Constraint Logic Programming Applications on the Semantic Web

Alun Preece
Department of Computing Science
University of Aberdeen, Scotland, UK
apreece@csd.abdn.ac.uk
http://www.csd.abdn.ac.uk/~apreece

Semantic Web

- Aim: to create a network of machine-processable resources
- Existing in parallel with the current World Wide Web
- Information is marked-up against semantic data models
- Enables software agents to carry out tasks on users' behalf
- Moving from a Web of "finding things" to a Web of "doing things"
- New Semantic Web services will exploit AI techniques
Problem-solving via CLP

- Many problem-solving tasks can be modelled and enacted as constraint logic programs
 - tasks concerning a single user
e.g. configuring a product to meet a set of requirement constraints
 - tasks involving multiple users
e.g. arranging a meeting to satisfy everyone's scheduling constraints
- Such tasks are very relevant in the Semantic Web context
 - offering new services to users by exploiting semantically marked-up information
e.g. product catalogues, people's schedules
This talk

- **Issues**
 - representing constraints in a Semantic Web-friendly format
 - interfacing constraint solvers to the open Web environment
- **Example applications** using CLP to deliver Semantic Web services
 - Planning an evening's entertainment for a visitor to Aberdeen
 - "Infotainment" service-provider coalition formation
 - Supporting design teams

Semantic Web constraint format

- **Serialisable into XML**, to make it maximally portable and open
- Constraints should be represented as **resources in RDF**, so statements can be made about the constraints
- No modification to the existing RDF and RDFS specs, so the CIF would be **layered cleanly on top of RDF** (and the layers above RDF)
- Possible for constraints to refer explicitly to terms defined in any RDF Schema
XML-CIF

- Modelled using RDF Schema
- Constraints become web resources about which statements can be made (authorship, context, strength, ...)
- Constraints refer to RDFS classes (entities) & properties (relations)
- We’re using RDFS as a lightweight ontology
- In principle, any RDFS vocabulary can use XML-CIF and our constraint solving services

P/FDM schemas

Extended E-R semantic data model
P/FDM to RDFS mapping

- P/FDM class c declared as c -\rightarrow>> entity maps to an RDF resource of type rdfs:Class

- P/FDM class c declared as c -\rightarrow>> s maps to an RDF resource of type rdfs:Class, with a property rdfs:subClassOf s

- P/FDM function f declared as f(c) -\rightarrow>> r maps to an RDF resource of type rdf:Property with rdfs:domain c and rdfs:range r

Colan constraints

- constrain each p in pc to have size(has_os(p)) \leq size(has_disk(p))

- constrain each p in pc such that manufacturer(p) = "Apple" to have name(has_os(p)) = "MacOS X"

This is just syntactically sugared FOL, but it's aimed to be readable to domain experts.
Variables in constraints

- In Colan a variable is always introduced in conjunction with a set that it ranges over.
- Terms such as \((p \text{ in } pc)\) and \((e \text{ in } employee)\) are common:
 \(\text{(p in pc) such that name (p) = "iMac"}\)
 \(\text{(e in employee) such that salary (e) > 5000 and age (e) < 50}\)
- Represented by Setmem metaclass
- Variables are described by the Variable class

RDFS setmem defn

```xml
<rdfs:Class rdf:ID="Setmem">  
  <rdfs:subClassOf rdf:resource="#Boolprim"/>  
</rdfs:Class>

<rdf:Property rdf:ID="var">  
  <rdfs:domain rdf:resource="#Setmem"/>  
  <rdfs:range rdf:resource="#Variable"/>  
</rdf:Property>

<rdf:Property rdf:ID="set">  
  <rdfs:domain rdf:resource="#Setmem"/>  
  <rdfs:range rdf:resource="#Setexpr"/>  
</rdf:Property>
```
XML-CIF for "(p in pc)"

```
<cif:Setmem>
  <cif:var>
    <cif:Variable rdf:ID="#p"/>
  </cif:var>
  <cif:set>
    <cif:Entset>
      <cif:entclass rdf:resource="http://www.aktors.org/domain/pc_config#pc"/>
    </cif:Entset>
  </cif:set>
</cif:Setmem>
```

Target applications

- Supports apps in which info is moved across a network with rich metalevel info on how to use it
- In B2B ecommerce, composition of package products from vendor catalogue components
 - consumer electronic equipment
 - package holidays
 - financial products
- Constraints must be aggregated and solved over available component instances
Fusion of constraints

- Customer requirements
 - "I want a PC with a colour printer"
- Constraints on acceptable packages
 - "any printer must have a driver that is compatible with the PC OS"
- Constraints restricting component use
 - "this printer has drivers only for Windows OSes"

Constraint fusion services
Constraint solver Web services

- Wrapping of Sicstus Prolog FD solver as a FIPA-compliant agent
 - Messaging is FIPA ACL over HTTP
 - Content is RDF
 - Platform is JADE+Jasper+Sicstus

- Wrapping of ECLIPSE as an XML-RPC Web service
 - Messaging is SOAP-like AKTbus
 - Content is again RDF
 - Platform is Prolog+Linda+ECLIPSE

Example applications

- Planning an evening's entertainment for a visitor to Aberdeen
- "Infotainment" service-provider coalition formation
- Supporting design teams
Granite Nights service
Granite Nights - input page

Granite Nights - output page
Dynamic info source (cinemas)

<s:Shows rdf:ID="ugc_PianistThe">
<s:time>
<s:ShowScheduleCollection>
<s:consistsOf><s:ShowSchedule>
<s:start_time>
<c:Calendar>
<c:calendarDate>
<c:Date>
<c:dateDayOfWeek rdf:resource="cal#Thursday"/>
<c:year>2003</c:year>
<c:month>1</c:month>
</c:Date>
</c:calendarDate>
<c:calendarTime>
<c:Time>
<c:format rdf:resource="cal#24h"/>
<c:timeHour>20</c:timeHour>
<c:timeMinute>20</c:timeMinute>
</c:Time>
</c:calendarTime>
</c:Date>
</c:calendarDate>
</c:calendarTime>
</c:Time>
</c:Calendar>
</s:start_time>
</s:ShowScheduleCollection>
<s:location rdf:resource="cinemas#ugc"/>
<s:description>Certificate: 15</s:description>
</s:show>
</s:CinemaPerformance rdf:ID="PianistThe">
</s:title>Pianist, The</s:title>

Static info source (restaurants)

<res:Restaurant rdf:about="#lalombarda">
<res:name>La Lombarda</res:name>
<res:averageMealDuration>2</res:averageMealDuration>
<res:address>
<add:Address rdf:about="rest#lombardaaddr"/>
</res:address>
<res:atmospheres rdf:resource="res#CasualAtmosphere"/>
<res:atmospheres rdf:resource="res#RelaxedAtmosphere"/>
<res:caterings rdf:resource="res#ALaCarte"/>
<res:caterings rdf:resource="res#HomeDelivery"/>
<res:facilities rdf:resource="res#SmokingFacility"/>
<res:typeOfCuisine rdf:resource="res#ItalianCuisine"/>
</res:Restaurant>
RDF Query-by-Example

- Principle: query RDF using RDF
- If users can read RDF descriptions, they can write patterns that match RDF descriptions
- Example: "get all pubs serving Guinness beer"

\[
\begin{align*}
\text{<q:Query>} \\
\text{<q:template>} \\
\text{<p:EnglishPub>} \\
\text{<p:servesBeer} \\
\text{rdf:resource="beertypes#guinness"/>} \\
\text{</p:EnglishPub>} \\
\text{</q:template>} \\
\text{</q:Query>}
\end{align*}
\]

More complex queries use CIF expressions

Scheduling agent

- Convert RDF to Prolog representation
- Uses Sicstus Jasper to interface Prolog and Java
- Uses Constraint Logic Programming over finite domains to schedule evening
- Coordinates within map of Aberdeen used for location constraints
RDF to Prolog conversion

```prolog
% data(<name>, <type>, <open>, <close>, <location>).
data('ugc_PianistThe', movie, 2020, 2248, 8, 4).
data('lighthouse_PianistThe', movie, 1815, 2043, 7, 4).
data('estaminet', pub, 1000, 2700, 7, 4).
data('wildboar', pub, 1000, 2400, 6, 4).
data('eastneuk', pub, 1000, 2400, 7, 5).
```

Example applications

- Planning an evening's entertainment for a visitor to Aberdeen
- "Infotainment" service-provider coalition formation
- Supporting design teams
CONOISE project

- Constraint Oriented Negotiation in Open Information Services Environments
- Multi-site project: Aberdeen, Cardiff, Southampton, BT
- See www.conoise.org
- Automate & investigate Virtual Organisation life-cycle: formation, operation, and disbanding
- CONOISE@Aberdeen: using CLP to decide:
 - who to form VO with
 - when to reform VO
 - when to disband VO

CONOISE interactions

Call for Bids → CSP Agent

Call for Bids
(new VO formation)
CONOISE: roles of constraints

- **Types of constraint**
 - user requirements / preferences (hard / soft)
 - "monthly package including >= 50 text messages"
 - domain restrictions (axioms on ontology)
 - "all Quicktime content requires a Quicktime player"
 - "small print" on instances
 - "to get this price, must take the complete package"
 - suppliers' existing commitments
 - "40% of my bandwidth is committed to customer X"

- All of these constraints must be factored-in when generating a bid

Sample bid

CONOISE: data model & CSPs
CONOISE agent architecture

Example applications
- Planning an evening's entertainment for a visitor to Aberdeen
- "Infotainment" service-provider coalition formation
- Supporting design teams
I-X/KRAFT service

- Allows people to collaborate on shared tasks
- "Technology integration experiment" (TIE):
 - Edinburgh's I-X provides process panels allowing users to identify & delegate tasks
 - Aberdeen's KRAFT offers constraint solving
- Scenario:
 - Edinburgh user identifies a technical issue, delegates it to Aberdeen
 - Aberdeen resolves issue through constraint solving
 - Example: configuring a PC to user's requirements

Interface (mock-up)

[Demo screencam]
Summary of contributions

Issues
- representing constraints in a Semantic Web-friendly format
- interfacing constraint solvers to the open Web environment

Example applications using CLP to deliver Semantic Web services
- Planning an evening's entertainment for a visitor to Aberdeen
- "Infotainment" service-provider coalition formation
- Supporting design teams

Future work

Technology
- clean-up & simplify CIF
- extend CIF to OWL
- make solver public on Aberdeen Agentcity node

Applications
- CONOISE: VO reformation
- E-science service composition
- Constraints as laws; policing open service networks
- AKT: team-to-team interactions
Credits & Questions?

- Work done at Aberdeen in collaboration with
 - Agentcities: Gunnar Grimnes, Pete Edwards
 - CONOISE: Stuart Chalmers, Tim Norman, Peter Gray
 - AKT: Kit Hui, Peter Gray, Derek Sleeman

Questions?