
1

Extending SWRL to Express
Fully-Quantified Constraints

Craig McKenzie, Peter Gray, Alun Preece

http://www.csd.abdn.ac.uk/research/akt/cif

In this talk…

• We argue for the utility of an expressive quantified
constraint language for the SW logic layer
– based on classical range-restricted FOL

• We develop a quantified constraint representation
as an extension of the Semantic Web Rule
Language (SWRL)
– compatible with OWL as well as RDFS

• We illustrate the use of the CIF/SWRL
representation in the context of a practical SW
reasoning application
– based on the CS AKTive Space demonstrator

2

Context

• An approach to knowledge fusion in open,
distributed environments

• Gather relevant data from multiple network sources,
along with constraints on how the data can be used

• Fuse data and constraints into a dynamically-
composed constraint satisfaction problem (CSP)

• Solutions (if any) are relayed back to the query
originator

• Examples:
– e-commerce: configuring custom packages
– e-science: coalition operations for virtual organisations

Semantic Web context

• Fits W3C vision of a task-oriented Web “better
enabling people and computers to work in
cooperation”

• RDF(S) fits our minimal requirements for data to be
expressed against a semantic data model

• OWL allows far richer modelling, and also supports
ontology mapping

• SWRL it is not sufficiently expressive for our needs,
and we therefore propose an extension that allows
the representation of fully-quantified constraints

3

Application: AKTive Workgroup Builder

• Builds on CS AKTive Space demonstrator (winner of
the 2003 Semantic Web Challenge)

• CAS is a large-scale repository of semantic
metadata on computing science activities in the UK

• AWB uses constraints to select individuals from CAS
to form working groups that satisfy particular
requirements

• Could be used, for example, to form “expert
panels”, suggest partners for collaborative projects,
or organise workshops

CS AKTive Space

4

Kinds of rule

• Derivation rules

• Rewrite rules

• Event-condition-action rules

• Quantified constraints

Constraint Interchange Format (CIF)

• A CIF constraint consists of some universally
quantified implications, followed by a conjunction of
predicates, possibly existentially quantified

• Why have both types of quantifier? “Sometimes
readability is more important than parsimony”
[Artificial Intelligence; A Modern Approach, Russell & Norvig, 1995]

• Choice of how to implement the constraints is left to
local reasoners…

5

Extending SWRL to CIF/SWRL

• Incorporates SWRL constructs where possible
(striving to simplify the original CIF syntax)

• Constraints are defined as quantified implications:
– re-use the implication structure from SWRL
– allow for nested quantified implications within the

consequent
– innermost-nested implication will have an empty body as it

is always of the form

• Example in the informal, human-readable syntax:

Abstract syntax (extended from SWRL)

constraint ::= 'Implies(' [URIreference] { annotation }
 quantifiers antecedent consequent ')'
antecedent ::= 'Antecedent(' { atom } ')'
consequent ::= 'Consequent(' constraint | { atom } ')'
quantifiers ::= 'Quantifiers(' { q-atom } ')'
q-atom ::= quantifier '(' q-var q-set ')'
quantifier ::= 'forall' | 'exists'
q-var ::= i-variable
q-set ::= classID

6

Example in the abstract syntax

Implies(
 Quantifiers(forall(I-variable(x) X) forall(I-variable(y) Y))
 Antecedent(p(I-variable(x) I-variable(y)) Q(I-variable(x)))
 Consequent(
 Implies(
 Quantifiers(forall(I-variable(z) Z))
 Antecedent(
 q(I-variable(x) I-variable(z)) R(I-variable(z)))
 Consequent(
 Implies(
 Quantifiers(exists(I-variable(v) V))
 Antecedent()
 Consequent(s(I-variable(y) I-variable(v)
)))))))

Sketch of CIF/SWRL RDF syntax

• New class, cif:Constraint; two attached properties:
– cif:hasQuantifiers (range rdf:List)
– cif:hasImplication (range ruleml:Imp)

• Parent class cif:Quantifier; two sub-classes:
– cif:Forall
– cif:Exists

• Two properties attached to cif:Quantifier:
– cif:var (range rdf:Resource - URIref of SWRL variable)
– cif:set (range rdf:Resource - URIref of OWL/RDFS classID)

• Note: SWRL RDF syntax allows ruleml:body to be
any RDF list, so allows the nested inclusion of a
cif:Constraint.

7

AKTive Workgroup Builder

Constructing a workgroup involves several steps:
• Defining constraints about the nature of the

workgroup:
– “generic” workgroup constraints
– context/user-specific constraints

• Gathering (RDF) data about candidate workgroup
members

• Generating entailments: ontological & from
derivation rules

• Composing a CSP from the data & constraints
• Solving the CSP

AWB schematic

J2EE Application. MySQL backend DB. Jena2 as reasoner
and RDF parser. Sicstus Prolog as (FD) CSP Solver.

8

Reasoning isn’t the (only) hard part

• AWB v1 uses a cut-down version of the CS AKTive
Space from ISWC 2003:
– OWL Full AKT Portal Ontolgy was cut to OWL Lite (lack of

reasoners)
– 10M triples were reduced to a subset (querying limitations)
– data was cleaned-up (errors, duplication, incompleteness)

• AWB v1 is aimed at scheduling AKT meetings:
– data covers 5 AKT partners
– reduced APO ignores OWL DL/Full constructs, flattens

hierarchy
– some (minor) fixes made to ontology and data

AWB: reasoning using SWRL

• Initially, on loading candidate instances, the AWB
computes OWL Lite entailments (every Professor-in-
Academia is a Person-in-Academia, etc)

• Then SWRL derivation rules compute additional
facts
– Example: “if a person has an affiliation with an

organisation, and that organisation has a postal address
with a city then this implies that the person has a base
location of the same city”

9

AWB: CIF/SWRL simple example

• Example: “every workgroup must contain at least 1
member who is a Professor’’:

• Notes
– this kind of existentially-quantified statement can be

expressed implictly in SWRL using OWL someValuesFrom
– we prefer to express all quantifiers uniformly and explicitly,

and leave the reasoner the option of transforming the
constraints to a suitable implementation form

In RDF…

Note: the (OWL Lite)
ontology URI is
represented by the
entity &akt;

10

AWB: CIF/SWRL 2nd example

• “Any workgroup with at least 5 members must
contain people from different sites”:

• Notes
– uses the (derived) property has-base-location from our

SWRL example to indicate a person’s “site”
– interacts with previous SWRL derivation rule

Solving CIF

• Solving CIF constraints can be implemented by
dynamically composing the constraints and
available data instances into a CSP, code-generated
for use with a particular finite domain solver

• Solvers used to date include
– ECLiPSe (http://www.icparc.ic.ac.uk/eclipse/)
– Sicstus Prolog FD library (http://www.sics.se/isl/sicstus/)

• 3 steps
– form variable domains from candidate instance data
– post constraints (translate CIF to native solver code)
– label variables (instantiate vars such that constraints are

satisfied…)

11

CIF’s closed world assumption

• We are making a closed world assumption, at the
time the finite domain CSP is composed

• This might seem contradictory to the general vision
of an open world Semantic Web (and OWL DL)

• In practice, a finite number of candidate instances
are always available at run-time, whether
– gathered from a local cache (as in the current AWB)
– acquired through some wider search (always “best-effort”

on the Web)
• (We are essentially doing A-Box reasoning…)

CIF & OWL (DL)

• Our approach is not incompatible with the use of
other reasoning mechanisms

• Example: OWL DL class restrictions can usefully be
employed in CIF expressions to specify the domains
of variables,
– in the quantifier expressions (as the value of a cif:set

property)
– within the heads and bodies of the implications (unary-

predicate atoms)

• We have yet to explore the computational
complexities arising from this :-)

12

CIF & RDFS

• It is perfectly feasible to use CIF with only RDFS
data models

• (This is true of SWRL as well, although of course
SWRL has no way to handle existential
quantification without OWL DL constructs)

• RDFS is relatively widely used on the current
Semantic Web (Dublin Core, RSS, vCards, and
FOAF are among the most widely-instantiated SW
schemas)

• We feel this makes CIF immediately useful for
practical SW applications

Statements about constraints

• The URIreference and annotation features from
OWL allow statements to be made about constraints

• This allows provenance information to be attached
• It also allows other kinds of metadata specific to the

usage of constraints (example: “strength” -
hard/soft?)

• We use constraint reification in the solving process,
where it becomes useful to reason about which
constraints are currently satisfied

• Negotiation and argumentation can be used to
soften (or in some cases harden) constraints

13

Conclusion

• Contributions:
– a representation for fully-quantified constraints at the

Semantic Web logic layer, as an extension to SWRL
– a realistic test-bed application: the AKTive Workgroup

Builder
• Work on multi-strategy reasoning in the AWB is

ongoing:
– Jena 2 for OWL Lite reasoning
– trials with Jena 2, Hoolet, Jess, & Prolog for SWRL inference
– calling SICStus Prolog FD library from Java via PrologBeans

• We aim to combine these into a practical hybrid
reasoner, exploring complexity/scalability trade-offs

