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Abstract. We describe a new approach to managing information quality (IQ) in
an e-Science context, by allowing scientists to define the quality characteristics
that are of importance in their particular domain. These preferences are speci-
fied and classified in relation to a formal IQ ontology, intended to support the
discovery and reuse of scientists’ quality descriptors and metrics. In this paper,
we present a motivating scenario from the biological sub-domain of proteomics,
and use it to illustrate how the generic quality model we have developed can be
expanded incrementally without making unreasonable demands on the domain
expert who maintains it.

1 Introduction

A key element of e-Science is the development of a stable environment for the conduct
of information-intensive forms of science. Increasingly, scientists expect to make use
of information produced by other labs and projects in validating and interpreting their
own data, while funding bodies expect the results generated by their projects to have
greater longevity and wider usefulness. In this context, information does not merely
document the state of the art in a domain, it also becomes a fundamental resource in the
discovery of new knowledge. Hence the increasingly stringent requirements by funding
bodies and publishers that scientists place their experimental data in the public domain
in forms that are amenable to analysis by software tools as well as by humans.

At present, a variety of obstacles prevent the full realisation of this e-Science vi-
sion, not least of which are those caused by the inevitable variations in the quality of
the information being shared [3]. It is tempting to view this as a problem for data pro-
ducers, and to concentrate on defining standards and procedures for data capture (such
as those defined by the MGED consortium for the capture and recording of information
about microarray experiments [4]). While such standards are important and worthwhile,
they cannot provide a complete solution. They can do little to address the quality of the
volumes of legacy data that have so far been amassed. Moreover, like other forms of
quality, information quality (IQ) is typically a function of the requirements of the infor-
mation consumer rather than its producer. A scientist searching for information relating
to a drug that is about to be used in patient trials will have more stringent require-
ments than one searching for examples to be used in a textbook, for example. Similarly,



one scientist might think of “accuracy” in terms of some calculated experimental error,
while another might define it as a function of the equipment that captured the data.

What is required, therefore, is some means by which we can determine the quality of
a specific data set relative to the needs of a specific user. For example, data sets that are
incomplete or inaccurate can still be used to good effect by those who are aware of these
deficiencies and can work around them. The viability of this approach depends on the
ability to elicit and manage detailed specifications of the IQ requirements of individual
users (or, at best, communities of like-minded individuals). The task of specifying new
forms of quality preference should not be too onerous on users or those managing the
information environment. IQ preferences should ideally be expressed in a formal lan-
guage so that the definitions are machine-manipulable, both to allow (semi-)automatic
determination of the quality of a data set, and to facilitate browsing and searching of
the quality model.

The Qurator project1 aims to provide the software infrastructure needed to support
this form of domain-specific IQ management, focussing specifically on two domains of
post-genomic biology: proteomics and transcriptomics [5]. We envision an e-Science
environment in which a new user (scientist) can use IQ tools to discover potentially-
useful IQ preferences for adaptation and reuse, and which allows new customised pref-
erences to be defined without involving an expensive knowledge capture exercise.

The existing IQ literature offers useful starting points to meet these goals, by pro-
viding a common terminology for describing quality properties, or dimensions [11, 9].
However, it falls short of providing principled solutions to the problem of expressing
quality requirements in a formal way, let alone to the problem of expressing complex
quality-oriented views of data. In this paper, we describe a knowledge-intensive ap-
proach to modelling both the quality and application domains, which may serve a foun-
dation to address these problems. We present the ontological model of IQ that forms the
heart of our approach (Section 3), and show how the ability to reason over the model
allows it to be self-managing under the addition of new quality preferences (Section 4).

The ontology is implemented in OWL and makes use of OWL-DL reasoning fea-
tures2. Although we do not add any new theoretical elements to the Semantic Web
framework, its application to this problem is, to the best of our knowledge, novel. This
project is still in its early stages, and validation of the ideas presented here is in progress
with the collaboration of the Aberdeen Proteomics Facility, at the University of Ab-
erdeen, UK. Tool support for exploiting the ontology is in the planning stage.

2 Background on protein identification

To motivate the ontology presented in this paper, we present a scenario from the area of
proteomics that illustrates the kinds of quality preference which arise from the domain-
specific approach we are investigating. Proteomics is the study of the set of proteins
that are expressed under particular conditions within organisms, tissues or cells. One
experimental approach that is widely used to gain information about the large-scale ex-
pression of proteins involves extracting the proteins from a biological sample, then sep-

1 Qurator is funded by the EPSRC Fundamental Computer Science for e-Science Programme.
2 http:://www.w3.org/TR/owl-guide/



arating them by a technique known as 2-dimensional gel electrophoresis (2DE). With
this technique, the proteins are separated into a 2D matrix, where they are distinguished
by net charge and molecular size. These two separating factors are typically enough to
differentiate each protein in the sample, so that each spot on the gel contains just one
kind of protein. The spots can be examined individually and the amount of protein in
each can be estimated after staining and densitometric scanning.

In a typical proteomic experiment, several different samples are subjected to the
procedure outlined above and the resulting 2DE maps are compared. This allows the
biologist to compare the expression rates of various proteins under contrasting condi-
tions, for example to examine the different expression rates between a healthy tissue
sample and a diseased one. By comparing the gel images that are produced from the
samples, the biologist can hypothesise that the changes in protein expression thus high-
lighted may be a significant cause or result of the biological phenomenon under study.

Before such a hypothesis can be fully stated, it is necessary to identify the proteins
that are present in the spots that indicate varied expression levels. This task is rou-
tinely performed using the technique of peptide mass fingerprinting (PMF). In PMF,
the protein within the gel spot is first digested with an enzyme that cleaves the chain
of the protein at certain predictable sites. The fragments of protein that result (called
peptides) are extracted and their masses are measured using mass spectrometry. The
list of peptide masses is then compared against theoretical peptide mass lists, derived
by simulating the process of digestion on protein sequences extracted from a protein
database (e.g. NCBInr3). Since, for various reasons, it is unlikely that an exact match
will be found, the protein identification search engines typically return a list of poten-
tial protein matches, ranked in order of search score. Different search engines calculate
these scores in different ways, so their results are not directly comparable. Furthermore,
although some search engines (e.g. Mascot4) attempt to estimate the probability that a
match is valid, others (e.g. MS-Fit5) do not, and it may be difficult for the experimenter
to decide whether a particular protein identification is acceptable or not.

It would be useful for biologists seeking to interpret the results of proteomic exper-
iments to be able to assess the credibility of a protein identification result by comparing
readily accessible metrics for a list of protein matches. There are three metrics that can
be used for this purpose, and which are independent of the search engine used:

– Hit ratio: the number of peptide masses matched, divided by the total number of
peptide masses submitted to the search. Ideally, most of the masses should be ac-
counted for by the protein identified, but because of additional peaks in the mass
spectrum (originating from the presence of other proteins, for example) the hit ratio
is unlikely to reach unity.

– Excess of limit-digested peptides: calculated by subtracting the number of matched
peptides containing a missed cleavage site from the number of peptides with no
missed cleavages. Ideally, a complete (limit) digest will have been achieved during
PMF, in which case the number of missed cleavage sites would be zero. However,
in practice a small number of missed cleavages are to be expected.

3 http://www.ncbi.nih.gov/BLAST/
4 http://www.matrixscience.com/
5 http://prospector.ucsf.edu/



– Sequence coverage: the number of amino acids contained within the set of matched
peptides, expressed as a percentage of the total number of amino acids recorded
for the protein in the database. The higher the coverage, the greater the confidence
in the match, but limitations of the experimental technique mean that full coverage
is never achieved. It is also necessary to consider the size of the protein. A lower
coverage of, say, 15% may be satisfactory for a large protein where many other
peptides have been successfully matched. A similar coverage for a smaller protein,
on the other hand, would be indicative of a poor match. Therefore, care must be
exercised when interpreting the value of this metric.

These three metrics can be combined in a logical expression that allows us to classify
protein matches as being either acceptable or unacceptable. A software tool can then be
envisaged that allows the user to set acceptance criteria for each metric independently
and to see the effect in real time of altering any or all of the threshold values on the
acceptability of the data set.

While we use this as a simple example, a more general approach for the creation
of quality preferences is described in the next section. The choice of these metrics also
represents a simplification. In protemics, many more variables can be used to formulate
statements regarding the quality of experimental results. For in-depth reviews of the
field and of the variables involved, please see [6, 7, 1].

3 Ontology-based modelling of information quality

Although we are focussing on two specific application domains within the Qurator
project (i.e. proteomics and transcriptomics), our ultimate goal is to produce a model of
IQ that can be instantiated to produce domain-specific IQ models for a wide variety of
application areas. In order to achieve this, it was necessary to find some over-arching
organisational structure that would give meaning to the domain-specific terms and al-
low for comparison and analysis of quality preferences provided by multiple users. For
this purpose, we have adapted generic IQ concepts that have been in use within the IQ
community for a long time, and which are grounded in the wealth of existing literature
on this topic [3, 8, 10, 9]. These concepts, such as accuracy, completeness and currency,
give useful placeholders for common IQ concerns but they are not sufficiently well de-
fined to be directly applicable to real applications. Instead, the user (or group of users)
will wish to talk about specific properties relating to the domain of interest. Rather than
speaking of accuracy, she will talk of equipment tolerances or scores resulting from
error models, for example.

The Qurator quality ontology must therefore bridge the gap between these generic
quality concepts (i.e. quality properties) and concepts from the users’ own domain.
Figure 1 shows a fragment of the OWL ontology we have created for the proteomics
scenario described in Section 2, and which we will use to illustrate how this bridging is
achieved6. Here, specific domain knowledge coming from the biologists and bioinfor-
maticians involved in the project has been imported into the Qurator ontology from the

6 No standard notation currently exists for expressing the logical features of the OWL language.
We use a graphical notation in which ovals represent classes, rectangles represent individuals
and lines represent object properties [2]. We show user-defined individuals and properties us-



myGrid project data ontology [12], which describes basic biological concepts as well as
a number of biological databases and data analysis tools. In Figure 1, the Applica-
tionDomain classes represent domain data concepts that have either been lifted from
myGrid, or added to it. We have then extended the model with terms of specific interest
to proteomics specialists.
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Fig. 1. Fragment of the IQ ontology.

We will use the following simple but realistic proteomics scenario to explain how
the ontology supports the definition of new domain-specific quality preferences with the
help of the generic quality terms. Suppose that a biologist wishes to rank a set of protein
identification experiments performed using 2DE technology. The ranking is based on
the scores obtained by matching PMFs against the NCBInr database, using the Mascot
analysis tool. This score (the QualityMetric) is itself based on some function of the
hit ratio and the number of possible missed cleavages (NMC) found during the match.

The user’s first task is to create a QualityPreferenceSchema, which will be
used to rank the experimental results. Although the ontology fragment shows only a
single generic concept for preference schemas, in practice one would expect a range of
more specific schemas to be defined (to partition experiments into classes, for example,
or to filter them based on a threshold for the associated quality metric).

The next step is to define the QualityMetric itself, which must be based on
one or more Indicators. An Indicator is some value that can be provided by
the environment, either directly by retrieval from some persistent store or metadata

ing thick lines, and represent subsumption properties or individuals’ classifications obtained
through reasoning using dotted lines.



repository, or by computation. In our example, the two indicators are HitRatio and
NMC. We will assume that the former is already present in the domain-specific part of
the ontology, but that the user must add the NMC indicator to the model. In practice, it is
common in e-Science for indicators to be associated with particular data analysis tools,
as modelled by the TestFunction class. For example, HitRatio is part of the
output produced by an analysis program which performs protein identification matches
against a protein database. There may be many such programs, and the class PIMatch
represents their general form in the ontology.

Next, we associate the indicators with the generic quality concepts. In the ontology,
the quality domain is divided into two levels, which together support self-management
of the ontology. The lower level is represented by the root class QualityCharac-
terization, or “QC” for short, which is extended with a small and fairly stable
collection of key concepts describing information quality, such as ReputationQC,
ConfidenceQC and CurrencyQC. These classes are used to characterize the qual-
ity of domain concepts that are part of the ontology. In particular, an Indicator is
defined as any data entity that can be quality-characterized (through the has-QC prop-
erty). Some indicators are domain-independent. For example, time stamps on data are
commonly used to assess currency of information, and would therefore be associated to
CurrencyQC. Others, such as HitRatio, are completely domain-specific.

The default associations shown in the model reflect the intended meaning of the
quality terms, and have been introduced based on domain experts’ recommendations.
For instance, a ConfidenceQC indicator provides users with a level of confidence in
the outcome of an experiment (as is the case for HitRatio, for instance) while a Rep-
utationQC can be associated to indicators that scientists use to assess the overall rep-
utability of an experiment outcome – these may include the laboratory that performed
the experiment, and the standing of the associated journal publications. As the QC con-
cepts form a primitive collection of ontology terms, they also act as the axiomatic base
for the quality domain. Qurator makes an effort to ensure that domain experts use these
terms consistently when introducing new domain-specific concepts.

The second method of encoding quality into the Qurator ontology is a higher level
model of the more traditional data quality terminology found in the literature. These
concepts are rooted at the QtyProperty class. The mapping between the two levels
of quality concepts represents additional knowledge regarding quality, and provides for
added flexibility in the specification of the semantics of the terms. For instance, we
might define Accuracy (i.e. the property that describes how closely a data entity reflects
the actual state of the real world entity that it stands for) in terms of confidence and
specificity. The way to read this association is as follows:

“a quality metric that is based on confidence or on specificity indicators, ex-
presses the intention of the expert to capture accuracy properties of the under-
lying data.“

Of course, there are many who would disagree with this as a definition of accuracy. The
key point here is not the exact form of the definition, but the fact that there is a principled
way to establish the logical associations between the users’ operational definitions of
quality, implemented using indicators and metrics, and a shared conceptualization of
data quality.



4 A self-managing quality model through DL reasoning

The combination of domain knowledge and generic quality concepts has proved to be
surprisingly powerful when combined with the kinds of reasoning facility offered by
standard description logic ontologies. As the ontology is implemented in OWL-DL, we
have benefited from its ability to provide consistency checks and entailment in sup-
porting additions to and modifications of the ontology. In particular, the inferencing
capabilities provided by description logics allow newly introduced concepts, such as
indicators, to be classified against the quality model automatically, and therefore to be-
come available to other scientists for reuse.

The principal mechanism that underlies this self-classifying ability is the set of QCs.
We have already discussed how indicators can be classified relative to the current set of
QCs. Test functions may also be treated in this way, and QCs can be automatically prop-
agated from them to the indicators that act as their parameters or results. For instance,
we can formalize the (sufficient) condition that an indicator is a Confidence-ind
if it is a parameter of any TestFunction whose QC includes ConfidenceQC. In
OWL DL, this can be written as:

Confidence-ind � � is-parameter-of �(1)

�� has-QC ConfidenceQC�

Note that the has-QC property is many-to-many, so the existential quantifier indicates
that at least one of the indicator’s QCs must be a ConfidenceQC.

To see this in action, suppose that when the new user-defined indicator NMC is in-
troduced, the only information the user can provide about it is that it is a parameter to a
matching algorithm for PMFs. This algorithm is already known to the ontology as the
concept called PMFMatch, which has a ConfidenceQC:

(2) NMC � Indicator � �� is-parameter-of � PMFMatch�

(3) PMFMatch � � has-QC � ConfidenceQC

Assertion (2), here, defines NMC as an individual whose class is the domain of the
is-parameter-of property, with a range of the class PMFMatch (this is called
an anonymous class). Assertion (3) states that PMFMatch is a sub-class of any anony-
mous class that is a domain of the has-QC property, with range ConfidenceQC (a
necessary condition). By applying standard DL reasoning 7 to these three assertions, we
infer that NMC is a member of the Confidence-ind class (shown as a thick dashed
line in Figure 1):

(4) NMC � Confidence-ind�

Note that similar entailments are performed on the built-in indicators (thin dashed lines
in the figure). Following this approach, it is possible to classify indicators with respect
to both the quality and the application domains; the application domain hierarchy is

7 Our implementation makes use of the RACER DL reasoner (http://www.racer-
systems.com/).



rooted at ApplicationDomain in Figure 1. The role of the classes under the I-
template class is to provide both a quality view and an application view of the indi-
cators. Once they have been populated through reasoning, such views provide a basis
for a variety of user queries regarding available indicators, including the user-defined
ones. For example, they make it possible to query the ontology to discover what indi-
cators exist that are suitable for a specific quality purpose (e.g. “give me all confidence
indicators”) so that users can browse the currently available resources before they go to
the trouble of creating their own from scratch.

4.1 A detailed scenario

We can now illustrate how the ontology supports the user scenario introduced earlier.
The following assertions, stated informally, capture the user’s intuitions regarding qual-
ity preferences for his data collection:
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Fig. 2. Entailments for the user scenario (dotted lines)

1. a new indicator, NMC, must be introduced;
2. NMC is used as a parameter of any PMF matching algorithm (i.e. it does not need

to be associated with a specific algorithm instance at this stage);
3. a ranking criterion aRC is introduced, as a function of NMC and the pre-existing

indicator HitRatio;
4. a particular quality preference schema, aDPS, is defined;
5. it is stated that aDPS uses the aRC metric;
6. it is stated that aDPS applies to any proteomic data collection.



The effects of these assertions are shown in Figure 2 by rectangles (individuals) and
thick solid lines (properties).

In addition to this domain-specific information supplied by the user, we also assume
the existence of assertions within the ontology stating that a Confidence-ind is
either an indicator whose set of QCs includes a ConfidenceQC, or that it is either
the parameter or the output of a test function whose QC includes ConfidenceQC.
Note that this definition generalizes assertion (1) to capture the case in which a direct
assertion regarding the QC properties of an indicator is made. Finally, Accuracy is
assumed to be defined in terms of quality metrics and QC-indicators as follows:

Accuracy is the quality property for which there exists a metric �� that is based
on a set of indicators, at least one of which is either a Confidence-ind or
a Specificity-ind.

The DL expressions corresponding to these informal assertions are presented in the
Appendix. Based on these expressions, Qurator introduces an additional individual,
XProperty � QtyProperty, and establishes an association between the user an-
notations and the shared quality terminology, by asserting that XProperty is related
to metric aRC.

With these definitions, the reasoner infers that (a) NMC � Confidence-ind, and
(b) XProperty � Accuracy. In practice, we have used the reasoning capabilities
associated with OWL DL to classify elements from the user input, in a way that is
consistent with a predefined ontology. The resulting quality annotations are consistent
with the model and can be stored for future querying.

5 Conclusion

By bridging the gap between the quality domain and application domains, the Qurator
ontology allows scientists and bioinformaticians to describe their personal perceptions
of data quality in e-science in a natural yet formal way, while relationships with a shared
quality model are automatically established. This allows us to provide a controlled en-
vironment for managing user extensions to the ontology, which in turn facilitates in-
cremental development of domain-specific quality models. As our scenario illustrates,
users are only expected to provide information about their own tools and indicators.
Qurator then searches for relationships between the new domain-specific concepts and
the existing quality concepts. This combination of extensibility and reusability has the
potential to produce rich, community-supported bases of shared knowledge that eases
the navigation and exploitation of the information resources provided by e-Science. It
is expected to have particular value for scientists who are not experts in the domain of
the data (e.g. proteomics scientists wishing to make use of transcriptomics data).

In addition to the entailment patterns described in this paper, a number of other pat-
terns can potentially be supported by the Qurator model. We are currently exploring
these, as well as expanding our understanding of the uses of information quality in our
two application areas. We need to learn more about the ways in which quality annota-
tions of the kind provided by our model can be used in practical applications, and how
the model can be better embedded within upcoming e-Science tools.



A DL assertions for the user scenario

1. aDPS � QualityPreferenceSchema
2. aRC � QualityMetric
3. aDPS pref-based-on-metric aRC
4. metric-based-on-indicator HitRatio
5. aRC metric-based-on-indicator NMC
6. NMC � Indicator � �� is-parameter-of � PMFMatch�
7. PMFMatch � � has-QC � ConfidenceQC
8. Confidence-ind � ��is-parameter-of

��has-QC ConfidenceQC��
� ��is-output-of��has-QC ConfidenceQC��
� ��has-QC ConfidenceQC�

9. Accuracy � � QtyProperty-from-metric
�� metric-based-on-indicator
�Specificity-ind� Confidence-ind��

10. XProperty � QualityProperty
11. XProperty property-from-metric aRC
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