Actionable Sensing

Alun Preece

Informatics Research Group
School of Computer Science & Informatics
Cardiff University

Sensors & sensing

- Sensors generate data representative of physical phenomena
 - examples: imagery, acoustic, seismic, acceleration
- Applications often require networks of sensors
 - examples: area, environmental, or building monitoring
- Communication has traditionally been the key problem
 - examples: routing, power, mobile ad hoc networks
- Sensors are increasingly viewed as (low-level) services

An emerging challenge

- Sensor systems are typically stovepipes
 - created for a specific purpose (task)
 - often controlled by a single vendor (stack)
- Example: a home with separate networks for security, entertainment, healthcare, etc
- Challenge: open sensor/task architectures
 - Why can't you ask your Kinect box to help keep your home secure, and monitor your health?

actionable sensing

The "knowledge management" perspective

- Knowledge management:
 - "Getting the right knowledge to the right people at the right time, in the right place"
- Knowledge is seen as "actionable information"
- Sensor networks research has been overlyfocussed on input (data) at the expense of output (informing human action)

Actionable sensing

- Organising and optimising the deployment and configuration of a sensor network to the provision of a set of users' tasks
- Key issues:
 - representation of tasks at an appropriate level
 - accounting for value of information
 - transparency: hiding features of the sensor network from users

actionable sensing

Forward & backward chains

- Data-to-decision: a person needs to make a decision based on actionable information from sensors & sources
- Intent-to-assets: a person needs to determine what kinds of sensors & sources will help them achieve their intent, and thereby identify suitable assets

Walkthrough

Task-bundle-asset framework

Tasks

- Tasks are triples consisting of:
 - operation (defined in an appropriate task ontology)
 - area-of-interest (point or region)
 - time (instant or period)
- For example, using our NIIRS-based* task ontology, an operation is a pair:
 - operator (one of: detect, identify, distinguish)
 - operand (one or more entity classes)

*National Image Interpretability Rating Scale

actionable sensing

Task examples

- Area monitoring:
 - detect SUV
 - localize vehicle
- Home monitoring:
 - identify person
 - localize Alun
- Environmental monitoring:
 - detect/identify animal

A knowledge-based approach

Qualitative knowledge

- Web ontology language (OWL) descriptions, rules defines what types of sensor (bundle) are appropriate for which task types
- examples: vehicle identification can be done visually ("grade 4") or acoustically ("grade 2")

Quantitative knowledge

- joint utility models (functions)
 determines the value of a set of sensors
- examples: cumulative detection probability; 2Dlocalization

actionable sensing

Reasoning procedure

Conceptual architecture

actionable sensing

Distributed system architecture

Current work: sensor-task assignment

- Performance evaluation of the implemented distributed architecture, to establish
 - feasibility of implementing reasoner (knowledgebased bundle generator) on mobile device
 - relative effectiveness of a variety of task preemption strategies
 - costs of distributed approach in terms of messages exchanged
- (Comparison with a centralised architecture will follow...)

actionable sensing

Lightweight reasoner: lookup table

Task Type	Recommendation
	$(BT_1 + JUM_1)$
	$(BT_2 + JUM_2)$
2	$(BT_3 + JUM_1)$
2	$(BT_2 + JUM_1)$
2	$(BT_2 + JUM_2)$
	•••
N	

A complete set of NIIRS tasks requires approximately 4500 task types; in practice there appear to be few BTs & JUMs.

Feasibility of mobile implementation

Memory usage and query times are manageable and grow linearly as lookup table size increases (tested on iPod Touch).

actionable sensing

Experimental testbed

- Implemented distributed coalition formation protocol in Java using Repast Simphony 2.0
 - Extended [Shehory & Kraus, 1998] with preemption, rebidding, & deadlines
- Deployed
 - 250 sensor nodes of 2 types
 - 50 user nodes
- Varied task creation rate from 1 to 7 tasks every 3 timesteps
- Task priority & utility demand generated with uniform random distribution

Demo

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

actionable sensing

Results: task satisfaction

Profit significantly better with full preemption & rebidding; performance degrades with higher task arrival rates.

Results: messages exchanged

Message rates not excessive, though full preemption more costly; message rates increase linearly with task arrival rates.

actionable sensing

Current work: information delivery

- Shifting the focus to "forward chaining":
 - data to information to decision
- Collaboration with SOHCS (physiotherapy)
 - use RFID "factory grade" technology to monitor patients' movements (wrist & ankle tagging)
 - create an open sensing platform based on Semantic Web ontologies & rules
 - proof-of-concept: generate equivalent quality-ofinformation as current clipboard-based monitoring

The need for "embedding"

- Sensor networks are tools; they need to be usable by end-users
- Fitting sensor network technology into the context-ofuse means understanding that context
- We need to train "embedded sensorsticians"*
- Example: rainforest "local knowledge" project with BIOSI

image from Jungle Times Dec/Jan 2010/1

actionable sensing

Conclusion & future work

- Fashionable to talk about "internet of things"
 - ... as distinct from "internet of people" ...
 - Challenge: creating an internet of people & things
- Our work is aiming to connect sensors & people through semantic models
 - make it easier for users to find and exploit sensors
 - make sensors & services (re)usable for a range of tasks

Social sensor informatics?

- People are often not deciding/acting/ intending in isolation
 - sensors & sources need to be shared
 - locally or globally
 - cooperatively or competitively
- People are sensors too
 - they can provide data ("HUMINT")
 - and metadata (local knowledge)

actionable sensing

Questions?

Thanks for listening!

Acknowledgements: Diego Pizzocaro, Konrad Borowiecki, Pete Woznowski, Chris Gwilliams, Alex Hardisty; Robert van Deursen (SOHCS); Mike Bruford, Benoit Goossens (BIOSI);

Tom La Porta, Hosam Rowaihy (Penn State Uni); Amotz Bar-Noy, Matt Johnson (CUNY); Geeth de Mel (Aberdeen); Gavin Pearson (DSTL); Tien Pham, Lance Kaplan (ARL)

