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Abstract. We outline a framework for managing information quality (IQ) in e-
Science, using ontologies, semantic annotation of resources, and data bindings.
Scientists define the quality characteristics that are of importance in their partic-
ular domain by extending an OWL DL IQ ontology, which classifies and organ-
ises these domain-specific quality characteristics within an overall quality man-
agement framework. RDF is used to annotate data resources, with reference to
IQ indicators defined in the ontology. Data bindings — again defined in RDF
— are used to represent mappings between data elements (e.g. defined in XML
Schemas) and the IQ ontology. As a practical illustration of our approach, we
present a case study from the domain of proteomics.

1 Introduction

Information is viewed as a fundamental resource in the discovery of new scientific
knowledge. Scientists expect to make use of information produced by other labs and
projects in validating and interpreting their own results. A key element of e-Science
is the development of a stable environment for the conduct of information-intensive
forms of science. Problems arise due to variations in the quality of the information
being shared [3]. Data sets that are incomplete, inconsistent, or inaccurate can still be
useful when scientists are aware of these deficiencies.

The Qurator project1[6] is developing techniques for managing information qual-
ity (IQ) using Semantic Web technology. In contrast to previous IQ research, which
has tended to focus on the identification of generic, domain-independent quality char-
acteristics (such as accuracy, currency and completeness) [13], we allow scientists to
define the quality characteristics that are of importance in their particular domain. For
example, one group of scientists may record “accuracy” in terms of some calculated
experimental error, while others might define it as a function of the type of equipment
that captured the data.

In order to support this form of domain-specific IQ, we identify three key require-
ments, each of which can be met using Semantic Web technologies:

1 Funded by the EPSRC Programme Fundamental Computer Science for e-Science: GR/S67593
& GR/S67609 —Describing the Quality of Curated e-Science Information Resources.



– Scientists must be able tousethe domain-specific IQ descriptions, by giving them
precise, meaningful definitions, and creating executable metrics based on them.
They must also be able toreusedefinitions created by others, by browsing and
querying an organised collection of definitions. To meet this requirement, we pro-
pose an extensibleIQ ontologycontaining basic domain-independent IQ terms,
upon which definitions of domain-specific concepts can be built. By defining the
ontology in OWL DL, new descriptors can be classified automatically within the
overall IQ framework, allowing user-scientists to locate useful definitions.

– IQ descriptions for specific resources need to be computed and associated with
those resources. IQ descriptions of a resource are essentially quality metadata, and
can be used to derive higher-order IQ metrics or rankings over sets of resources.
As metadata about resources, IQ descriptions can be captured assemantic annota-
tionsexpressed in RDF and related to concepts in the IQ ontology. Annotations are
generated by data checking services, sometimes using secondary data sources (e.g.
reference datasets), and it is necessary to retain provenance information about how
the annotations themselves were derived. This can be done by attaching provenance
information to the RDF annotation instances.

– Resources include data and services; both of these kinds of resource are modelled
by concepts in the IQ ontology, so that the ontology can express which kinds of
IQ descriptor make sense for which kinds of resource. The relationship between
actual types of resource (for example a particular data model expressed as an XML
Schema, or as a relational database schema) and the abstract models of those re-
sources in the IQ ontology needs to be stated explicitly in order to determine, for a
given resource, which checking services are applicable. We refer to these relation-
ships — between the “ontology space” and the “data/service space” — asbindings,
which can be captured using an RDF schema.

We claim several novel aspects here. To the best of our knowledge, our IQ ontol-
ogy is the first systematic attempt to capture domain-specific and domain-independent
quality descriptors in a semantic model. Moreover, we argue that the use of OWL DL
supports the necessary extensibility of the core ontology with domain-specific quality
definitions. The annotation and binding RDF schemas are both intended to be generic,
reusable components; we were unable to find any previous solution that met our re-
quirements for these.

To provide a concrete illustration of how the elements of our framework can be
used in practice, Section 2 introduces a case study in the domain of biology, specifically
proteomics. Section 3 gives an overview of the Qurator framework, and the following
sections present each of the three components in detail: Section 4 introduces the IQ
ontolology, Section 5 describes the binding schema, and Section 6 presents the annota-
tion model. In Section 7 we show how the various components have been implemented
within a desktop tool used by biologists to manage their data and metadata.

2 Case Study: Protein Identification

Proteomics is the study of the set of proteins that are expressed under particular con-
ditions within organisms, tissues or cells. Proteins play a vital role in most, if not all,



cellular activities — understanding their regulation and function is therefore of fun-
damental importance to biologists. One experimental approach that is widely used to
gain information about the large-scale expression of proteins involves extracting the
soluble proteins from a biological sample, then separating them by a technique known
as 2-dimensional gel electrophoresis (2DE). This results in a characteristic distribution
of protein spots within a rectangular gel (Figure 1). Many hundreds of proteins can be
separated from a single sample in this way and the relative amounts of each determined.

Fig. 1.Sample gel produced by the 2DE technique; the dark areas are protein spots.

The identification of proteins in such experiments is routinely obtained by peptide
mass fingerprinting (PMF). In this technique, the protein within the gel spot is first di-
gested with an enzyme that cleaves the protein sequence at certain predictable sites.
The fragments of protein that result (called peptides) are extracted and their masses are
measured in a mass spectrometer. The experimental list of peptide masses (the “finger-
print”) is then compared against theoretical peptide mass lists, derived by simulating
the process of digestion on sequences extracted from a protein database (e.g. NCBInr2).
Since, for various reasons, it is unlikely that an exact match will be found, the protein
identification search engines (e.g. Mascot3), that perform this task typically return a list
of potential protein matches, ranked in order of search score. Different search engines
calculate these scores in different ways, so their results are not directly comparable.
It may therefore be difficult for the experimenter and subsequent users of the data to
decide whether a particular protein identification is acceptable or not.

There is a debate in progress that seeks to define what information is required when
reporting the results of protein identifications by mass spectrometry. For peptide mass
fingerprinting, it has been suggested that this should include the number of peptides
matched to the identified protein, the number that were not matched in the mass spec-
trum, and the sequence coverage observed [1].

It would be useful for biologists seeking to interpret the results of proteomic ex-
periments to have a tool that can apply certain quality preferences to a list of protein
matches, for the purposes of accepting or questioning a protein identification result.

2 ftp://ftp.ncbi.nlm.nih.gov/blast/db/blastdb.html
3 http://www.matrixscience.com/



Such functionality would be particularly useful to scientists wishing to compare pro-
tein identification results generated by other labs with those produced within their own.
There are two readily accessible indicators that can be used to rank protein identification
data and which are independent of the particular search engine used:

– Hit ratio: the number of peptide masses matched, divided by the number of peptide
masses submitted to the search. This indicator effectively combines the number of
matched peptides and the number of unmatched peptides mentioned above. Ide-
ally, most of the peaks in the spectrum should be accountable for by the protein
identified, but because of the presence of other components and unpredicted modi-
fications to the matched peptides the hit ratio is unlikely to reach unity.

– Mass coverage: the number of amino acids contained within the set of matched
peptides, expressed as a fraction of the total number of amino acids making up the
sequence of the identified protein and multiplied by the total mass (in kDa) of the
protein. Mass coverage is considered superior to the sequence coverage, because
peptide mass fingerprints of equal quality give low (percent) sequence coverage for
large proteins and high (percent) coverage for small proteins.

These two indicators can be combined in a logical expression that allows us to
classify protein matches as acceptable or unacceptable. A software tool could then allow
the user-scientist to set threshold values (that is, acceptance criteria) for each metric
independently and to see the effect in real time of altering any or all of the threshold
values on the acceptability of the data set. This is an example of the kind of quality-
aware data analysis that Qurator aims to support.

3 Overview of the Qurator IQ Framework

Before we present the details of the three main components of the Qurator framework
— IQ ontology, bindings, annotations — this section gives an overview of how these
elements fit together. Figure 2 sets out the key relationships between the various indi-
viduals and classes. At the top we have the elements of the IQ ontology, which includes
definitions of domain-independent IQ concepts such asAccuracy4 and also classes of
domain-specific indicator such asHit Ratio andMass Coverage from the proteomics
domain. The IQ ontology also models the various kinds of abstract data entities to
which we might wish to apply IQ indicators, such as aProtein Hit obtained from a
PMF database search. The ontology then captures the fact that theHit Ratio indicator
applies to aProtein Hit. Finally, the ontology defines the various kinds of data checking
function available, as described in detail in Section 4.

At the bottom of Figure 2 we have instances of specific resources (r), for example
a particular protein hit derived from a database search. These are often represented
in XML; in the proteomics case the PEDRo data model [12] is widely used for this
purpose, by means of the PEDRo XML Schema5.

4 Throughout this paper,sans-serif font is used for ontology and schema terms from the Qurator
framework.

5 http://pedro.man.ac.uk/files/PEDRoSchema.xsd
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Fig. 2.Overview of the elements of the Qurator IQ framework.

Bindings and annotations both relate resources to elements of the IQ ontology. An
instance of a binding (b) relates a resource instance (r) to the corresponding class in the
ontology (C); e.g. a specific PEDRo protein hit list to the model classProtein Hit. One
of the main uses of bindings is to determine which parts of the IQ conceptualisation
are relevant to a particular concrete data model. So, for example, the binding from
a PEDRo protein hit structure to the ontologyProtein Hit class also lets us identify
relevant indicators (such asHit Ratio) and associated checking functions. For details,
see Section 5.

An instance of an annotation (a) relates a specific resource instance (r) to the in-
stance of a quality concept (c). For example, an instance ofHit Ratio with a specific
value (e.g. 0.45) might be associated with an individual concrete PEDRo protein hit
via an annotation. The IQ instance is said to annotate the associated resource. Further
details of annotations are given in Section 6. The difference between bindings and an-
notations is that the former relate data schema elements (or service types) to the corre-
sponding ontology classes, while the latter relate individual items of data to individual
pieces of quality evidence. In other words, bindings define which IQ concepts relate
to which kinds of data or service, while annotations associate individual computed IQ
descriptors with specific pieces of data.

4 A Semantic Model for Information Quality

As explained in Section 1, a scientist’s goal with respect to quality is to determine the
suitability of a data set for a given purpose. In our case study, scientists want to as-
sess whether a set of protein identification (PI) experiment results can be safely used as
input to a newin silico experiment. The scientists’ exercise is one of knowledge elic-
itation: the tacit knowledge regarding quality properties of interest needs to be made
explicit and formalized. As we will see, this is also a novel opportunity for scientists to
test hypotheses regarding their understanding of quality within a domain. One such hy-



pothesis, described in the next section, is that a small number of measurable quantities
associated with the output of protein identification algorithms can be used to discrimi-
nate effectively between acceptable and unacceptable matches.

We now present a semantic model that supports such a knowledge elicitation pro-
cess, by providing a vocabulary and semantic structure for expressing information qual-
ity. The model allows scientists to share and reuse their understanding of quality, as well
as to perform semi-automated quality assessments on data sets of interest to them.

4.1 Basic Ontology Structure

A number of different existing quality properties can potentially describe suitability,
such asCurrency, Completenessor Accuracy, definitions of which have been proposed
in the existing information quality literature (e.g. [3, 8, 13]). Some of these definitions
are given in abstract terms: accuracy for example is defined as the “distance” between a
valuev and a second valuev′ that is considered correct, with further distinctions being
made based on how the distance is measured [10]. Our model is based on the assump-
tion that scientists should not be concerned with such definitions, and that they should
instead be able to state their quality requirements in operational terms, by describing
decision proceduresthat determine the suitability of the data.

Nevertheless, our goals of knowledge sharing and reuse mandate the use of a com-
mon vocabulary for quality. Our approach is therefore to let users express operational
properties of quality in their own terms, while at the same time providing a semantic
structure that includes suitable axiomatizations of the definitions found in the litera-
ture. We argue, and demonstrate on the practical example presented in this section, that
the knowledge representation framework can then be used to establish a relationship
between user-provided operational definitions and the axiomatizations.

In practice, let us suppose that our scientists are interested in the “credibility” of
published PI experimental results, defined in terms of likelihood of false positives —
that is, that a claim of a given protein being present in a sample is false. The biol-
ogists involved in this research are proposing decision procedures for computing the
likelihood of false positives, based on a small set of measurable quantities, namely the
Hit Ratio and theMass Coverage, which are combined using a logical expression to
produce an overall quality score.

In general, the task of defining decision procedures amounts to identifying a col-
lection of measurable indicators, and demonstrating, usually in an experimental way,
that they indeed allow a distinction to be made between acceptable and unacceptable
data. In some cases, decision models can be semi-automatically generated from sets
of examples, with the help of machine learning techniques [14]. In other cases, ad hoc
methods have been developed for statistical quality control of experimental data [5, 7].

In the ontology, we model these concepts by introducingQuality Assertions (QA for
short); these are decision procedures that are based upon someQuality Evidence (QE),
which consists either of measurable attributes calledQuality Indicators, or recursively,
of functions of those indicators,Quality Metrics. Three main sources of indicators are
common in practice:

– Provenancemetadata, which provides a description of the processes that were in-
volved in producing the data [4, 15].



– Quality functionsthat explicitly measure some quality property, for instance the
completeness of a data set relative to a second, reference data set; these functions
are typically available from toolkits for data quality assessment with reference to
specific issues [2].

– Metadata that is produced as part of the data processing; for example, theHit Ratio
andMass Coverage indicators are defined as the output of the matching algorithm
used for protein identification.

Focusing primarily on the second and third category, we model the indicator-bearing
environment as a collection ofData Analysis Tools that may incorporate multipleData
Test Functions, and which are applied to someData Entity. Indicators are either pa-
rameters to or output of these analysis tools. Thus,Hit Ratio andMass Coverage are
part of the output of a test function calledPIMatch, used in thePMFMatchAnalysisTool.
To continue with our example, a quality metric calledPMF Match Ranking associates
a “credibility score” to each data in the set, using a function of our two indicators.
This score can be used either to classify data as acceptable/non acceptable according
to a user-defined threshold, or to rank the data set. Here we will assume that our deci-
sion procedure is a classification function calledPI-Topk, that provides a simple binary
classification of the data set according to the credibility score and to a user-defined
threshold.

A QA is applied to collections of data items, which are individuals of theData Entity
class, using the values for the indicators associated to those items. Our example ofData
Entity is a protein hit generated by the mass spectrometer, as explained in Section 2,
which is used as input to ourPMFMatchAnalysisTool.

The following is a summary of the classes and relationships introduced above,using
informal notation for the sake of readability; user-defined axioms for the proteomics
case study are in bold:6

1. Quality-Assertion is based onQuality-Evidence;
2. Quality-Indicator is-aQuality-Evidence;
3. Quality-Metric is-aQuality-Evidence;
4. Quality-Metric is based onQuality-Indicator;
5. Quality-Evidence is output ofData-test-function;
6. Data-analysis-tool is based onData-test-function;
7. MassCoverage is-a Quality-Evidence ;
8. HitRatio is-a Quality-Evidence ;
9. PIMatch is-a Data-test-function ;

10. PMFMatchAnalysisTool is-a Data-analysis-tool ;
11. PMFMatchAnalysisTool is based onPIMatch ;
12. PIMatch requires input ProteinHit ;
13. HitRatio is output of PIMatch ;
14. MassCoverage is output of PIMatch ;
15. PMF-Match-Ranking is a Quality-Metric ;
16. PMF-Match-Ranking is based onMassCoverage ;
17. PMF-Match-Ranking is based onHitRatio ;
18. PI-Topk is based onPMF-Match-Ranking .

6 The full IQ ontology is available from the “Downloads” section at http://www.qurator.org.



4.2 Classification of User-Defined Quality Properties through Reasoning

As mentioned, one goal of this model is to provide a shared collection for top-level,
abstract information quality concepts like “accuracy”, and to enforce their consistent
use. Specifically, we claim that it should be possible to let scientists add only concepts
that are familiar to them to the ontology, like those described earlier, while at the same
time providing useful entailments that enrich the shared top-level concepts.

In this section, we report on early experiments that support this claim. The main idea
is to encourage users to annotate their domain-specific concepts with simple and con-
crete quality features, to the extent that they are familiar with them, and to use reasoning
over OWL DL to entail additional quality properties, or to determine inconsistencies.

Building on the structure described so far, we begin by adding a top-levelQual-
ity Property class, with a number of subclasses forConsistency, Timeliness, Currency,
and more. Our collection for these concepts currently includes about 20 classes, or-
ganized into a three-level hierarchy. Also, we add a root class forQuality Characteri-
zation, whose subclasses includeConfidence-QC, Reputation-QC, Specificity-QC, and
more. These are examples of the “concrete” properties that scientists can more easily
associate to specific indicators, or indicator-bearing functions or tools. Thus, we expect
users to be able to assert that thePIMatch function has aConfidence-QC, because its
purpose, from the quality perspective, is to provide information on the confidence in
the experiment result. Note that the ontology model allows a single piece of evidence,
or function, to have multiple quality characterizations. The only user assertion for the
example is:

PIMatchReport has quality characterizationConfidence-QC.
We then introduce OWL DL axioms that describe classes of evidence that have the
same quality characterization; given that users may quality-characterize either indica-
tors, metrics, functions, or tools, a sample definition is as follows:

Confidence evidence includes all and only the quality metrics or indicators
whose quality characterization includesConfidence-QC, union all indicators
that are output of functions, or of tools that use functions, whose quality char-
acterization includesConfidence-QC.

Here is the OWL DL definition for this class:

ConfidenceEvidence ≡
(QtyMetric u (∃ metric-based-on-indicator ConfidenceEvidence) t
(QtyIndicator u ∃ is-output-of (∃hasQC ConfidenceQC)) t
(QtyIndicator u ∃ is-parameter-of (∃hasQC ConfidenceQC)) t
(QtyIndicator u ∃ hasQC ConfidenceQC)

Using the user-defined assertion above, the definitions in the previous section, and this
class definition, an OWL DL reasoner7 entails the following:

PIMatchReport v ConfidenceEvidence,
HitRatio v ConfidenceEvidence,
MassCoverage v ConfidenceEvidence,

7 RacerPro has been used for these experiments, http://www.racer-systems.com/



PMFMatchRanking v ConfidenceEvidence.
We now define theAccuracy class in terms of the underlying quality characterization,
expressing the following:

Any quality property that is based on a decision procedure that makes use of
Confidence or Specificity evidence, can be classfied as Accuracy.

Formally:

Accuracy ≡
(∃ QtyProperty-from-QtyPreference (∃ pref-based-on-evidence
(ConfidenceEvidence t SpecificityEvidence))

This last definition allows the ontology to be extended in a consistent way using stan-
dard reasoning. Firstly, given a user-defined but yet unclassified quality property, let us
call it PI-Acceptability, that is based on thePI-Topk procedure, the reasoner entails that
the property is a subclass ofAccuracy. Conversely, users may classifyPI-Acceptability
within the IQ top-level taxonomy; in this case, the reasoner verifies the consistency of
this classification.

The experiment shows that it is possible, using suitable DL assertions, to (i) pro-
vide axiomatic definitions of traditional quality properties, in terms of an underlying
quality characterization vocabulary, and (ii) to use those axioms to propagate, or test
the consistency of, user-defined and domain specific quality assertions. As explained in
the introduction, the motivation here is to facilitate the use and reuse of definitions in
the ontology: consistency checking supports extension of the ontology, and the classi-
fication of domain-specific descriptors under generic concepts (such as “accuracy”) is
intended to assist users in locating useful concepts.

5 Bindings

As we have shown, the IQ ontology includes semantic models of data resources and
the quality analysis services which can be applied to them. The actual data resources
have a native definition and presentations; quality test functions applicable on the data
might have multiple implementations in different programming languages. For exam-
ple, aProteinHit 8 XML element, defined in the PEDRo XML schema, may be an
input parameter of aHitRatioCalculator function, implemented as a Web service. We
designed a generic data model to capture the mapping relationships between data or ser-
vice resources and their semantic definition. The basic structure of the binding model
is presented in Figure 3. There are four core concepts in the Binding model:

Resource refers to any resource that can be located on the Web. We distinguish two
sub types of resource:DataResource andServiceResource. The former refers to any
resource which stores information (e.g. an XML file or database table); the latter type
represents any service, application or procedure which performs action on aDataRe-
source (e.g. a Web service). We define three categories ofDataResource:

8 Throughout the remainder of this paper,typewriter font is used for data elements from
XML schemas, and XML syntax fragments.
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Fig. 3.Overview of the Qurator binding model.

– DataEntityResource represents elements defined in a data schema/structure, for ex-
ample theProteinHit element defined in thePEDRo.xsdschema, or a column
defined in a DB table.

– DataElementResource represents a data element inside a collection, for example
an XML element specified by an XPath, or a database tuple.

– DataCollectionResource represents a collection of data elements, for example an
XML document, a database table, or a text file.

A Binding relates aResource to a semantic concept in some ontology (for example, in
the IQ ontology from the previous section). This relationship is defined by two proper-
ties on the binding:

– hasSubject identifies the subject of the binding, which is always a locatableRe-
source (data or service).

– hasObject identifies the object of the binding, which can be any semantic concept in
any ontology (represented in our ontology diagram with the most general concept
:THING — for example, this could be any class in our IQ Ontology).

ResourceLocator identifies a global locator for a specific resource. Since the re-
source is categorised intoDataResource and ServiceResource, the ResourceLocator
has two types:DataLocator andServiceLocator. Due to various ways to access the data
resources, the data locator can have different types. For example, for a data document,
we can use a URL to retrieve it; while for a DB table, a DB connector API could be
used (such as JDBC). Similarly, ServiceLocator has different types; for example, the
locator of a quality annotation web service can be referred to a WSDL description and
the endpoint of the service is presented in this WSDL description.

Figure 4 shows an example binding between a data resource and an IQ ontology
class; here, the entity&q; refers to the Qurator IQ Ontology and the prefixb: identifies
terms from the binding model. The data resource#XMLSchemaEntity1 represents the



Fig. 4.An example data binding

entity ProteinHit defined in the PEDRo XML Schema, located by aURLLocator
instance. The instance#binding0 represents a binding between theProteinHit data
entity and the conceptProteinHit in the IQ Ontology.

Bindings are bi-directional: the binding from resource to concept is used to identify
which IQ indicators and associated checking functions are applicable to a particular
concrete (e.g. XML) data model; the binding from concept to resource is used to locate
concrete data and service implementations (e.g. Web services) to run a data check.
Examples of this usage are given in Section 7. Bindings are defined as RDF resources
to allow metadata to be associated with the bindings themselves, such as provenance
information.

Our binding model was influenced by the XML-to-RDF mappings in WEESA [9].
The key difference, however, is that we are not aiming to map data from the XML “data
space” to the RDF “semantic space” or vice versa. In our framework, concrete data and
service instances are associated with corresponding ontological concepts by means of
the bindings, but there is no translation or transformation of one to the other.

6 Annotation Model

An important aspect of the Qurator approach is to share and reuse quality annotation
information on data resources among user-scientists. In order to achieve this we pro-
vide a data model which formalises annotation information with semantic support. The
structure of our annotation model is shown in Figure 5. The concepts shaded in the fig-
ure are defined externally to the annotation model: prefixesb andq identify the binding
model and the IQ ontology respectively.

The propertyhasAnnotation represents the relationship that ab:Resource is anno-
tated with quality information recorded in anAnnotationResult. AnnotationResult de-
fines a class of resource that records the output and related information from one run
of some quality annotation service. These annotation results are a group of instances
of one particularq:QtyEvidence class; the propertyreferenceTo records the name of the
relevant class, and the propertyhasAnnotationElement records individual annotation
result elements, each of which contains an individualq:QtyEvidence instance.

An AnnotationElement relates one individual instance ofq:QtyEvidence to one in-
dividual annotated resource, using the propertieshasQtyEvidence andhasResourceRef
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respectively. It is worth noting that the annotated data elements here are individual
ProteinHit XML elements, not a protein identification experiment as a whole.

Figure 6 shows an instance ofAnnotation which refers to the quality evidence
classq:HitRatio and has several annotation elements. Figure 6(b) shows one of the
AnnotationElements, which indicates that the XML element identified by the XPath
to DBSearch[1]/ProteinHit[1] is annotated by an instance ofq:HitRatio with the
value 0.45.

Figure 6(c) shows ab:Binding which binds the annotated protein hitProteinHit[1]

to the classProteinHit in the IQ ontology. Although space prevents us from showing
this, the various annotated elements are all part of ab:DataCollectionResource, which
in practice would normally be located by a LSID.9

The main difference between our annotation model and that of other frameworks,
for examplemyGrid [11], is the way in which annotations are related to both ontology
concepts and data resources. The (abstract) conceptual space and the (concrete) data
space are kept separate, with annotations — like the bindings in Section 5 — associat-
ing elements in the two spaces. The main advantage of this approach is flexibility: an
annotation can be easily attached to any kind of resource, and easily associated with
any IQ ontology concept. We also support the attachment of provenance information to
instances ofAnnotationResult, including the identify of the particular checking function
used to generate the annotations, and the data selections used as input. Details of this
provenance information are omitted for space reasons; however, we are exploring the
use of existing provenance architectures for capturing some of these data [4, 15].

7 Protein Identification IQ Service

The Pedro10 data entry tool is commonly used in proteomics — and several other e-
Science domains — to enter and manage XML-based data. To make our approach con-
venient to user-scientists we have therefore embedded elements of the Qurator frame-
work in the Pedro desktop software. Figure 7 shows a screenshot of the augmented
Pedro tool. The top-left area of the screen is the XML document tree and the right-hand
panel is the data entry area. When the user starts-up the tool, they are prompted to select
the data model on which they will work, for example the PEDRo model for proteomics
data. Choice of the data model then drives the content of the top-left and right-hand
panels in the standard Pedro environment: users may enter and edit data, and export it
to various formats.

Our augmented version of Pedro introduces the lower-left panel, which contains a
tree view of the portions of the IQ ontology relevant to the loaded data model. These el-
ements are obtained by querying the ontology dynamically. For the PEDRo data model,
they include domain-specific elements such asProteinHit andHitRatio as well as associ-
ated generic concepts such asConfidenceEvidence. This panel allows users to discover
available indicators for the data model at hand, and follow hyperlinks to explore the
ontology.

9 http://lsid.sourceforge.net/
10 http://pedrodownload.man.ac.uk/
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Fig. 7.Augmented “quality-aware” version of the Pedro data entry tool.

The augmented tool also uses Pedro’s plugin model to invoke any available test
functions for the model at hand. If the user clicks on thePluginsbutton at the top-right
of Figure 7 they are offered two services, to annotate the data with respect to theHitRa-
tio andMassCoverage indicators which are important to biologists (see Section 2). The
choice of available service is determined dynamically, using available bindings obtained
from an onlinebinding repository. Invoking these services results in annotations being
added to an onlineannotation repository. (The augmented Pedro desktop tool is config-
ured to act as a client to these two repositories.) By querying the annotation repository,
Pedro can retrieve any annotations associated with the displayed data elements shown
in the right-hand panel.

It is worth emphasising that the augmented Pedro tool is intended to be a natural
and convenient way for user-scientists to access the facilities of the Qurator framework;
however, there is nothing in the framework specific to its use in the Pedro tool. In fact,
we also have Web interfaces to the various data-checking services, and are developing
interfaces that allow them to be invoked as part of e-Science workflows.

8 Conclusion

The Qurator project offers a framework for managing information quality in an e-
Science context, allowing user-scientists to specify their IQ requirements against a
formal ontology, so that the definitions are machine-manipulable. To the best of our
knowledge, this ontology is the first systematic attempt to capture generic and domain-
dependent quality descriptors in a semantic model. In this paper, we have shown how
the use of OWL DL supports extensibility of the core ontology with domain-specific



quality definitions. We have also introduced binding and annotation models that serve
to associate concepts in the IQ ontology with data and service entities. Bindings allow
IQ-aware tools to identify parts of the IQ ontology relevant to a specific data model. An-
notations attach quality metadata to resources. Both the binding and annotation models
are to some extent intended to be generic, reusable components.

The Qurator framework has been implemented in a collection of services accessi-
ble from a scientist’s desktop environment. We are currently gathering feedback from
our collaborating users, after which we aim to further develop the IQ framework and
associated toolset.
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