
1

Constraint Logic Programming
Applications on the Semantic Web

Alun Preece
Department of Computing Science
University of Aberdeen, Scotland, UK
apreece@csd.abdn.ac.uk
http://www.csd.abdn.ac.uk/~apreece

Semantic Web
Aim: to create a network of machine-processable
resources
Existing in parallel with the current World Wide Web
Information is marked-up against semantic data
models
Enables software agents to carry out tasks on users'
behalf
Moving from a Web of "finding things" to a Web of
"doing things"
New Semantic Web services will exploit AI techniques

2

Semantic Web architecture

[S
em

an
tic

 W
eb

 "l
ay

er
 c

ak
e"

 s
lid

e
du

e
to

 T
im

 B
er

ne
rs

-L
ee

]

Problem-solving via CLP
Many problem-solving tasks can be modelled and
enacted as constraint logic programs
! tasks concerning a single user

e.g. configuring a product to meet a set of
requirement constraints

! tasks involving multiple users
e.g. arranging a meeting to satisfy everyone's
scheduling constraints

Such tasks are very relevant in the Semantic Web
context
! offering new services to users by exploiting

semantically marked-up information
e.g. product catalogues, people's schedules

3

This talk
Issues
! representing constraints in a Semantic Web-

friendly format
! interfacing constraint solvers to the open Web

environment
Example applications using CLP to deliver Semantic
Web services
! Planning an evening's entertainment

for a visitor to Aberdeen
! "Infotainment" service-provider coalition

formation
! Supporting design teams

Semantic Web constraint format
Serialisable into XML, to make it maximally portable
and open
Constraints should be represented as resources in
RDF, so statements can be made about the
constraints
No modification to the existing RDF and RDFS specs,
so the CIF would be layered cleanly on top of RDF
(and the layers above RDF)
Possible for constraints to refer explicitly to terms
defined in any RDF Schema

4

XML-CIF
Modelled using RDF Schema
Constraints become web resources about which
statements can be made (authorship, context,
strength, …)
Constraints refer to RDFS classes (entities) &
properties (relations)
(We’re using RDFS as a lightweight ontology)
In principle, any RDFS vocabulary can use XML-CIF
and our constraint solving services

P/FDM schemas

Extended E-R semantic data model

http://www.csd.abdn.ac.uk/research/akt/cif

5

P/FDM to RDFS mapping
P/FDM class c declared as c ->> entity maps to an
RDF resource of type rdfs:Class

P/FDM class c declared as c ->> s maps to an RDF
resource of type rdfs:Class, with a property
rdfs:subClassOf s

P/FDM function f declared as f(c) -> r maps to an
RDF resource of type rdf:Property with rdfs:domain c
and rdfs:range r

Colan constraints
constrain each p in pc

to have size(has_os(p))
=< size(has_disk(p))

constrain each p in pc such that
manufacturer(p) = "Apple"
to have name(has_os(p))="MacOS X"

This is just syntactically sugared FOL, but it’s aimed
to be readable to domain experts.

6

Variables in constraints
In Colan a variable is always introduced in
conjunction with a set that it ranges over.
Terms such as (p in pc) and (e in employee) are
common:
(p in pc) such that name (p) = "iMac"

(e in employee) such that

salary (e) > 5000 and age (e) < 50

Represented by Setmem metaclass
Variables are described by the Variable class

RDFS setmem defn
<rdfs:Class rdf:ID="Setmem">
<rdfs:subClassOf rdf:resource="#Boolprim"/>

</rdfs:Class>

<rdf:Property rdf:ID="var">
<rdfs:domain rdf:resource="#Setmem"/>
<rdfs:range rdf:resource="#Variable"/>

</rdf:Property>

<rdf:Property rdf:ID="set">
<rdfs:domain rdf:resource="#Setmem"/>
<rdfs:range rdf:resource="#Setexpr"/>

</rdf:Property>

7

XML-CIF for "(p in pc)"
<cif:Setmem>
<cif:var>
<cif:Variable rdf:ID="#p"/>

</cif:var>
<cif:set>
<cif:Entset>
<cif:entclass rdf:resource=
"http://www.aktors.org/domain/pc_config#pc"
/>

</cif:Entset>
</cif:set>

</cif:Setmem>

Target applications
Supports apps in which info is moved across a
network with rich metalevel info on how to use it

In B2B ecommerce, composition of package products
from vendor catalogue components

! consumer electronic equipment

! package holidays

! financial products

Constraints must be aggregated and solved over
available component instances

8

Fusion of constraints
Customer requirements
! "I want a PC with a colour printer"

Constraints on acceptable packages
! "any printer must have a driver that is compatible

with the PC OS"
Constraints restricting component use
! "this printer has drivers only for Windows OSes"

Constraint fusion services

9

Constraint solver Web services
Wrapping of Sicstus Prolog FD solver as a
FIPA-compliant agent
! Messaging is FIPA ACL over HTTP
! Content is RDF
! Platform is JADE+Jasper+Sicstus

Wrapping of ECLIPSE as an XML-RPC Web
service
! Messaging is SOAP-like AKTbus
! Content is again RDF
! Platform is Prolog+Linda+ECLIPSE

Example applications
Planning an evening's entertainment
for a visitor to Aberdeen
"Infotainment" service-provider coalition
formation
Supporting design teams

10

Granite Nights service

http://www.csd.abdn.ac.uk/research/agentsgroup

11

Granite Nights – input page

Granite Nights – output page

12

Dynamic info source (cinemas)
<s:Shows rdf:ID="ugc_PianistThe">

<s:time>
<s:ShowScheduleCollection>
<s:consistsOf><s:ShowSchedule>

<s:startTime>
<c:Calendar><c:calendarDate>
<c:Date>
<c:dateDayOfWeek

rdf:resource="cal#Thursday" />
<c:year>2003</c:year>
<c:month>1</c:month>

</c:Date>
</c:calendarDate><c:calendarTime>
<c:Time>
<c:format rdf:resource="cal#24h"/>
<c:timeHour>20</c:timeHour>
<c:timeMinute>20</c:timeMinute>

...
<s:location rdf:resource="cinemas#ugc" />
<s:description>Certificate: 15</s:description>
<s:show>
<s:CinemaPerformance rdf:ID=“PianistThe">
<s:title>Pianist, The</s:title>

Static info source (restaurants)
<res:Restaurant rdf:about=“#lalombarda”>

<res:name>La Lombarda</res:name>

<res:averageMealDuration>2

</res:averageMealDuration>

<res:address>

<add:Address rdf:about=“rest#lombardaaddr”/>

</res:address>

<res:atmospheres
rdf:resource=“res#CasualAtmosphere”/>

<res:atmospheres
rdf:resource=“res#RelaxedAtmosphere”/>

<res:caterings rdf:resource=“res#ALaCarte”/>

<res:caterings rdf:resource=“res#HomeDelivery”/>

<res:facilities rdf:resource=“res#SmokingFacility”/>

<res:typeOfCuisine
rdf:resource=“res#ItalianCuisine”/>

</res:Restaurant>

13

RDF Query-by-Example
Principle: query RDF using RDF
If users can read RDF descriptions, they can write
patterns that match RDF descriptions
Example: "get all pubs serving Guinness beer"
<q:Query>

<q:template>

<p:EnglishPub>

<p:servesBeer

rdf:resource="beertypes#guinness"/>

</p:EnglishPub>

</q:template>

</q:Query>
More complex queries use
CIF expressions

Scheduling agent
Convert RDF to Prolog representation
Uses Sicstus Jasper to interface Prolog and Java
Uses Constraint Logic Programming over finite
domains to schedule evening
Coordinates within map of Aberdeen used for location
constraints

http://www.csd.abdn.ac.uk/research/AgentCities/QueryByExample/

14

RDF to Prolog conversion
<ep:EveningPlan>

<ep:events>
<rdf:Seq>

<rdf:_1>
<ep:Event>
<ep:duration>
<c:Duration>

<c:durationHour>2</c:durationHour>
<c:durationMinute>0</c:durationMinute>

</c:Duration>
</ep:duration>
<ep:place>
<rdf:Alt>

<rdf:li><pub:EnglishPub rdf:about="pubs#estaminet" /></rdf:li>
<rdf:li><pub:EnglishPub rdf:about="pubs#wildboar" /></rdf:li>
<rdf:li><pub:EnglishPub rdf:about="pubs#eastneuk" /></rdf:li>

</rdf:Alt>
</ep:place>

</rdf:_1><rdf:_2>
<ep:Event>

<ep:place>
<rdf:Alt>

<rdf:li><cin:Shows rdf:about="films#ugc_PianistThe" /></rdf:li>
<rdf:li><cin:Shows rdf:about="films#lighthouse_PianistThe" />

</rdf:li>
</rdf:Alt>

...

% data(<name>,<type>,<open>,<close>,<location>).
data('ugc_PianistThe',movie,2020,2248,8,4).
data('lighthouse_PianistThe',movie,1815,2043,7,4).

data(’estaminet',pub,1000,2700,7,4).
data(’wildboar',pub,1000,2400,6,4).
data(‘eastneuk',pub,1000,2400,7,5).

Example applications
Planning an evening's entertainment
for a visitor to Aberdeen
"Infotainment" service-provider coalition
formation
Supporting design teams

15

CONOISE project
Constraint Oriented Negotiation in Open Information
Services Environments
Multi-site project: Aberdeen, Cardiff, Southampton, BT
See www.conoise.org
Automate & investigate Virtual Organisation life-cycle:
formation, operation, and disbanding
CONOISE@Aberdeen: using CLP to decide:
! who to form VO with
! when to reform VO
! when to disband VO

CONOISE interactions

Call for Bids
CSP Agent

Possible Bid
CSP Agent

Possible Bid
CSP Agent

Call for Bids

(new VO formation)

Possible Bid
CSP Agent

16

CONOISE: roles of constraints
Types of constraint
! user requirements / preferences (hard / soft)

"monthly package including >= 50 text messages"
! domain restrictions (axioms on ontology)

"all Quicktime content requires a Quicktime player"
! "small print" on instances

"to get this price, must take the complete package"
! suppliers' existing commitments

"40% of my bandwidth is committed to customer X"
All of these constraints must be factored-in when
generating a bid
Sample bid

CONOISE: data model & CSPs

CLP

http://www.csd.abdn.ac.uk/~apreece/talks/CLPApplicationsOnTheSemanticWeb/pa3bid.rdf

17

CONOISE agent architecture

CLP Solver

JADE Agent Platform

Intention Structure
(behaviour list)

onStart()
onEnd()
action()
block()
start()

Desires

add_behaviour()
remove_behaviour()

Beliefs

Plan/Behaviour
Library

Message Queue

Beliefs

b_create()
b_add()
b_remove()
b_compatible()

Populate CLP

BDI Agent

Example applications
Planning an evening's entertainment
for a visitor to Aberdeen
"Infotainment" service-provider coalition
formation
Supporting design teams

18

I-X/KRAFT service
Allows people to collaborate on shared tasks
"Technology integration experiment" (TIE):
! Edinburgh's I-X provides process panels allowing

users to identify & delegate tasks
! Aberdeen's KRAFT offers constraint solving

Scenario:
! Edinburgh user identifies a technical issue,

delegates it to Aberdeen
! Aberdeen resolves issue through constraint solving
! Example: configuring a PC to user's requirements

Interface (mock-up)

[Demo screencam]

http://www.csd.abdn.ac.uk/~khui/akt/ix/i-x-kraft-tie-demo.html

19

Summary of contributions
Issues
! representing constraints in a Semantic Web-

friendly format
! interfacing constraint solvers to the open Web

environment
Example applications using CLP to deliver Semantic
Web services
! Planning an evening's entertainment

for a visitor to Aberdeen
! "Infotainment" service-provider coalition

formation
! Supporting design teams

Future work
Technology
! clean-up & simplify CIF
! extend CIF to OWL
! make solver public on Aberdeen Agentcity node

Applications
! CONOISE: VO reformation
! E-science service composition
! Constraints as laws; policing open service

networks
! AKT: team-to-team interactions

20

Credits & Questions?
Work done at Aberdeen in collaboration with
! Agentcities: Gunnar Grimnes, Pete Edwards
! CONOISE: Stuart Chalmers, Tim Norman,

Peter Gray
! AKT: Kit Hui, Peter Gray, Derek Sleeman

Questions?

