece/images/apreece.jpg
 </vc:PHOTO>
 <vc:EMAIL>apreece@csd.abdn.ac.uk</vc:EMAIL>
 <vc:TITLE>Senior Lecturer</vc:TITLE>
 </rdf:Description>
</rdf:RDF>

Merging the RDF in XML (2)
<rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:vc="http://www.w3.org/2001/vcard-rdf/3.0#">

 <rdf:Description rdf:about="http://www.csd.abdn.ac.uk/~apreece/
talks/UntanglinTheSemanticWeb">

 <dc:description>AI-2004 tutorial slides</dc:description>
 <dc:creator>
 <rdf:Description rdf:about="http://www.csd.abdn.ac.uk/~apreece">
 <vc:FN>Alun Preece</vc:FN>
 <vc:PHOTO>http://www.csd.abdn.ac.uk/~apreece/images/
 apreece.jpg</vc:PHOTO>
 <vc:EMAIL>apreece@csd.abdn.ac.uk</vc:EMAIL>
 <vc:TITLE>Senior Lecturer</vc:TITLE>
 </rdf:Description>
 </dc:creator>
 </rdf:Description>
</rdf:RDF>

11

RDF: global, distributed metadata

In summary, the RDF specifications allow us to:
• Represent relations between URIs (and literals)
• Define those relations globally as URIs
• Express this information in a universal syntax (XML)

These features make RDF a global, distributed metadata format.
Using RDF, Web authors can state metadata on their pages,
which can be used to facilitate:
• More effective web searching (for example, “knowing” someone's

email address, or “knowing” who created a page)
• More effective content management (for example, checking that

every person's home page includes an email address & job title

(Also, through the XML syntax, RDF can be styled and presented
in a reader-friendly way.)

The syntactic Web 1: HTML

A typical homepage, today:

<table width="100%" border="0" cellspacing="0" cellpadding="10">
 <tr bgcolor="#CCFFFF">
 <td>
 Alun Preece

 Senior Lecturer
 </td>
 <td>
 <div align="right">
 Email: apreece@csd.abdn.ac.uk

 Phone: +44 1224 272291

 Fax: +44 1224 273422
 </div>
 </td>
 </tr>
</table>

A search for “Alun
Preece’s fax no.”
gets no help from
the HTML markup

12

The syntactic Web 2: XML

With XML, custom sets of tags can be defined, which can be:
• “styled” into HTML
• processed directly by software - so can be queried…

<Person ID="apreece">
 <name>Alun Preece</name>
 <mbox resource="mailto:apreece@csd.abdn.ac.uk" />
 <phone resource="tel:+44-1224-272291" />
 <phone resource="fax:+44-1224-273422" />
</Person>

<Xfgpds ID="apreece">
 <ghew>Alun Preece</ghew>
 <ngre resource="mailto:apreece@csd.abdn.ac.uk" />
 <hytcx resource="tel:+44-1224-272291" />
 <hytcx resource="fax:+44-1224-273422" />
</Xfgpds>

XML is still just syntax - the tags
don’t mean anything!

13

<Person ID="apreece">
 <name>Alun Preece</foaf:name>
 <mbox resource="mailto:apreece@csd.abdn.ac.uk" />
 <phone resource="tel:+44-1224-272291" />
 <phone resource="fax:+44-1224-273422" />
</Person>

The semantic Web

XML alone is not enough - the XML tags need a defined semantics,
to make them meaningful.
Formally, to relate the tag symbols to the things they represent in
the real world.
So the markup becomes a model of the real world.

Two Webs in parallel

The Semantic Web is not a replacement for the current Web
Semantic markup is designed to exist alongside HTML markup:
• People will continue to view the HTML
• Software can process the Semantic markup
• Hence the W3C’s aim: “better enabling computers and people to

work in cooperation”

Because the Semantic markup is in XML, it is possible to generate
HTML from it: information readily flows from the SW…
Moreover, information on the SW exists independently of the
various ways it can be processed…

14

http://www.csd.abdn.ac.uk/~apreece/index.html

Web/Semantic Web example

http://www.csd.abdn.ac.uk/~apreece/index.rdf

Roadmap

Part 1 “Untangling the Semantic Web”
• Semantic Web origins: Metadata & RDF
• RDF Schema & data modelling
• Creating a homepage on the Semantic Web

Part 2 “Untangling the Semantic Web”
• The Semantic Web architecture stack
• Ontologies, OWL, & reasoning
• Illustrative Semantic Web applications

15

RDF recap

As we’ve seen, RDF distinguishes several kinds of thing:
• resources, denoted by URIs
• properties, a kind of resource, also denoted by URIs
• literals – strings of plain text

We saw that an RDF description consists of:
• a resource being described
• a collection of properties of that resource
• a value for each of the properties – either a literal or another

resource
We refer to a collection of RDF descriptions as an RDF model.
We also saw that we can express RDF descriptions in several
syntaxes, including XML and graphics.

RDF statements

An RDF model is comprised of statements, each of which
expresses a binary relationship.
Formally, an RDF statement has 3 parts – we call them triples:
• subject – the source of the relationship (a resource)
• predicate - the relationship itself (a property)
• object - the destination of the relationship (a resource or a literal)

RDF statements/triples are easy to visualise in the graph syntax:

http://purl.org/dc/elements/1.1/Creator

http://www.csd.abdn.ac.uk/~apreece

http://www.csd.abdn.ac.uk/~apreece/talks/UntanglingThe…

http://www.csd.abdn.ac.uk/~apreece

Senior Lecturer

http://www.w3.org/2001/
vcard-rdf/3.0#TITLE

http://www.csd.abdn.ac.uk/~apreece/images/apreece.jpg

http://www.csd.abdn.ac.uk/~apreece

http://www.w3.org/2001/
vcard-rdf/3.0#PHOTO

16

RDF data model

The basic components of RDF – resources, properties, literals –
form a simple data model.
(The semantics of this data model are what distinguish RDF
fundamentally from XML’s tree-based data model, which does not
distinguish entities from relations.)
Its simplicity allows the RDF data model to become a ”lowest
common denominator” for integrating information from disparate
data models.
However, the RDF data model alone is not enough to define:
• classes (types) of resources
• which properties make sense for which class of resource

Consequently, we can't use RDF alone to define common terms
for specific metadata domains.
In short, we want to define schemas for RDF.

RDF Schema

The RDF Schema (RDFS) specification provides the apparatus for
defining:
• classes of RDF resource, and their superclasses (defining class

hierarchies)
• properties, including their domain (source) and range (destination)

This is enough to define a simple datatype system, similar to
object-oriented and entity-relational systems.
RDFS is an extension of the basic RDF specification. Components
of the two specifications have their individual namespace URIs,
with conventional prefixes (in XML syntax):
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

17

RDFS data model: main elements

rdfs:Class
• the class of all classes
• all classes have an rdf:type of rdfs:Class

rdfs:Resource
• the class of all resources

rdf:Property
• the class of all properties

rdf:type
• the property relating a resource to a class
• if resource R is of rdf:type C, then we say R is an instance of class C
• a resource may have more than one rdf:type

rdfs:subClassOf
• the property relating a class to its parent (super)class
• transitive: if C1 is rdfs:subClassOf C2 and C2 is rdf:subClassOf C3,

then C1 is rdfs:subClassOf C3

RDFS statements

RDFS statements are expressed in RDF triple form
(subject, predicate, object).
As an example, we'll define a simple schema for University staff,
starting with some classes:

rdfs:Classrdf:typeTeachingFellow

AcademicPersonrdfs:subClassOfLecturer

AcademicPersonrdfs:subClassOfTeachingFellow

rdfs:Classrdf:typeLecturer

rdfs:Classrdf:typeAcademicPerson

ObjectPredicateSubject

18

RDFS example in XML syntax: classes

 <rdf:Description rdf:about="AcademicPerson">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 </rdf:Description>

 <rdf:Description rdf:about="Lecturer">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#AcademicPerson" />
 </rdf:Description>

 <rdf:Description rdf:about="TeachingFellow">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#AcademicPerson" />
 </rdf:Description>

Naming RDF resources

The terms we've just defined – AcademicPerson, Lecturer, etc –
are relative to the document base. Here, the base is defined to be:
http://www.csd.abdn.ac.uk/teaching/levelfive/CS5008/examples/

rdf/people.rdfs#

So when we refer to AcademicPerson within the schema, we're
actually referring to a resource with a globally-qualified URI:
http://www.csd.abdn.ac.uk/teaching/levelfive/CS5008/examples/

rdf/people.rdfs#AcademicPerson

Finally, note how references to our defined terms within the
schema are made using named-anchor notation:

#AcademicPerson

19

Abbreviated XML rdf:type syntax

When an rdf:Description is given with an rdf:type property, an
abbreviated syntax form allows us to substitute the referenced
type in place of the rdf:Description element.
So, the previous examples now become more readable:

 <rdfs:Class rdf:about="AcademicPerson" />

 <rdfs:Class rdf:about="Lecturer">
 <rdfs:subClassOf rdf:resource="#AcademicPerson" />
 </rdfs:Class>

 <rdfs:Class rdf:about="TeachingFellow">
 <rdfs:subClassOf rdf:resource="#AcademicPerson" />
 </rdfs:Class>

Properties of RDFS properties

In RDFS, there are a number of properties defined on the class
rdf:Property:
rdfs:subPropertyOf
• specifies that one property is a specialisation of another – example:

hasDog might be rdfs:subPropertyOf hasPet
• transitive: if P1 is rdfs:subPropertyOf P2 and P2 is rdf:subPropertyOf

P3, then P1 is rdfs:subPropertyOf C3
rdfs:range
• specifies a range constraint on a property: that the value of the

property must be an instance of a specified class
• example: hasPet might have rdfs:range class Pet

rdfs:domain
• specifies a domain constraint on a property: that the property can

be used only on instances of a specified class
• example: hasPet might have rdfs:domain class Person

20

RDFS example: properties

 <rdf:Property rdf:about="email">
 <rdfs:domain rdf:resource="#AcademicPerson" />
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
 </rdf:Property>

 <rdf:Property rdf:about="homepage">
 <rdfs:domain rdf:resource="#AcademicPerson" />
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
 </rdf:Property>

 <rdf:Property rdf:about="title">
 <rdfs:domain rdf:resource="#AcademicPerson" />
 <rdfs:range rdf:resource=" http://www.w3.org/2000/01/rdf-schema#Literal"/>
 </rdf:Property>

Note that again we are using the abbreviated XML
syntax – these are resources of rdf:type rdf:Property

RDFS & XML schema datatypes

The most recent version of RDF Schema allows us to be more
specific in stating the range of resources, by using the primitive XML
schema datatypes such as integer, string, etc

Example:

<rdf:Property rdf:about="email">
 <rdfs:domain rdf:resource="#AcademicPerson" />
 <rdfs:range

rdf:resource="http://www.w3.org/2000/10/XMLSchema#string"/>
 </rdf:Property>

See the full "academic people" schema at
http://www.csd.abdn.ac.uk/teaching/levelfive/CS5008/examples/rdf/people.rdfs

21

RDF Schemas & instances

Once an RDF Schema has been defined, we can create instances of
the classes in the schema, with the defined properties.
The instances must refer to the schema definitions, by using the fully-
qualified URIs of the classes and properties.
This is done using namespaces wherever possible.
As usual in XML, the header of an RDF file containing instance data
will typically have several namespaces.
Example:
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:csd="http://www.csd.abdn.ac.uk/teaching/levelfive/

CS5008/examples/rdf/people.rdfs#">
Here, the last namespace refers to our "academic people" schema.

Example instance data

<csd:Lecturer rdf:about="apreece">
 <csd:firstname>Alun</csd:firstname>
 <csd:surname>Preece</csd:surname>
 <csd:title>Dr</csd:title>
 <csd:email>apreece@csd.abdn.ac.uk</csd:email>
 <csd:telephone>01224 272291</csd:telephone>
 <csd:homepage>http://www.csd.abdn.ac.uk/~apreece</csd:homepage>
 <csd:office>230</csd:office>
</csd:Lecturer>

As before:
• the abbreviated syntax is used, so the rdf:type of this resource is implicitly csd:Lecturer
• the resource name – apreece – is relative to the document base:

http://www.csd.abdn.ac.uk/teaching/levelfive/CS5008/examples/rdf/department.rdf

so this resource has the fully-qualified URI
http://www.csd.abdn.ac.uk/teaching/levelfive/CS5008/examples/rdf/department.rdf#apreece

22

RDF Schema versus XML Schema

It might appear that RDF Schema merely duplicates the functions
of XML Schema. This is not the case!

XML Schema defines document structure.
Example: “the element book contains an element author”.

RDF Schema defines a data model.
Example: "an instance of the class book has a property
hasAuthor that relates the instance of book to an instance of the
class person".

RDF Schemas are intended to be models of the world, whereas
XML Schemas are intended to be models of XML documents.

Remember that the RDF data model is independent of XML – RDF
can just as easily be written graphically, or as triples.

The real relationship between RDF/RDFS
and XML Schema

The RDF XML syntax has an XML Schema, which describes the
structure of an XML RDF document (but none of its meaning).
In natural language, the basic rules are:
• the outermost element is rdf:RDF
• the rdf:RDF element contains at least one rdf:Description element

(the abbreviated syntax of course is more flexible)

In XML Schema syntax, this is basically:
<xsd:element name="RDF" type="rdfType"/>

<xsd:complexType name="rdfType">
 <xsd:sequence>
 <xsd:element name="Description" type="descriptionType"

minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

23

RDF processing tools

The use of RDF is facilitated by the availability of a range of tools
for processing it, including:
• Validators for RDF (W3C's online validator) and RDF Schema

(FRODO RDFviz)
• Parsers (for Java, Python, Perl, Prolog, …)
• Editors (Protégé, OntoEdit, Ontomat, …)
• Storage & querying (Jena, Sesame, 3store, …)
• Inference (Jena2, Triple, OntoBroker, …)

Notably, Hewlett Packard’s Jena library includes parsing,
validation, storage and querying for RDF within Java.

Querying RDF

Because it has a formally-defined data model, RDF data can be
queried. Several RDF query languages exist, the most popular of
which is RDQL. The form of an RDQL query is similar to SQL:

SELECT vars
FROM documents
WHERE expressions
USING namespace declarations

Example – select all the (resource ID, email address) pairs from
our "academic people":
SELECT ?x, ?y
FROM <http://www.csd.abdn.ac.uk/teaching/levelfive/CS5008/
examples/rdf/department.rdf>
WHERE (?x, <csd:email>, ?y)
USING csd for <http://www.csd.abdn.ac.uk/teaching/levelfive/
CS5008/examples/rdf/people.rdfs#>

24

Working with RDF & RDQL
RDF statements on the open Semantic Web can be parsed from
the XML format into an RDF model, for example using Jena toolkit
Jena RDF models can be queried directly using the RDQL query
language.
Example, “retrieve the phone number(s) of the person whose
name is ‘Alun Preece”’:

SELECT ?y
WHERE (?x, <foaf:name>, "Alun Preece")
AND (?x, <foaf:phone>, ?y >)
USING foaf FOR <http://xmlns.com/foaf/0.1/>

(RDF can also be queried in XML RDF syntax using University of
Aberdeen’s RDF Query-By-Example.)

Roadmap

Part 1 “Untangling the Semantic Web”
• Semantic Web origins: Metadata & RDF
• RDF Schema & data modelling
• Creating a homepage on the Semantic Web

Part 2 “Untangling the Semantic Web”
• The Semantic Web architecture stack
• Ontologies, OWL, & reasoning
• Illustrative Semantic Web applications

25

OK, but where do I start?

Most of us “got onto the Web” by writing a home page.
We used HTML to mark-up things like:
• who we are
• a photo
• things we like and do
• links to the home pages of people we know

Now we’ll do the same on the Semantic Web.

Motivating example: social networks using FOAF
(Friend-Of-A-Friend)
http://www.csd.abdn.ac.uk/foaf/

Creating a “Semantic Homepage”

Go to http://www.csd.abdn.ac.uk/foaf
Click on Add Your Profile.
Fill out the form; click the OK, Save My Details! Button.
You can browse the data in several ways:
• from your profile, click things you like/dislike to see others with the

same…
• on the main page http://www.csd.abdn.ac.uk/foaf/

 View people on UK map or
 Browse people by interest or
 Search by email address or postcode

So far, this is much less than you can get at any social networking
website.
To see the point, go to your profile page, and click the RDF
button:

26

<foaf:Person rdf:nodeID="bNode5">
 <foaf:name>Alun Preece</foaf:name>
 <foaf:firstName>Alun</foaf:firstName>
 <foaf:surname>Preece</foaf:surname>
 <foaf:homepage>http:/www.csd.abdn.ac.uk/~apreece</foaf:homepage>
 <foaf:mbox_sha1sum>1d7e49a9d75b5a9354fc5c22af344848103fcfa5

</foaf:mbox_sha1sum>
 <foaf:schoolHomepage>http:/www.csd.abdn.ac.uk/</foaf:schoolHomepage>
 <wil:has rdf:resource="http://dmoz.org//Recreation/Pets/Cats/" />
 <wil:has rdf:resource="http://www.whatilike.org/gadget/digital_camera" />
 <wil:likes

rdf:resource="http://www.dmoz.org/Arts/Literature/Genres/Science_Fiction/" />
 <wil:likes rdf:resource="http://www.dmoz.org/Arts/Literature/Short_Stories/" />
 <wil:likes rdf:resource="http://www.dmoz.org/Arts/Movies/Genres/Comedy/" />
 <wil:likes rdf:resource="http://www.dmoz.org/Arts/Movies/Genres/Cult_Movies/" />
 <wil:likes rdf:resource="http://www.london-eating.co.uk/cuisines/pizza.asp" />
 <wil:likes rdf:resource="http://www.london-eating.co.uk/cuisines/polish.asp" />
 <wil:likes rdf:resource="http://www.whatilike.org/travel/train" />
 <foaf:depiction

rdf:resource="http://www.csd.abdn.ac.uk/~apreece/images/apreece.jpg" />
</foaf:Person>

<foaf:Person rdf:nodeID="bNode5">
 <foaf:name>Alun Preece</foaf:name>
 <foaf:firstName>Alun</foaf:firstName>
 <foaf:surname>Preece</foaf:surname>
 <foaf:homepage>http:/www.csd.abdn.ac.uk/~apreece</foaf:homepage>
 <foaf:mbox_sha1sum>1d7e49a9d75b5a9354fc5c22af344848103fcfa5

</foaf:mbox_sha1sum>
 <foaf:schoolHomepage>http:/www.csd.abdn.ac.uk/</foaf:schoolHomepage>
 <wil:has rdf:resource="http://dmoz.org//Recreation/Pets/Cats/" />
 <wil:has rdf:resource="http://www.whatilike.org/gadget/digital_camera" />
 <wil:likes

rdf:resource="http://www.dmoz.org/Arts/Literature/Genres/Science_Fiction/" />
 <wil:likes rdf:resource="http://www.dmoz.org/Arts/Literature/Short_Stories/" />
 <wil:likes rdf:resource="http://www.dmoz.org/Arts/Movies/Genres/Comedy/" />
 <wil:likes rdf:resource="http://www.dmoz.org/Arts/Movies/Genres/Cult_Movies/" />
 <wil:likes rdf:resource="http://www.london-eating.co.uk/cuisines/pizza.asp" />
 <wil:likes rdf:resource="http://www.london-eating.co.uk/cuisines/polish.asp" />
 <wil:likes rdf:resource="http://www.whatilike.org/travel/train" />
 <foaf:depiction

rdf:resource="http://www.csd.abdn.ac.uk/~apreece/images/apreece.jpg" />
</foaf:Person>

27

What does the code mean?

This code is RDF written in XML
Tags are defined in RDF Schema “vocabularies”

• tags beginning foaf: are from the FOAF vocab,
defined at http://xmlns.com/foaf/0.1/

• tags beginning wil: are from the WhatILike vocab,
defined at http://whatilike.org/ontology

The FOAF vocabulary covers
• entities: people, organisations, projects, documents
• “identifying” details: mbox, homepage, phone, depiction
• relationships between people: who knows who

FOAF vocab excerpt
<rdfs:Class rdf:about="http://xmlns.com/foaf/0.1/Person" />

<rdf:Property rdf:about="http://xmlns.com/foaf/0.1/name">
 <rdfs:range rdf:resource=

"http://www.w3.org/2000/01/rdf-schema#Literal" />
</rdf:Property>

<rdf:Property rdf:about="http://xmlns.com/foaf/0.1/mbox" />

<rdf:Property rdf:about="http://xmlns.com/foaf/0.1/phone" />

<rdf:Property rdf:about="http://xmlns.com/foaf/0.1/knows">
 <rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person" />
 <rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Person" />
</rdf:Property>

28

Vocab reuse

Where possible, URIs are used to name things, rather than plain
text:
• literature & movie categories from dmoz.org
• cuisine types from london-eating.co.uk

This is to promote standardised descriptions (and thus exact
matches).

Visualising FOAF data

http://jibbering.com/foaf/foafnaut.svg

29

World Wide FOAF

<CoffeeBreak>

</CoffeeBreak>

30

Roadmap

Part 1 “Untangling the Semantic Web”
• Semantic Web origins: Metadata & RDF
• RDF Schema & data modelling
• Creating a homepage on the Semantic Web

Part 2 “Untangling the Semantic Web”
• The Semantic Web architecture stack
• Ontologies, OWL, & reasoning
• Illustrative Semantic Web applications

Semantic Web architecture
[A

da
pt

ed
 fr

om
 S

em
an

tic
 W

eb
 "

la
ye

r
ca

ke
"

sl
id

e
du

e
to

 T
im

 B
er

ne
rs

-L
ee

]

“Strings & things”: Unicode + URIs

“The Syntactic Web”: XML + NS + XSD

RDF + RDF Schema

D
igital sig

Ontology (vocab)

Logic/proof

Trust

Data
layers

Info
layers

Knowledge
layers

31

Data layers: Unicode, URIs, XML

Like the “traditional” Web (in recent years), Semantic Web data
is based on W3C-recommended standards:
Unicode for strings (in all languages)
URIs - Uniform Resource Identifiers - to name “things”
XML as the standard extensible markup language
XML Schema for a variety of primitive datatypes (integer, real
number, string, date, URI, …)
XML namespaces to give global scope for tag names

<rdf:RDF xmlns:vc="http://www.w3.org/2001/vcard-rdf/3.0#">
 <rdf:Description rdf:about="http://www.csd.abdn.ac.uk/~apreece">
 <vc:FN>Alun Preece</vc:FN>
 <vc:EMAIL>apreece@csd.abdn.ac.uk</vc:EMAIL> …

Information layer: RDF + RDFS
RDF - Resource Description Framework - is the foundation of the

Semantic Web standards
RDF provides:

• a simple semantic data model with classes (entities) & properties
(relationships)

• schema definition constructs (RDF Schema) to define simple
vocabularies of terms

• an XML syntax for marking-up RDF data
RDF is the best-developed aspect of the Semantic Web:

• many RDFS vocabularies are currently available, including
 Dublin Core
 RSS (newsfeeds)
 FOAF

• a suite of software tools exists to process RDF
• A lot can often be done with small amounts of semantic markup!

32

The need for ontologies
RDF(S) is designed to be simple.
To define more sophisticated vocabulary, we need to go one

layer higher: to the ontology layer.
The Semantic Web ontology language, OWL, extends RDF with

some additional functionality.
Concrete examples:

• a Person must have at least one name
• a Person must have exactly one age
• the class Person is the disjoint union of the classes Man and

Woman
• A personal email address (mbox) belongs to exactly one Person

This last example is crucial to FOAF…

Roadmap

Part 1 “Untangling the Semantic Web”
• Semantic Web origins: Metadata & RDF
• RDF Schema & data modelling
• Creating a homepage on the Semantic Web

Part 2 “Untangling the Semantic Web”
• The Semantic Web architecture stack
• Ontologies, OWL, & reasoning
• Illustrative Semantic Web applications

33

OWL: Web Ontology Language

Ontology: “explicit specification of a (shared) conceptualisation”.

Core of the World Wide Web Consortium’s Semantic Web
activity in recent years.
In various senses a successor to previous work on “Web-friendly”
knowledge modelling languages:
• RDF & RDF Schema
• DAML-ONT
• OIL / DAML+OIL

W3C’s Web Ontology Working Group are a “who’s who” of the
knowledge representation field (a mixed blessing?).
Now a W3C recommendation.
Current activity: “best practices” working group…

XML, RDF & OWL

XML: universal syntax
XML Schema: defines structure of XML docs
RDF: datamodel for resource objects
RDF Schema: basic vocabulary for defining RDF classes &

properties, and hierarchies of each
OWL: extended vocab for defining classes & properties,

including
• cardinality (e.g. minCardinality 1)
• equality (e.g. equivalentClass)
• relationships between classes (e.g. disjointWith)
• characteristics of properties (e.g. FunctionalProperty)

34

OWL: why?
Semantic Web apps:
• portal Websites & intranets (information architecture)
• multimedia digital libraries (rich metadata)
• agents & Web services (interoperability, automation)
• design documentation (complex, interlinked)

Capabilities:
• ontology sharing, evolution, interoperability
• inconsistency detection
• expressivity vs scalability
• standards compliance

OWL “species”
OWL Lite
• “RDF-and-a-half”
• Mainly intended for class hierarchies & simple constraints

(cardinality 0 or 1, equality, …)

OWL DL (contains OWL Lite)
• Description Logic theoretical properties
• Intended where completeness & decidability are an issue

OWL Full (contains OWL DL)
• Max expressivity; no computational guarantees
• Supports “Web-scale” & “Web-style” KR&R

35

OWL sublanguages cont’d

Every legal OWL Lite ontology is a legal OWL DL ontology.
Every legal OWL DL ontology is a legal OWL Full ontology.
Every valid OWL Lite conclusion is a valid OWL DL conclusion.
Every valid OWL DL conclusion is a valid OWL Full conclusion.

The converse in each case does not hold.

OWL Lite: essentials

Schema constructs
Class (i.e. owl:Class)
rdf:Property
rdfs:subClassOf
rdfs:subPropertyOf
rdfs:domain
rdfs:range
Individual

Equality constructs
equivalentClass
equivalentProperty
sameIndividualAs
differentFrom
allDifferent

Property characteristics
inverseOf
TransitiveProperty
FunctionalProperty
InverseFunctionalProperty
SymmetricProperty

Cardinality
minCardinality (0 or 1)
maxCardinality (0 or 1)
Cardinality (0 or 1)

Headers
imports
priorVersion
backwardCompat-
ibleWith
incompatibleWith

Class intersection
intersectionOf

Property type
restrictions
allValuesFrom
someValuesFrom

RDF datatyping

36

OWL DL & OWL Full: essentials

Class axioms
oneOf
disjointWith

Class expressions
equivalentClass
rdfs:subClassOf
unionOf
intersectionOf
complementOf

Property fillers
hasValue

Arbirtary cardinality
minCardinality
maxCardinality
Cardinality

When is a Class not a Class?

Answer: in OWL Lite & OWL DL, when it’s an Individual -
description logics do not permit Classes to be treated as
Individuals.
So, no “Class, an Individual class, being the Class of all Classes”
(as in RDF).
So, rdfs:Class cannot be used in OWL Lite or OWL DL.
owl:Class is defined as rdfs:subClassOf rdfs:Class.
(But, in OWL Full, they coincide!)
Note that this means an RDF-processing agent can still use a lot of
OWL, because it understands the triple:
owl:Class rdfs:subClassOf rdfs:Class

37

Defining an owl:Class (I)

By class identifier:
 <owl:Class rdf:about="Lecturer">

 <rdfs:subClassOf rdf:resource="#Person" />
 </owl:Class>

By enumeration:
<owl:Class rdf:about="ComputingOfficer">
 <owl:oneOf rdf:parseType="Collection">
 <Academic rdf:about="#nmurray" />
 <Academic rdf:about="#jmartin" />
 <Academic rdf:about="#mritchie" />
 </owl:oneOf>
</owl:Class>

Lite/DL/Full

DL/Full

Defining an owl:Class (II)

By property restriction:
<owl:Class rdf:about="Researcher">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#activity" />
 <owl:someValuesFrom rdf:resource="#ResearchArea" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

By intersection/union/complement:
<owl:Class rdf:about="UniversityStaff">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Lecturer" />
 <owl:Class rdf:about="#Researcher" />
 <owl:Class rdf:about="#ComputingOfficer" />
 </owl:unionOf>
</owl:Class>

Lite*/DL/Full

DL/Full

38

Properties in OWL

Two types
• ObjectProperty - relations between instances of classes
• DatatypeProperty - relates an instance to an rdfs:Literal or XML

Schema datatype
(Both rdfs:subClassOf rdf:Property)
<owl:DatatypeProperty rdf:about="name">

<rdfs:domain rdf:resource="Person" />
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema/string" />

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:about=”activity">
<rdfs:domain rdf:resource="Person" />
<rdfs:range rdf:resource="ActivityArea" />

</owl: ObjectProperty>

Individual axioms (“facts”)

OWL is not only a language for defining ontologies - it is used to
define their instances (Individuals)

Example:
<Lecturer rdf:about="apreece">
 <name>Alun Preece</name>
 <activity rdf:resource="#AgentsResearch" />
 <activity rdf:resource="#WebTeaching" />
</Lecturer>
<ResearchArea rdf:about="AgentsResearch”/>
<TeachingArea rdf:about=”WebTeaching”/>

(Notice how individual apreece follows the definition of
Researcher given earlier)

39

A little ontology goes a long way

FOAF uses OWL to define the mbox property:

<rdf:Property rdf:about="http://xmlns.com/foaf/0.1/mbox">
 <rdf:type rdf:resource=

"http://www.w3.org/2002/07/owl#
InverseFunctionalProperty" />

</rdf:Property>

This definition means: “mbox is a personal mailbox, i.e. an
Internet mailbox associated with exactly one owner”.
This means, in database terms, the value of mbox acts as a
primary key for Persons in the FOAF world - a unique ID.

Ontology mapping
OWL can also be used to map one vocabulary to another.
Example: we might wish to say that the vCard EMAIL property
is the same as FOAF’s mbox*:

<rdf:Property rdf:about=
"http://www.w3.org/2001/vcard-rdf/3.0#EMAIL">
<owl:equivalentProperty
 rdf:resource="http://xmlns.com/foaf/0.1/mbox" />

</rdf:Property>

An OWL reasoner could use this equivalence to derive a value
for some resource’s vc:EMAIL if it can find a value for
foaf:mbox.

*but we’d be wrong…

40

OWL: implications for the KBS field
OWL is potentially the most important knowledge representation
language we’ve yet seen.
(Jim Hendler claims OWL’s predecessor DAML already was, in
terms of numbers of statements asserted.)
Could OWL be the “last word” in KR similar to how HTML came
to dominate the field of hypertext markup?
Implications:
• If you’re doing KR research, you will need to situate yourself in

relation to OWL?
• If you’re building KBS, OWL will be your first choice of KRL?
• But there are enormous challenges ahead in creating effective OWL

reasoners/processors…

Ontological reasoning

Capital-City(Paris)
  statements also generated saying Paris is a City,
Municipal-Unit, and Local-District
City(Paris)
Country(France) has-Capital City(Paris)
  Paris is reclassified as Capital-City(Paris)

41

Semantic Web Rule Language (SWRL)

Allows set of Horn-clause rules to be expressed against RDF/OWL
data models:

“If a person has an affiliation with a University and that University has a
postal address of a city, then this implies that the person has a base
location of the same city where the University is located”.

Using informal syntax and adding explicit universal quantifiers, this
can be written as:

(∀?p,?u,?c) Person(?p) ∧ University(?u) ∧
 has-affiliation(?p,?u) ∧
 has-postal-address(?u,?c) ∧ City(?c)
 ⇒ has-base-locn(?p,?c)

SWRL
in RDF (!)

42

Semantic Web Constraints (CIF/SWRL)

Main motivation: explicit quantification

“Any workgroup containing at least five members must contain at least
two individuals from different sites (base locations).”

(∀ ?g ∈ Workgroup)
 has-size(?g,?s) ∧ greaterThanOrEqual(?s,5) ⇒
 (∃ ?p1,?p2 ∈ Person)
 has-member(?g,?p1) ∧ has-base-locn(?p1,?b1) ∧
 has-member(?g,?p2) ∧ has-base-locn(?p2,?b2) ∧
 notEqual(?b1,?b2)

Roadmap

Part 1 “Untangling the Semantic Web”
• Semantic Web origins: Metadata & RDF
• RDF Schema & data modelling
• Creating a homepage on the Semantic Web

Part 2 “Untangling the Semantic Web”
• The Semantic Web architecture stack
• Ontologies, OWL, & reasoning
• Illustrative Semantic Web applications

43

Semantic Web applications desiderata

1. Data and/or program nodes should be distributed. If the application
is only executed on, and uses data from, a single node, a relational
database is likely to be quicker to implement as well as more efficient

2. Following 1, the distributed data will have diverse ownership and will
therefore be heterogeneous; properties used and level of detail will
vary; different ontologies may be in use, even for a single domain.

3. The heterogeneity of the data should be described in a machine
readable format using an ontology language like RDFS or OWL.
Different ontologies may be tied together by relating them to common
ontologies like Dublin Core or FOAF, or to simple taxonomies like
WordNet.

4. Real world data should be included. It is too easy to use artificial toy
examples, which will not illustrate the problems that are raised by a
real distributed, heterogeneous application.

CS AKTive SpaceCS AKTive Space

AKT project: AberdeenAKT project: Aberdeen, Edinburgh, Sheffield, Southampton, Open, Edinburgh, Sheffield, Southampton, Open
University - see University - see http://www.aktors.org/technologies/

[Slides clipped from [Slides clipped from ““CS AKTiveSpace: Building a Semantic WebCS AKTiveSpace: Building a Semantic Web
ApplicationApplication””, presented by Hugh Glaser (Soton) @ ESWS 2004], presented by Hugh Glaser (Soton) @ ESWS 2004]

Context (3-4 years ago - still holds now):Context (3-4 years ago - still holds now):
•• Knowledge Life-cycle - all aspects (including maintenance, scale)Knowledge Life-cycle - all aspects (including maintenance, scale)
•• Tools & theories developmentTools & theories development
•• Not much RDF out thereNot much RDF out there
•• Scalable toolsScalable tools
•• Technology interceptsTechnology intercepts
•• Emergent applicationsEmergent applications
•• Interdisciplinary - need very wide buy inInterdisciplinary - need very wide buy in

44

-ologies-ologies

TechnologiesTechnologies
•• Component details not unique to Component details not unique to usus
•• ScruffyScruffy
•• Technology Integration Technology Integration ExperimentExperiment
•• Harvesting using DOME, Perl, sed, Harvesting using DOME, Perl, sed, ……

OntologiesOntologies
•• Developed own!Developed own!

 good exercisegood exercise
 our domainour domain

•• Then adoptedThen adopted
 AKT Reference OntologyAKT Reference Ontology

•• Any sufficiently expressiveAny sufficiently expressive
•• But performance (fit for purpose)But performance (fit for purpose)

HarvestingHarvesting
Wherever appropriateWherever appropriate

•• No cooperation (expectedNo cooperation (expected))
•• Effort/Effort/valuevalue balance balance
•• Some UK CS departmentsSome UK CS departments
•• Funding Funding agenciesagencies
•• Geographical (ISO 3166)Geographical (ISO 3166)
•• General General webweb

Where to put it?Where to put it?
•• 430MB, 10 million triples, 800,000 instances430MB, 10 million triples, 800,000 instances
•• 3store (cache!)3store (cache!)

 RDQL or OKBC
 Linearish performance (10 => 15 => 25M triples)
 Knows source (provenance)

Push and PullPush and Pull
•• Who will push - please?Who will push - please?

45

DomeDomeDome

CAS UI

46

 SemanticOrganizer

 http://ic.arc.nasa.gov/sciencedesk/
 Investigators

 Dr. Richard Keller, NASA Ames
 (keller@email.arc.nasa.gov)

 Dr. Dan Berrios, NASA Ames
 (berrios@email.arc.nasa.gov)

Roadmap

Part 1 “Untangling the Semantic Web”
• Semantic Web origins: Metadata & RDF
• RDF Schema & data modelling
• Creating a homepage on the Semantic Web

Part 2 “Untangling the Semantic Web”
• The Semantic Web architecture stack
• Ontologies, OWL, & reasoning
• Illustrative Semantic Web applications

47

Wrap-up (1)

At its foundations, the Semantic Web provides for the creation of
standard, open information schemas - founded on a formal
semantics.
New schemas can extend existing ones, freely but in a prncipled
way.
Semantic Web resources can refer to each other, and to
“traditional” Web resources.
Information and applications are kept separate - deployers of
information on the SW can’t (and don’t need to) anticipate how
the info will be used.
RDF processing software is widely available; OWL is catching-up.
Compelling applications are already there…

Wrap-up (2)

The Semantic Web is exciting from several perspectives:
• as a piece of computing science / AI technology
• as a “new generation” for the Web
• as a platform for diverse kinds of applications

It’s still the Web we know and love:
• it co-exists with all our messy HTML, etc data
• it’s a global system: URIs are universal!
• it’s extremely open
• it’s not too hard to get started…

IT’S WORTH GETTING INVOLVED!

48

Semantic Web primers

http://www.w3.org/2001/sw/

Practical R
D

F, O
’R

eilly (2003)

Sem
antic W

eb Prim
er,

M
IT Press (2004)

