
Provider issues in quality-constrained data provisioning

Paolo Missier and Suzanne Embury
School of Computer Science

The University of Manchester, UK

{s.embury,pmissier}@cs.manchester.ac.uk

ABSTRACT
Formal frameworks exist that allow service providers and
users to negotiate the quality of a service. While these agree-
ments usually include non-functional service properties, the
quality of the information offered by a provider is neglected.
Yet, in important application scenarios, notably in those
based on the Service-Oriented computing paradigm, the out-
come of complex workflows is directly affected by the quality
of the data involved. In this paper, we propose a model for
formal data quality agreements between data providers and
data consumers, and analyze its feasibility by showing how
a provider may take data quality constraints into account
as part of its data provisioning process. Our analysis of
the technical issues involved suggests that this is a complex
problem in general, although satisfactory algorithmic and
architectural solutions can be found under certain assump-
tions. To support this claim, we describe an algorithm for
dealing with constraints on the completeness of a query re-
sult with respect to a reference data source, and outline an
initial provider architecture for managing more general data
quality constraints.

1. INTRODUCTION
An increasing number of information providers nowadays

offer query services on large data sets through internet-wide
published interfaces, using a variety of widely available tech-
nologies. Alongside the definition of a service interface, the
stipulation of agreements regarding the quality of the service
is also becoming commonplace, eg. in the form of Service
Level Agreements [12, 2, 20]. Such agreements, however,
only deal with performance issues, while the quality of the
information delivered to service users is generally neglected.
When compared to the more common experience of shop-
ping for any kind of product, this situation is akin to as-
suming that the customers’ only issue is with the opening
hours of the store or the service time at checkout, with no
concern for the quality of the goods – clearly an unrealistic
expectation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06 ...$5.00.

We argue that data consumers are in a similar predica-
ment: the sizable and mature body of knowledge regarding
quality properties of data [18, 19, 24, 21, 9] does not trans-
late into actionable user requirements, and yet, in simple and
realistic scenarios, specific properties of data are important.
Suppose, for instance, that a provider acquires copyrighted
articles from publishers, and compiles independent digests
and reviews of those articles, offering them for sale. While
users are interested in purchasing the added-value reviews,
they also want to make sure that by doing so, they are not
missing the digest for any of the articles that would meet
their criteria if requested directly to the publishers. For ex-
ample, they want to purchase the digest for the ten most
recent papers on a particular topic.

The idea at the core of our work is that users may en-
force this and similar requirements by entering into a for-
mal agreement with the added-value provider, whereby the
digests produced in response to a query are guaranteed to
include a sufficiently large fraction of the articles that would
have been returned, had the same query been issued directly
to the publisher. We refer to this property of the data as
its completeness relative to a reference data source –in this
case, the original publisher.
Thus, a completeness constraint is intended to differentiate
between providers that only offer digests for a small subset
of the articles that are actually available, and those that
account for larger collections. Notice that, in this exam-
ple, the quality of the digest itself is not part of the agree-
ment, although it may be similarly formalized as a quality
constraint, of a different type: completeness is only one of
many possible properties of data for which constraints can
be defined.

This simple scenario is becoming increasingly relevant in
situations where (i) the data obtained from a provider has
a quantifiable value to the consumer, (ii) its worthiness de-
pends on one or more quality properties, and (ii) multiple
providers may offer similar information. The combination
of these factors contributes to the development of a data
marketplace, whereby consumers that are interested in qual-
ity data negotiate its quality/cost trade-offs with providers.
The value of quality as perceived by consumers is not nec-
essarily only monetary. Consider for instance the case, also
increasingly important, of a biologist who performs data-
intensive experiments using various algorithms that operate
on data obtained from public repositories (so-called in silico
experiments). For example, the success of a gene sequence
similarity analysis, consisting of matching a string sequence
against a large database of known sequences, depends on

the completeness of the reference data source. Although the
experiment’s success criteria are normally not expressed in
monetary terms, the value of using a complete reference data
set is unquestionable.

The missing element that would enable data marketplaces
is the ability for data providers and consumers to negotiate
formal and binding agreements regarding the quality of the
data. In this respect, providers seem to face the greatest
challenges, as they must determine which agreement levels
can be sustained, and the cost/benefit trade-offs involved.
To the best of our knowledge, these issues have not been
addressed, with the exception of a 1989 paper by Ballou
and Tayi [5], discussed later.

This paper attempts to fill this gap. Its core contribution
is a model for quality agreements, and an analysis of the is-
sues and possible strategies available to providers that com-
mit to such agreements. We begin by assuming that every
data transaction, consisting of a query-result pair, may be
subject to quality constraints. Before any such transaction
may occur, providers and consumers should agree on defin-
itions for the following elements:

• a pricing function, which associates a value to the re-
sult of any query issued by the consumer;

• a number of quality functions that formalize the no-
tions of quality properties, and that associate a quality
value to each result;

• a function of quality values for the result, that quanti-
fies their appropriateness to the consumer. This func-
tion, not necessarily linear, is expressed as a penalty
whose effect is to reduce the price paid for the result.

The negotiation process that leads to the specific definition
of each of these elements is not relevant for our purposes,
and is not considered in this paper. Before entering into
such an agreement, the provider must determine its feasi-
bility, by assessing (i) the actions required to provide data
with the required quality values, and (ii) whether its data
architecture supports those actions in a cost-effective way.
Specifically, for each incoming query, the provider faces two
problems:

1. Detection: it must determine to what extent a result
set would incur any penalty, due to insufficient quality
levels, for all the quality properties involved;

2. Repair: it must determine what actions are available
to repair its data in order to reduce or avoid the penal-
ties.

We base our model on the assumption that both detection
and repair have a cost, forcing the provider to solve an op-
timisation problem involving penalties, price, and costs.

As is common with any marketing scenarios, the provider
may adopt a number of different strategies for compliance.
For instance, it may invest resources to proactively ensure
that most of its data comply with the constraints, regard-
less of the specific user requests. More realistically, it may
conservatively adjust the quality levels of its data, by ob-
serving the consumer’s behaviour – for instance, by invest-
ing in quality only for the most popular data and accepting
penalties for less frequently requested items.

Rather than focusing on any specific model, in this paper
we define the provider’s problem space by enumerating the

factors that affect its strategies. This results in a general
framework that can be used to analyze complex scenarios.
The most critical factor concerns the amount of information
available to ensure that the penalties assessed are provably
fair : if we assume that the actual value of a quality function
is always available both to the provider and the consumer,
then (i) the fairness of the agreement can be verified, and (ii)
the provider may implement an optimal provisioning strat-
egy. For some quality properties, however, this assumption
may not be realistic. For instance, evaluating the complete-
ness of a data set relative to a reference set requires full
knowledge of the latter. We model the problem of partial
knowledge of quality by attaching a cost to the evaluation of
quality functions; in the case of completeness, this would be
the per-item cost of querying the reference source, in order
to obtain a partial view of its contents. This leads to the
formulation of quality estimates, which put the fairness of
the agreement into question, and compromise the optimality
of the provider’s strategy. We propose (Section 3.1) to deal
with fairness issues by introducing a third-party verification
role and using a spot-check approach for ensuring limited
but acceptable fairness.

As additional contribution, we present an algorithm for
dealing with the specific case of data completeness con-
straints, first using the most favorable assumptions, includ-
ing availability of quality values, and then in the more gen-
eral case of partial availability. This provides an insight into
the expected complexity of the general provisioning prob-
lem, and also shows a case of a property-specific algorithm
that cannot be easily reused for other properties; it suggests
that the generality of the solution may be limited to the
detection-maintenance pattern.

As a final contribution, we describe (Section 6) a general
data provider architecture that incorporates that pattern,
and show how it can be implemented alongside a standard
query processing engine.

Our initial investigation into the problem of provisioning
data with quality constraints shows that this is a difficult
one in general, although satisfactory algorithmic solutions
can be found under realistic assumptions.
In the rest of the paper, quality functions are introduced
in Section 2, followed by the agreement model in Section
3. The provider model is presented in Section 4, and the
specific handling for completeness in Section 5. The refer-
ence architecture is discussed in Section 6. We conclude in
Section 7 with our agenda for further work.

1.1 Related work
Although the specific topic of data quality agreements is

new, some authors address related problems, specifically in
the area of quality-aware data integration. Naumann et al.
[17] assume that scores can be assigned to the data offered by
multiple providers, to reflect its quality, and show that the
problem of data integration in the presence of such scores re-
sults in significant extensions to known algorithms for query-
ing data using views. We tackle a somewhat complementary
problem, namely how a provider can manage its data assets
in order to obtain desirable quality scores, which would then
be passed up to an integration mediator. Similarly, a recent
paper by Motro [3] shows how using utility functions may al-
leviate the problem of data fusion (i.e., combining different
versions of the same date) in the presence of inconsisten-
cies. Utility functions are based on quality features such

as recentness and accuracy. Using a similar perspective, the
“Quality Broker” architecture presented in [15] assumes that
quality features are available from several sources. The goal
of the architecture, in this case, is not quality constraint sat-
isfaction, but rather the broker-based selection of the most
appropriate answer to a query, among multiple available.

A related problem is also addressed in [4], where the no-
tion of a data quality certificate is presented. The purpose
of the certificate is to enable reasoning about quality within
the context of cooperative information systems, in order to
improve the overall quality of inter-system workflows. This
notion is also used, in a different form, in the quality profile
model described in [13].

Underlying all of these approaches are assumptions re-
garding (i) a shared underlying model for quality descrip-
tion, and (ii) the way quality values are actually computed.
While none of them seems concerned with their actual avail-
ability, in some cases, the granularity of the quality meta
data is so fine – at the level of a single attribute, that
the actual feasibility of computing the corresponding values
may be questioned. An important but overlooked problem
then becomes, to assess the robustness of these integration
processes when some of the quality data is missing.

Some authors define completeness by taking into account
both the size of a data source and the number of available
attributes with respect to the reference source, as well as the
fraction of attribute values that are non-null. Our definition
of completeness only considers the size of the relation, and
not the single attributes, and thus it is simpler than the re-
lational completeness found in [16]. It corresponds roughly
to the notion of coverage introduced in [11]; there, coverage
is defined with respect to a universal relation, whose exten-
sion includes all tuples obtained from a number of primary
data sources. Our single reference source corresponds to the
universal relation.

Ballou et al. [5, 6] presented an interesting and very perti-
nent early attempt at linking quality properties to the effort
required to provision them. There, the goal is to determine,
using an integer programming model, the most effective dis-
tribution of resources that a provider can use to maintain
or enhance data integrity, each with an associated cost and
effectiveness. While initially assuming precise knowledge of
the underlying cost, data error rate and other parameters,
the model also addresses the problem of estimating some of
those parameters using heuristics. How realistic the overall
model is in practice, however, remains to be seen.

Finally, following the intuition that information is but an-
other type of product, some authors have adapted estab-
lished results from the practice of quality control in product
manufacturing, resulting in the IP-MAP (Information Prod-
uct Map) framework [23, 22, 7]. For our purposes, the merit
of this work is to provide ways to predict quality values
based on the analysis of the processes that produce those
values. However, we believe that the barebone model for
completeness presented in the next section would defeat the
purpose of such machinery, which is best suited for complex
processes with well-identified “quality weak spots.”

2. QUALITY FUNCTIONS
We begin by providing functional definitions of quality

properties, which we illustrate for the case of completeness,
defined earlier, and of consistency, i.e., the property of a
data set to conform to some validation rule.

We only consider relational data sets, i.e., extensions of a
relational schema. Given two data sets D and Dr, we define
the completeness of D relative to Dr as:

compl(D, Dr) =
|D ∩ Dr|

|Dr|
∈ [0, 1] (1)

In particular, we are interested in the completeness of the
result Q(D) of a query:

complQ(D, Dr) =
|Q(D) ∩ Q(Dr)|

|Q(Dr)|
∈ [0, 1] (2)

Intuitively, complQ() counts the fraction of records from Dr

that the user obtains by querying D rather than Dr. Recall
that the reason for querying D in our examples is that it
contains added value versions of data from Dr.

This definition is illustrated in Figure 1. Note that compl(D, Dr)
may be very different from complQ(D, Dr) for some Q; even
when D contains only a small subset of Dr, its complete-
ness relative to a particular query may be high, as long
as D contains most of the items that the user is request-
ing. In fact, the heuristics for providing completeness, pre-
sented later, are based on the provider’s knowledge of the
user queries; their effectiveness depends on the predictability
of those queries.

Before we proceed, we must first give a precise meaning to
the expression Q(Dr), by clarifying the relationship between
D and Dr. Let SD and SDr be the relational schemas for D

and Dr, respectively. Following the well-known “Global-as-
View” pattern, described for instance by Lenzerini [14], we
assume that SD is defined as a view on SDr . Formally, this
requires the definition of a mapping query mq over SDr ,
written as SD mq(SDr), so that any query issued to
SD can be translated into a corresponding query to SDr ,
through a simple process of unfolding of the mapping query.
For example, suppose that SDr consists of two relations,
R1(a1, a2, a3) and R2(b1, b2, b3), and that SD consists of re-
lation R, defined by the mapping query:

R(c1, c2, c3) πa1,b2,b3(σa3=c(R1 ⊲⊳a2=b2 R2))

Then, for a query like

Q ≡ πc1(σc2=x(R)),

the corresponding query on SDr used in the completeness
definition would be

Q
′ ≡ πa1

(σb2=x∧a3=c(R1 ⊲⊳a2=b2 R2))

To simplify the notation, in the rest of this paper we write
Q(Dr) instead of Q′(Dr).
It is also worth mentioning that Q(D)∩Q(Dr) = Q(D)∩Dr:
the use of Q(Dr) only really matters in the denominator of
expression (2).

As a second example of functional definition of quality
property, we also define the consistency of a data item rel-
ative to a conformance rule; for instance, a rule may state
that a street address in a database entry is consistent with a
reference street atlas, if it can be matched uniquely against
one of the reference streets in the atlas. The record match-
ing problem has been studied extensively in the data quality
literature [10, 8, 1] 1, and it is known that the evaluation of

1W.Winkler has made a rich collection of references
to this problem available at http://csaa.byu.edu/kdd03-
papers/winkler-refs.pdf.

D

Dr

Q(D)

Q(Dr)

A

B

complQ(D,Dr) = A \ (A+B)

Figure 1: Completeness of a query result

this rule may incur uncertainty, accounting for the chance
of false positives (an erroneus match). Thus, we assume
that the rule is a function of the data and of some para-
meters (i.e., the reference source), and that its evaluation
produces a “yes/no” result, along with a level of confidence.
This function does not perform any correction or issue rec-
ommendations. In this regard, it behaves like an integrity
constraint checker on a database schema.

The validation function for an item d ∈ D with respect to
Dr is

val(d, Dr) ∈ ({true, false}, [0, 1])

where the second component of the value is the confidence
in the outcome. Given a user-defined threshold c0 for the
confidence, let the set of acceptable items relative to val and
c0 be

acc(val, D, Dr, c0) = {d ∈ D|val(d, Dr) = (true, c)∧c ≥ c0)}

A simple definition for the consistency of D relative to Dr,
given c0, is the proportion of acceptable items in D. For
Q(D) this is written as:

consQ(val, D, Dr, c0) =
|acc(val, Q(D), Dr, c0)|

|Q(D)|
∈ [0, 1]

This simple definition illustrates the general idea of con-
sistently defining normalized quality functions, using user-
specified parameters such as the threshold c0.

3. AGREEMENT MODEL
Agreements are based on a simple penalty/reward model,

whereby the consumer and the provider agree on formally
defined quality constraints for the data provisioned on a
query-by-query basis, the provider may charge fees in re-
turn for data, and the consumer may assess penalties when
the quality constraints are violated.

Rather than defining discrete constraints, i.e., of the form
complQ(D, Dr) > complmin, we instead allow for a more
general formulation, by associating penalty functions of ar-
bitrary shapes to quality functions. When applied to a base
price for a query result, they reduce the actual fee paid, in a
way that is proportional to the perceived importance of the
specific property.

For query Q on D, the agreement includes the following
elements:

• a set of normalized quality functions of the form

qf(D′
,P) ∈ [0, 1]

for any D′ ⊆ D, where 1 is the best quality achievable.
P indicates a property-specific set of additional para-
meters, eg. Dr, c0. In particular, we are interested
in computing the quality associated to a query result,
qf(Q(D),P);

• a base pricing function priceb(D
′) for any D′ ⊆ D.

Again, in practice we are interested in computing
priceb(Q(D));

• a penalty function penqf (D′,P) ∈ [0, 1], which intro-
duces a bias on the base price, by mapping the values
of the normalized quality function qf applied to D′,
onto a penalty factor.

The actual price paid by the user for Q(D) is then

price(Q(D), qf(),P) = priceb(Q(D))×(1−penqf (Q(D),P))).

Note that discrete quality constraints can be expressed sim-
ply by defining binary penalty functions. For example, the
following constraint makes the result set worthless if the
completeness falls below a threshold complmin:

pencompl(D
′
, Dr) =

�
0 if compl(D′, Dr) > complmin

1 otherwise

Normally, however, the penalty will be proportional to the
quality level, i.e., the function is monotone decreasing in
the value of qf(). Although no assumptions on the shape
of penalty and pricing functions need to be made, this ad-
ditional information helps in reducing the complexity of the
provider algorithms for managing quality compliance. The
baseline algorithm presented in Section 5.1, shows a worst
case scenario, in which no assumption is made regarding the
shapes of these functions.
Note also, that using normalized quality functions makes it
straightforward to extend this pricing scheme to multiple
quality properties, i.e., by combining multiple quality and
penalty functions:

price(Q(D), {qfi()}, {Pi}) = priceb(Q(D)) �Y
i

(1 − penqfi
(Q(D),Pi)))

Functions {qf()i}, priceb() and {penqfi
()} are all defined

as part of a negotiation process, whose details are not rele-
vant for our purposes. Once the agreement is in place, it is
enforced as follows:

• for every incoming query Q, the provider computes
D′ = Q(D);

• for every qfi() that is subject to a penalty, compute
qi = qfi(D

′,Pi) and pi = penqfi
(qi);

• compute the final price priceb(D
′) �

Q
i
(1 − pi).

3.1 Fairness of penalty assessment
As anticipated, the fairness of the penalty assessment de-

pends upon the value of qf() being available. In our ex-
ample, this corresponds to having a catalog of all available
articles, which can be queried (this is Q(Dr)), regardless of
how many of those articles have received a review. Simi-
larly, in the biology database case, a public source for the
primary data may be available free of charge. While these
are reasonable assumptions, in general we also need to con-
sider the cost of computing qf(). When the provider incurs
this monitoring cost (see Section 4), it may need to compute

an estimator q̂f() of the actual qf(), balancing its precision
with the cost of limited monitoring.
The idea is then to let providers self-assess their penalties,
and to adopt the simple but widespread view that a third-
party verification authority is in charge of assessing the cor-
rectness of penalties. We assume that this authority also
incurs a monitoring cost. For completeness, this results in
the following scenario:

• the provider defines its own estimators q̂f() for qf(),
based on some probabilistic model and by sampling
using a limited number of Q(Dr) queries, determined
by its budget2;

• the authority has its own strategy for verification, which
relies on spot-checks performed at some time intervals,
again by querying Q(Dr);

• the provider may negotiate a tolerance δ ∈ [0, 1] as
part of the agreement, which limits its liability vs the
customer in case of imprecise estimates;

• whenever the authority determines the actual value

for qf(), the percentage estimation error ê = q̂f()−qf()
qf()

is computed, and the provider incurs a fine that is
proportional to ê − δ, whenever ê > δ.

As a result, the provider’s chance of getting away with an
incorrect estimate (and hence, a reduced penalty) depends
on the authority’s budget and ability to monitor effectively.

In this scheme, the consumer relies on the authority for
control. In case of dispute of past transactions, the authority
is obliged to perform a check on a past quality value, which
may require enabling infrastructure. For completeness, this
amounts to querying a past state of the Dr database – which
is feasible if Dr is a standard transactional DBMS with log-
ging capabilities.

2We are implicitly assuming, for the purpose of the example,
that the monitoring cost in this case is proportional to the
number of items retrieved from Dr.

4. PROVIDER COMPLIANCE MODEL
In this section we analyze the issues associated to en-

forcing an agreement, from the provider’s perspective. The
quality-constrained data provisioning problem can be de-
scribed according to a simple ”monitor-assess-repair” reac-
tive model:

monitor: Firstly, the provider must compute the value of
quality functions every time it receives a query. Since
some of the function parameters may not be available,
i.e., Q(Dr), they must be estimated;

assess: Secondly, the provider must estimate the penalty
associated with the result set for the query;

repair: Thirdly, it must determine the most cost-effective
repair actions to be executed in order to move the state
of its data set towards compliance.

With reference to completeness and consistency, the model
is instantiated as follows.

Detection. We denote with DQ the quantity we wish to
monitor. For completeness, this quantity is

DQ, compl = Q(Dr) \ Q(D)

This set contains all the items that the user would have
obtained by issuing Q to Dr, but are instead missing from
Q(D). These are therefore the items responsible for the
penalties incurred when returning Q(D). For consistency,
DQ is the set of items that were expected to be consistent,
but are not:

DQ, cons = Q(D) \ acc(val, Q(D), Dr, c0)

Repair. For completeness, the only repair procedure con-
sists in obtaining new data items from Dr. For consistency,
the procedure may perform validation on items whose con-
sistency is unknown, and apply algorithms to enforce con-
sistency (for instance, by correcting data or obtaining new
versions from a third party source).

Costing. The third step is the choice of a provider cost
model, which includes a monitoring component costm(Q, D),
a repair component costr(D), and the value-adding compo-
nent costva(d) of expending local resources in order to pre-
pare any d ∈ D for delivery.3 For completeness, the first
two correspond to the cost of computing DQ, compl and the
cost of obtaining a new item d from Dr, respectively.

Compliance strategies. Next, the provider must iden-
tify a strategy for activating repair procedures given the
price and penalty information from the agreement, the ob-
served violations, the cost model, and a goal. An obvious
general provider goal is to avoid penalties that erode profit,
by incurring the minimal repair cost. For completeness, this
translates into the strategy of obtaining the smallest set of
items from Dr, which restores the required completeness lev-
els. As noted, D may be a small subset of Dr, however if it
contains the items that are most likely to be requested in the
future, these may be sufficient to satisfy the constraints for
most of the user queries. Therefore, a sensible approach is
to use the history of past queries to estimate the likelihood
of any item in Dr being requested in the future. Estimating
future request probability is clearly more effective than a
simpler greedy strategy, which would acquire only the items

3This could for example be the cost of producing a review
for a new article.

that are missing from the current query, some of which will
not be requested again.
Regardless on the specific choice of estimator, the precision
(i.e., confidence level) associated to the estimate depends on
the length of query history: for a new agreement or a new
user, the provider will be able to do little more than repair-
ing based on the current query. Various statistical models
can be developed to estimate such probability, and it is not
the purpose of this work to survey them. Simple estimators
include the frequency of past requests, which assume that
the past popularity of an item is an indicator of future in-
terest; a mobile average on a limited time window, which
attempts to track the changes in interest; or an estimator
based on the hypothesis that the occurrence of a request
has a known distribution. We note in passing the similar-
ity between the problem of predicting the request of items
that are obtained from reference sources, and the problem
of defining cache replacement algorithms: for properties like
completeness, similar estimators may be applicable.

4.1 Factors that affect compliance strategies
A number of factors complicate the choice and implemen-

tation of a strategy:

• Instant repair: is it feasible for the provider to ob-
tain new items from Dr, and use them to repair the
current result set? When this is not possible, current
penalties are inevitable, and the repair strategy may
only focus on avoiding future penalties.

• Completeness of detection: has the provider com-
plete knowledge of the quality indicators? The provider
must balance the precision of the DQ estimate, with
the monitoring cost costm() of computing it, and the
chance that the verification authority will claim irreg-
ularities.

• Number of quality properties that appear in a sin-
gle agreement, or in multiple agreements: the potential
interaction between constraints on different properties
may complicate the strategy. Consider for instance
currency, the property of a data value of being correct
at a given time4. Currency and completeness are not
independent, because if we assume that all items in
Dr are current, then obtaining a new item from Dr in
order to restore completeness, has also the effect of im-
proving currency. On the other hand, given a budget
for acquiring new items, there may be a contention
between different quality constraints that depend on
those items for their satisfaction, breaking the isola-
tion of single-property strategies.

• Options available for detection and repair: while
for completeness the only repair option is to obtain
items from a reference source, multiple such sources
may be available, possibly at different costs. Also,
other properties may present richer options: validat-
ing an item for consistency may involve requesting a
correction from a reference source, or performing man-
ual inspection on the item.

4The data for an address that changed recently may have
been correct before the change occurred, but it has since
become obsolete, or non-current, until it is updated.

• Notification of updates to a reference source:

for properties whose repair actions depend on a refer-
ence source, it matters whether the provider is notified
of any update to the source. For instance, if complete-
ness is estimated by periodically sampling Dr, then
the estimate is affected by the frequency of updates to
Dr.

• Shape of cost and price functions: the various
cost and price functions listed earlier may depend on
the particular choice of item, or may be defined as a
function of the size of the result.

5. PROVISIONING WITH COMPLETENESS
In order to provide a concrete example of provisioning

with quality, we now illustrate an algorithm for complete-
ness, based on the detection-repair model. With respect
to the complicating factors listed above, the assumptions
for the algorithm are as follows: instant repair is possible;
only one quality property appears (completeness), and the
only repair option is to obtain new items from the reference
source; there is no notification of updates to the reference;
and finally, the price function depends only on the size of
the query result.

We first present a baseline algorithm that assumes that
the provider has complete and free knowledge of the quality
indicators, and then propose a generalization that does not
require this assumption.

5.1 Baseline algorithm
The approach is based on the definition of a utility func-

tion for a set D′ ⊆ Dr \ D of currently missing items, and
the formulation of a corresponding optimization problem,
that can be solved using heuristics. For completeness, the
function takes into account the provider cost model and the
penalty functions:

U(D′
, Q, D,P) = priceb(Q(D) ∪ (D′ ∩ Q(Dr)))

×(1 − pencompl(Q(D) ∪ (D′ ∩ Q(Dr)),P))

−costr(D
′) − costav(D′)

In practice, U describes the effect of purchasing set D′:

• the base price is increased due to the new items in
D′. Notice that there is no guarantee that the algo-
rithm will only purchase items that are missing from
the current result. In fact, the heuristic presented later
makes a less greedy selection, hoping to improve future
compliance. Hence, only the items in D′ ∩Q(Dr) con-
tribute to the immediate extra reward.

• The penalty is reduced correspondingly (the same ob-
servation applies).

• The cost incurred is due to purchasing and adding
value to D′.

The optimization problem is designed to limit the risk of
purchasing items that may not be needed in the future: we
are seeking the subset of Dr \D that maximizes the ratio of
utility-to-size:

max
D′∈Dr\D

U(D′, Q, D,P)

|D′|

Normalizing by size avoids the effect of an indefinitely in-
creasing utility, which would result in purchasing the largest
possible D′. Note that the problem is defined on the entire
set of missing items, rather than only on DQ, and that it
must be solved when Q is computed.

Since we are not making any assumptions on the shape
of function U , or of any of its components, a brute-force
algorithm that enumerates all possible D′ has exponential
complexity in |Dr \D|. To reduce the complexity, we apply
the strategy mentioned in Section 4, using the history of past
user queries to estimate the likelihood of a missing item to
be requested in the future.

Algorithm 1. For each Q, the provider maintains a count
of the frequency of requests of each item di ∈ DQ, and
requires an estimate of the likelihood of a future request
for each d. Since this involves updating the frequency of the
items that are actually requested, complete knowledge of Dr

is not required. The algorithm starts from an empty set D′,
and incrementally adds to it in order of estimated likelihood,
recording the value of U at each step. In this way, at step
i only the most promising of the

�
|Dr\D|

i

�
potential sets is

considered. 2

Some comments are in order:

• From the definition of the utility function, we note
that its components depend not only on the number
of items, but also on their choice. This is because we
allow the selection of D′ to range on the entire set
Dr \ D, rather than only on DQ, hence some of the
selected items may not reduce the immediate penalty.

• The order defined on the missing items is partial. For
instance, after the first query, the best set contains a
random selection (of optimal size) of items from DQ,
because all such items have the same frequency of oc-
currence. We assume that the items in DQ are pre-
ferred over others of the same rank.

• It is worth considering the effect of a locality principle
on this heuristic, which states that the history of past
queries is indeed a good predictor for future queries.
Consider what happens when queries are highly local-
ized and an occasional odd query arrives, requesting
items never mentioned before. Since these items have
a low frequency, they are ranked low relative to others
that have been requested in the past multiple times,
but are still missing. In this case, the algorithm does
not try to repair the current query (which will there-
fore result in a penalty), but rather it will purchase
additional popular items, increasing the expected re-
ward for future queries.

• As noted earlier, initially the limited history of past re-
quests makes the estimators unreliable, yielding items
that may in fact never be used again in the future.
This confirms the intuition that this agreement model
makes frequent and regular consumers more appealing
than occasional ones, and suggests that quality agree-
ments are best suited for long-term consumer-provider
relationships.

We conclude by noting the effect of updates and inserts into
Dr. In this version of the algorithm, even if the provider

is not informed of these events (for instance, through some
event notification infrastructure), they do not pose prob-
lems.
When an update comes to Dr, then D clearly holds a stale
copy, of which it is not aware. However, unless there is
an explicit currency constraint, this has no consequences on
completeness! – this is in fact a case for handling complete-
ness and currency together. When a new insert occurs in Dr,
according to our algorithm it may be revealed only through
queries of the form Q(Dr). Items that appear in Dr but are
never requested, are simply ignored. Items that start being
requested after they have been inserted, are handled in the
same way as all others.

5.2 Ranking of missing data using query pred-
icates

Given a query of the form Q = σp(R), our baseline algo-
rithm relies on the extension Dr for computing completeness
(detection), and for selecting the most promising items to
purchase (repair), assuming Q(Dr) known, by simply enu-
merating the missing items. The algorithm described in this
section addresses the problem of performing detection and
repair when Q(Dr) is not available.
The idea is to consider only the conditions stated in the user
queries, and those used by the provider to obtain new items
from Dr. We rely on two observations: firstly, that the most
popular data are represented at the intensional level by the
history of user queries; and secondly, that although Q(Dr)
is not immediately available, within the limited scope of a
specific user query we may still provide a good estimate for
the completeness complQ(D, Dr), and also determine the
conditions corresponding to the most popular items in Dr,
for repair.

The algorithm is based on the definitions of request pro-
files and completeness maps. Similar in spirit to ordinary
database profiles used by relational query optimizers, a re-
quest profile records the level of interest for specific data
items, and is computed progressively from a history of user
queries. The main difference is that, while in ordinary pro-
files the data points in the histograms are attribute values,
in this case they are query predicates.

Whereas a request profile records the demand for data,
a completeness map represents the available data set, as
described by the set of queries issued by the provider to Dr.
Intuitively, knowledge of the user requests to the provider
and of the provider requests to its suppliers is sufficient to
rank the data that the provider is missing, according to the
user preferences.

Let Q = Q1, Q2, . . . , Qm and Q′ = Q′
1, Q

′
2, . . . , Q

′
n be

the history of user and provider queries, respectively. We
may restrict our attention to select-queries only, of the form
Q = σp(R), ignoring projections; having defined complete-
ness at the granularity of the entire data item, a distinction
based on projected attributes is unnecessary. Furthermore,
we make the simplifying assumption that selection pred-
icates are conjunctions of elementary conditions that are
either (i) expressions involving relational operators relop

(=,≤,≥) on ordered domains, of the form x relop c, or
(ii) set membership expressions on enumerated sets, i.e.,
x ∈ {c1, . . . , cn}.

Given a relation R(A1, . . . , Al), these definitions are for-
malized as follows.

Definition 1. (Request profile)

10 15 20 30

3

1
2

v1 v2

A1

A2

25

v1

v2

A2

10 15 20 30

4 5 3 3

3 4 2 2

(b) Score and missing

(a) histograms

2

1

A1

fr
eq

ue
nc

y

fr
eq

ue
nc

y

Figure 2: Construction of request profiles

Given set Pi = {pi1, . . . , pini
} of logically disjoint predicate

expressions pij on Ai, a request profile is a set of l histograms

freqi : Pi → N ,

one for each Ai. Each freqi maps Pi onto its frequency of
occurrence as observed in the query history Q.

For example, suppose that D is described by the single table
R(A1, A2), where A1 ranges over the positive integers, and
A2 ranges over the finite set {v1, . . . , vn}. Let the predicates
found in the history of queries be:
p1 = (A1 ∈ [10, 20])
p2 = (A1 ∈ [10, 20] ∧ A2 = v1)
p3 = (A1 ∈ [15, 30] ∧ A2 = v2)
p4 = (A2 ∈ {v1, v2})
We write [10, 20] as a shorthand for A1 ∈ [10, 20]. The
histograms are constructed as follows:

1. Q1 carries predicate [10, 20], so freq1([10, 20]) = 1.

2. After Q2, freq1([10, 20]) = 2 and freq2(v1) = 1.

3. Q3 causes the [10, 20] interval to be refined into the
adjacent disjoint intervals [10, 15], [15, 20] and [20, 30],
associating a frequency to each:
freq1([10, 15]) = 2,
freq1([15, 20]) = 3,
freq1([20, 30]) = 1
(partitioning two overlapping intervals into disjoint in-
tervals can be accomplished easily). Also, now freq2(v1) =
2 and freq2(v2) = 1.

The resulting histograms are illustrated in Figure 2 (a). No-
tice that these histograms are independent of each other: for
simplicity, we do not account for the co-occurence of some
of the predicates within the same query. Also, by construc-
tion the histograms only include the predicates that appear
in the queries, rather than all possible combinations for the
value set of each attribute.

Definition 2. (Space of predicates)
Given the sets {P1, . . . , Pl} of predicate expressions for a
request profile, the space of predicates P is the set of all
vectors of the form p = (x1, . . . , xl), with xk ∈ Pi.

In the example, P includes ([10, 15], v1), ([10, 15], v2), ([15, 20], v1)
and so forth. We describe the popularity of a combination

p ∈ P of predicates using a syntectic score value:

score(p) =
X
i:1..l

freqi(p[i])

i.e., score([15, 20], v1) = 5, score([20, 30], v2) = 2, etc.
This score, however, is oblivious of the data from Dr that

has already been purchased. Thus, it is complemented by
the partial information on the completeness D relative to
Dr:

Definition 3. (Completeness map)
Given p = (x1, . . . , xl) ∈ P, let p = x1 ∧ · · · ∧ xl be a predi-
cate. A completeness map is described by boolean function

missing(p) ∈ {true, false}

defined on the space of predicates, such that

missing(p) = true iff Qp(Dr) ⊆ D.

Assuming missing(p) = true for all p initially, the map is
updated using the history Q′ of data purchases. For in-
stance, let p′

1 = (A1 ∈ [15, 25] ∧ A2 = v1) be the predicate
for Q′

1. As shown in Figure 2 (b), first p′
1 is used to further

refine the histogram for A1, adding the interval boundary
25. The corresponding score table is updated as a con-
sequence. Splitting [15, 25] into [15, 20] and [20, 25] aligns
this interval with the existing histograms. Then, we set
missing([15, 20], v1) = missing([20, 25], v1) = 0. In prac-
tice, we mark selected points in the space of predicates,
which represent conjunctions that have already been used
to purchase new data.

The rank of a point p representing missing data is simply
the product

rank(p) = score(p) � missing(p)

This ranking provides a preference only among the predi-
cates that describe popular items that are still missing (the
others have rank 0), and replaces the simpler repair crite-
rion used in the baseline version of our algorithm. In the
example, the combination ([10, 15], v1) is the most popular,
since ([15, 20], v1) is not missing.
It is worth mentioning that the operation of histogram re-
finement that may follow each user query, also requires re-
evaluating the missing function. This is simple, however,
since each new sub-interval inherits the missing values found
in the parent interval (this is left to intuition).

Algorithm Intensional data ranking

Given relation R(A1, . . . , Al):

For user query Q = σp(R):
begin

for each Ai do {
Let pi be the conjunction of terms from p on Ai;
affectedPoints = refine(Pi, pi);
updateHistogram(freqi(pi));

}
for each p ∈ affectedPoints do updateScore(p);
for each p ∈ P do rank(p) = score(p) × missing(p);

end

For provider query Q′ = σp′(R) issued to Dr:
begin

for each Ai do {
Let p′

i be the conjunction of terms from p′ on Ai;
affectedPoints = refine(Pi, p

′
i);

for each p ∈ affectedPoints do updateScore(p);
newPoints = computeNewPoints(p′

i);
for each p ∈ newPoints do missing(p) = false;

end

Figure 3: Ranking algorithm

The ranking algorithm is summarized in Figure 3. Func-
tion refine() increases the number of intervals in the his-
togram, and returns the points in the space of predicates
that are affected by this operation. For these points, the
score is updated prior to computing their rank. Upon issu-
ing Q′ to Dr, the provider must additionally compute the
new points in the space of predicates corresponding to the
query predicate, as shown earlier in the example, and reset
their missing flag.

Tables score and missing can also be used as a basis to
provide various estimates of completeness for a query Q =
σp:

complσp(D, Dr) =
|σp(D) ∩ σp(Dr)|

|σp(Dr)|

For example, given predicate p = [10, 20] with the situation
illustrated in Figure 2, one may view intervals as discrete
elements, regardless of their width, and observe that p cor-
responds to the “slice” of the score table that includes 4
predicate combinations. Since only one of these is not miss-
ing, one may estimate complp(D, Dr) = 0.25. Alternatively,
the width of each of the intervals involved or other weight
factors can be taken into account, yielding different esti-
mates.

6. REFERENCE ARCHITECTURE
The architecture sketched in Figure 4 consists of a quality

management module that contains the key components de-
scribed in the previous sections. When a user query comes
through the client service interface, it is processed as usual;
before the result is returned, it is intercepted and passed to
the quality management module, and query post-processing
occurs. Using the interceptor pattern ensures that no changes
are required to the query processor.

With reference to completeness, query post-processing pro-

ceeds as follows. The detection component is in charge of
monitoring the completeness indicator and of computing the
quality value, estimating the penalty associated with the
query result. As explained in the previous section, this is
done by querying the profile manager, which controls the
completeness maps. The user query is also used by the pro-
file manager to update the request profiles.

The strategy manager then uses this information to com-
pute the utility function and to setup the optimization prob-
lem. Again, the profile manager is a critical component, in
that it provides the ranked predicates that correspond to
the most interesting new items. At this point, the repair
actions consist of one or more queries to Dr, issued by the
repair component using the pull interface of the gateway.

If the “instant repair” option is available, described in Sec-
tion 4.1, then the new data items are prepared for immediate
delivery and added to the original result set. Additionally,
the queries are passed to the profile manager, which updates
the completeness map.

If a push interface is active, then any update to Dr is prop-
agated not only to D, but also to the profile manager, which
may use it to update the completeness estimates. At the end
of post-processing the final price is computed, taking self-
assessed penalties into account, and the result is returned to
the user. In the figure, an agreement interface is also shown
as part of the quality management module, to indicate the
channel used for agreement negotiation, which results in the
configuration of the module components.

7. FURTHER WORK AND CONCLUSIONS
We have presented a simple model for the definition of for-

mal agreements between data providers and consumers re-
garding the quality levels of data, illustrating the provider’s
problem space and showing an algorithm for dealing with
the completeness property as a special case. Finally, we
have described a reference provider architecture for enforc-
ing quality agreements, that is respectful of the existing
query processing architecture.

This work is at its initial stages and can be extended in
many directions, adding elements that may affect our initial
assessment of the agreement model and of the providers’
strategies. Firstly, we believe that an experimental evalua-
tion of the presented approaches for completeness, and a pro-
totype implementation of the architecture, may provide an
insight into their practicality. Secondly, the overall frame-
work and architecture must be tested by considering addi-
tional properties: are there suitable architectural patterns
for dealing with constraints on multiple quality properties,
and how would the provider define strategies that involve in-
terplay between properties, i.e., between completeness and
currency? In the same vein, dealing with multiple agree-
ments with overlapping constraints may intuitively make the
provider’s strategy more cost-effective, in ways that need to
be investigated.

8. REFERENCES
[1] A.Borthwick, M.Buechi, and A.Goldberg. Key

concepts in the choicemaker 2 record matching system.
In Procs. First Workshop on Data Cleaning, Record
Linkage, and Object Consolidation, in conjunction
with KDD 2003, Washington, DC, July 2003.

[2] A.Dan, D.Davis, R.Kearney, A.Keller, R.King,
D.Klueber, H.Ludwig, M.Polan, M.Spreitzer, and

Detection

Strategy
manager

Repair

profiles
management

profiles

Gateway to external resources

Push interface
Notification from Dr

Dr

Quality management module

Query
Processor

D

Dr

Agreement
interfaceClient Service

interface

intercept

Q Q(D’) - quality definitions
- cost and penalty models

External Data
Request and response

Pull interface
Request to Dr

Updates to D

Q

Q(D)

Q(D’)

Component configuration

Data flow

Q

Q(Dr)

Figure 4: Reference architecture

A.Youssef. Web services on demand: WSLA-driven
automated management. IBM Systems Journal, 43(1),
2004.

[3] A.Motro, P.Anokhin, and A.C. Acar. Utility-based
resolution of data inconsistencies. In Felix Naumann
and Monica Scannapieco, editors, International
Workshop on Information Quality in Information
Systems 2004 (IQIS’04), Paris, France, June 2004.
ACM.

[4] C. Cappiello, C. Francalanci, P. Missier, B. Pernici,
P. Plebani, M. Scannapieco, and A. Virgillito.
Presentation of metadata and of the quality certificate.
Deliverable dl2, The DaQuinCis project, 2003.

[5] D.Ballou and G.K.Tayi. Methodology for allocating
resources for data quality enhancement. In
Communications of the ACM, volume 32. ACM,
March 1989.

[6] D.Ballou and H.Pazer. Designing information systems
to optimize the accuracy-timeliness tradeoff.
Information Systems research, 6(1), 1995.

[7] D.Ballou, R.Wang, H.Pazer, and G.K.Tayi. Modelling
information manufacturing systems to determine
information product quality. Journal of Management
Sciences, 44(4), April 1998.

[8] M.G. Elfeky, A.K. Elmagarmid, and V.S. Verykios.
Tailor: a record linkage tool box. In Proceedings of the
18th International Conference on Data Engineering
(ICDE 2002), San Jose, CA, Feb. 2002. IEEE
Computer Society.

[9] L. P. English. Improving data warehouse and business
information quality: methods for reducing costs and
increasing profits. John Wiley & Sons, 1 edition,
March 1999. ISBN: 0471253839.

[10] I.P. Fellegi and A.B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64, 1969.

[11] F.Naumann, J.C.Freytag, and U.Leser. Completeness
of integrated information sources. Information

Systems, 29(7):583–615, 2004.

[12] S. Kalepu, S. Krishnaswarmy, and S.W. Loke. Verity:
a qos metric for selecting web services and providers.
In Proceedings of 4th International Conference on
Web Information Systems Engineering Workshops
(WISEW’03). IEEE Computer Society Press, 2004.

[13] P. Missier and C. Batini. A multidimensional model
for information quality in cooperative information
systems. In M. Helfert M. Eppler, editor, Proceedings
of the Eight International Conference on Information
Quality (ICIQ-03), 2003.

[14] M.Lenzerini. Data integration: A theoretical
perspective. In Principles Of Database Systems, pages
233–246, 2002.

[15] M.Scannapieco, A.Virgillito, C.Marchetti, M.Mecella,
and R.Baldoni. The architecture: a platform for
exchanging and improving data quality in cooperative
information systems. Inf. Syst., 29(7):551–582, 2004.

[16] M.Scannapieco and C.Batini. Completeness in the
relational model: a comprehensive framework. In
Procs. 9th International Conference on Information
Quality, ICIQ 2004, Cambridge, Ma, 2004.

[17] F. Naumann, U.Leser, and J.C.Freytag.
Quality-driven integration of heterogenous
information systems. In VLDB’99, Proceedings of 25th
International Conference on Very Large Data Bases,
pages 447–458, Edinburgh, Scotland, UK, September
1999. Morgan Kaufmann.

[18] T.C. Redman. Data quality for the information age.
Artech House, 1996.

[19] R.Y.Wang, M.Ziad, and Y.W.Lee. Data quality.
Advances in Database Systems. Kluwer Academic
Publishers, 2001.

[20] J. Skene, D. D.Lamanna, and W. Emmerich. Precise
service level agreements. In Proceedings of 26th
International Conference on Software Engineering
(ICSE’04). IEEE Computer Society Press, 2004.

[21] Y. Wand and R.Wang. Anchoring data quality

dimensions in ontological foundations.
Communications of the ACM, 39(11), 1996.

[22] R. Wang. A product perspective on total data quality
management. Communications of the ACM, 41(2),
February 1998.

[23] R. Y. Wang, M. Ziad, and G. Shankaranarayanan.
IP-MAP: representing the manufacture of an
information product. In Proceedings of the Eight
International Conference on Information Quality
(ICIQ-00), Cambridge, MA., November 2000.

[24] R.Y. Wang and D.M. Strong. Beyond accuracy: what
data quality means to data consumers. Journal of
Management Information Systems, 12(4), 1996.

