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Abstract In post-genomic biology, high-throughput analysis techniques allow a large num-
ber of genes and gene products to be studied simultaneously. These techniques
are embedded in experimental pipelines that produce high volumes of data at
various stages. Ultimately, the biological interpretation derived from the data
analysis yields publishable results. Their quality, however, is routinely affected
by the number and complexity of biological and technical variations within the
experiments, both of which are difficult to control.

In this chapter we present an analysis of some of these issues, conducted
through a survey of quality control techniques within the specific fields of tran-
scriptomics and proteomics. Our analysis suggests that, despite their differences,
a common structure and a common set of problems for the two classes of exper-
iments can be found, and we propose a framework for their classification. We
argue that the scientists’ ability to make informed decisions regarding the quality
of published data relies on the availability of meta-information describing the ex-
periment variables, as well as on the standardization of its content and structure.
Information management expertise can play a major role in the effort to model,
collect and exploit the necessary meta-information.
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1. MOTIVATION
With several genomes of model organisms now being fully sequenced and

with the advent of high-throughput experimental techniques, research in biology
is shifting away from the study of individual genes, and towards understanding
complex systems as a whole, an area of study called systems biology (Ideker
et al., 2001). Instead of studying one gene or protein at a time, a large number
of genes or proteins are monitored simultaneously. Different kinds of experi-
mental data are integrated and analyzed to draw biological conclusions, state
new hypotheses, and ultimately generate mathematical models of the biological
systems.
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A single high-throughput experiment may generate thousands of measure-
ments, requiring the use of data-intensive analysis tools to draw biologically
significant conclusions from the data. The data and its biological interpreta-
tion are then disseminated through public repositories and journal publications.
Once published, it can be used within the scientific community to annotate gene
and protein descriptions in public databases, and to provide input to so-called
in silico experiments, i.e., “procedures that use computer-based information
repositories and computational analysis tools to test a hypothesis, derive a sum-
mary, search for patterns, or demonstrate a known fact” (Greenwood et al.,
2003).

In the recent past, research into the quality of information available in public
biology databases has been focusing mainly on the issue of data reconcilia-
tion across multiple and heterogeneous data sources (Lacroix and Critchlow,
2004; Rahm, 2004). In this area, it has been possible to adapt techniques and
algorithms for which a largely domain-independent theoretical framework ex-
ists, notably for record linkage (Winkler, 2004) and for data integration in the
presence of inconsistencies and incompleteness (Naumann et al., 2004; Motro
et al., 2004).

Data reconciliation techniques, however, largely fail to address the basic
problem of establishing the reliability of experimental results submitted to a
repository, regardless of their relationships with other public data. This is a
fundamental and pervasive information quality problem1: using unproven or
misleading experimental results for the purpose of database annotation, or as
input to further experiments, may result in wrong scientific conclusions. As we
will try to clarify in this chapter, techniques and, most importantly, appropriate
meta-data for objective quality assessment are generally not available to scien-
tists, who can be only intuitively aware of the impact of poor quality data on their
own experiments. They are therefore faced with apparently simple questions:
are the data and their biological implications credible? are the experimental
results sound, reproducible, and can they be used with confidence?

This survey offers an insight into these questions, by providing an introduc-
tory guide for information management practitioners and researchers, into the
complex domain of post-genomic data. Specifically, we focus on data from
transcriptomics and proteomics, i.e., the large-scale study of gene2 and protein
expression, which represent two of the most important experimental areas of
the post-genomic era.

We argue that answering the scientists’ questions requires a thorough un-
derstanding of the processes that produce the data, and of the quality control
measures taken at each step in the process. This is not a new idea: a gener-
ally accepted assumption in the information quality community (Ballou et al.,
1998; Wang, 1998) has been to consider information as a product, created by a
recognizable production process, with the implication that techniques for qual-
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ity control used in manufacturing could be adapted for use with data. These
ideas have been embedded into guidelines for process analysis that attempt to
find metrics for measuring data quality (English, 1999; Redman, 1996).

While we subscribe to this general idea, we observe that an important dis-
tinction should be made between business data, to which these methodologies
have been applied for the most part (with some exceptions: see, e.g., (Mueller
et al., 2003) for an analysis of data quality problems in genome data), and
experimental scientific data. Business data is often created in few predictable
ways, i.e., with human input or input from other processes (this is the case, e.g.,
in banking, public sector, etc.), and it has a simple interpretation (addresses,
accounting information). Therefore, traditional data quality problems such as
stale data, or inconsistencies among copies, can often be traced to problems with
the input channels and with data management processes within the systems, and
software engineering techniques are usually applied to address them.

The correct interpretation of scientific data, on the other hand, requires a
precise understanding of the broad variability of the experimental processes
that produce it. With research data in particular, the processes are themselves
experimental and tend to change rapidly over time to track technology advances.
Furthermore, existing quality control techniques are very focused on the specific
data and processes, and are difficult to generalize; hence the wealth of domain-
specific literature offered in this survey.

This variability and complexity makes the analysis of quality properties for
scientific data different and challenging. In this domain, traditional data quality
issues such as completeness, consistency, and currency are typically observed at
the end of the experiment, when the final data interpretation is made. However,
as the literature cited in this chapter shows, there is a perception within the
scientific community that quality problems must be addressed at all the stages
of an experiment.

For these reasons, we focus on the data creation processes, rather than on the
maintenance of the final data output. We concentrate on two classes of experi-
ments, microarray data analysis for transcriptomics, and protein identification
for proteomics. In these areas, the quality of the data at the dissemination stage
is determined by factors such as the intrinsic variability of the experimental
processes, both biological and technical, and by the choice of bioinformatics
algorithms for data analysis; these are often based on statistical models and
their performance is in turn affected by experimental variability, among other
factors. A brief background on these technologies is provided in Section 2.

As a matter of method, we observe that these two classes can be described
using the same basic sequence of steps, and that the corresponding quality prob-
lems also fall into a small number of categories. We use the resulting framework
to structure a list of domain-specific problems, and to provide references for
the techniques used to tackle them. This analysis is presented in Section 3.
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Although the quality control techniques surveyed are rooted in the context of
post-genomics, and this survey does not discuss specific techniques or solutions
in depth, a few general points emerge from this analysis regarding technical
approaches to quality management. Firstly, the importance of standards for
accurately modelling and capturing provenance meta-data regarding the exper-
iments, i.e., details of the experimental design and of its execution. Secondly,
the standardization of their representation, in order to deal with heterogeneity
among different laboratories that adopt different experimental practices. These
points are discussed in Section 4.

A further potentially promising contribution offered by the information qual-
ity community is the study of information as a product, already mentioned
(Ballou et al., 1998; Wang, 1998). However, to the best of our knowledge, no
general theory of process control for these data domains has been developed.

2. THE EXPERIMENTAL CONTEXT
We describe the general steps of a rather generic biological experiment,

starting from the experimental design, leading to a publication, and further,
to the use of published literature for the functional annotation of genes and
proteins in databases. An overview of this abstraction is shown in Figure 4.1.

Figure 4.1. Sample high-throughput biological data processing pipeline

The experiment begins with the statement of a scientific hypothesis to be
tested; along with constraints imposed by the laboratory equipment, this leads
to the choice of an appropriate experimental design. The so-called wet lab
portion is executed by the biologist, starting from the preparation of the sample,
and usually leading to the generation of some form of raw data.

It is common to build elements of repetition into the experiment, to take
into account both technical and biological variability, specifically: (i) Techni-
cal repeats: After preparation, the sample is divided into two or more portions
and each portion is run through exactly the same technical steps, leading to
separate measurements for each portion. This is done to account for the vari-
ability of the technical process; (ii) Biological repeat: Two or more samples are
obtained from different individuals studied under exactly the same conditions.
These samples are then prepared using the same protocol and run through the
same technical process. These repeats allow for the estimation of biological
variability between individuals.
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The raw data generated in the lab is then analyzed in the so-called dry lab, a
computing environment equipped with a suite of bioinformatics data analysis
tools. The processed data is then interpreted in the light of biological knowl-
edge, and scientific claims can be published. A growing number of scientific
journals explicitly require that the experimental data be submitted to public data
repositories at the same time (Editors, 2002).

The result of data analysis and interpretation is processed data, which can
include not only the experimental data in analyzed form, but also additional
information that has been used to place the data into context, such as the func-
tional annotation of genes and proteins or pathways the proteins are involved
in.

The repetition of this process for a large number of high-throughput experi-
ments and over a period of time results in a body of literature about a particular
gene or protein. This knowledge is used by curators as evidence to support the
annotation of genes and proteins described in public databases, such as MIPS
(Mewes et al., 2004) and Swiss-Prot (Apweiler et al., 2004). A protein annota-
tion typically includes a description of its function, of the biological processes
in which it participates, its location in the cell, and its interactions with other
proteins.

Reaching conclusions regarding protein function requires the analysis of
multiple pieces of evidence, the results of many experiments of different natures,
and may involve a combination of manual and automated steps (Bairoch et al.,
2004). In this chapter, we concentrate on two classes of experiments, microarray
analysis of gene expression and protein identification; they share the general
structure outlined above, and are relevant for their contribution to the knowledge
used by the curation process.

We now briefly review some definitions regarding these experiments.

2.1 Transcriptomics
Transcriptome experiments use microarray technology to measure the level

of transcription of a large number of genes (up to all genes in a genome) si-
multaneously, as an organism responds to the environment. They measure the
quantity of mRNA produced in response to some environmental factor, for in-
stance some treatment, at a certain point in time, by obtaining a snapshot of the
gene activity at that time3.

Here we only provide a brief introduction to the experimental steps involved
and the data analysis. For recent reviews on this topic, see (Lockhart and
Winzeler, 2000; Bowtell, 1999; Holloway et al., 2002). In addition, (Bolstad
et al., 2004; Quackenbush, 2001; Leung and Cavalieri, 2003) provide reviews
of methods to normalize and analyze transcriptome data.

An array is a matrix of spots, each populated during manufacturing with
known DNA strands, corresponding to the genes of interest for the experiment.
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When a sample consisting of mRNA molecules from the cells under investi-
gation is deposited onto the array, these molecules bind, or hybridize, to the
specific DNA templates from which they originated. Thus, by looking at the
hybridized array, the quantity of each different mRNA molecule of interest that
was involved in the transcription activity can be measured.

Among the many different array technologies that have become available
within the last few years, we focus on the most common two, cDNA (Cheung
et al., 1999) and oligonucleotide arrays (Lipshutz et al., 1999). The choice
between the two is dictated by the available equipment, expertise, and by the
type of experiment: an oligonucleotide array accepts one sample, and is suit-
able for measuring absolute expression values, whereas cDNA arrays accept
two samples, labeled using two different fluorescent dyes, which may represent
the state of the organism before and after treatment; they are used to measure
ratios of expression levels between the two samples. To obtain ratios using
oligonucleotide technology two arrays are necessary, and the ratios are com-
puted from the separate measurements of each. This difference is significant,
because the technical and biological variability of these experiments play a role
in the interpretation of the results.

The measurements are obtained by scanning the arrays into a digital image,
which represents the raw data from the wet lab portion of the experiment. In
the dry lab, the image is analyzed to identify poor quality spots, which are
excluded from further analysis, and to convert each remaining spot into an
intensity value (the “raw readings” in Figure 4.2). These values are normalized
to correct for background intensity, variability introduced in the experiment,
and also to enable a comparison between repeats.

In the subsequent high-level data analysis, the normalized data is interpreted
in the light of the hypothesis stated and the biological knowledge, to draw
publishable conclusions. Typically, the goal of the analysis is to detect genes
that are differentially expressed after stimulation, or to observe the evolution
of expression levels in time, or the clustering of genes with similar expression
patterns over a range of conditions and over time. Statistical and machine
learning approaches are applied in this phase (Kaminski and Friedman, 2002;
Dudoit et al., 2000; Quackenbush, 2001).

Each of these process steps involves choices that must be made (e.g., of
technology, of experiment design, and of low-level and high-level data analysis
algorithms and tools), which are inter-dependent and collectively affect the
significance of the final result. We survey some of these factors in the next
section.

2.2 Qualitative Proteomics
The term proteomics refers to large-scale analysis of proteins, its ultimate

goal being to determine protein functions, and includes a number of areas of
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investigation. Here we only consider the problem of identifying the proteins
within a sample, a problem of qualitative proteomics; this involves determining
the peptide masses and sequences of the proteins present in a sample, and
matching those against theoretically derived peptides calculated from protein
sequence databases. For in-depth reviews of the field, see (Aebersold and Mann,
2003; Pandey and Mann, 2000; Patterson and Aebersold, 2003).

This technology is suitable for experiments in which the protein contents
before and after a certain treatment are compared, ultimately leading to con-
clusions regarding their function, the biological processes in which they are
involved, and their interactions. The main steps of the experimental process are
shown at the bottom part of Figure 4.2.

A sample containing a number of proteins (possibly of the order of thou-
sands) undergoes a process of separation, commonly by two-dimensional elec-
trophoresis (2DE), resulting in the separation of the proteins onto a gel based on
two orthogonal parameters, their charge and their mass. The separated proteins
spotted on the gel are then excised and degraded enzymatically to peptides.
An alternative technique for peptide separation involves liquid chromatogra-
phy (LC) (see (Hunter et al., 2002; de Hoog and Mann, 2004) for reviews). LC
is used to purify and separate peptides in complex peptide mixtures and can
be used without the extra step of protein separation on a gel before digestion
(Pandey and Mann, 2000). Peptides are separated by their size, charge, and
hydrophobicity.

To identify the proteins mass spectrometry (MS) is used to measure the
mass-to-charge ratio of the ionized peptides. The spectrometer produces mass
spectra, i.e., histograms of intensity vs. mass/charge ratio. For single-stage
experiments, these are called peptide mass fingerprints (PMF). Additionally, a
selection of these peptides can be further fragmented to perform tandem MS, or
“MS/MS” experiments, which generate spectra for individual peptides. From
these spectra the sequence tag of the peptide can be derived. Using sequence
information of several peptides in addition to their masses is more specific for
the protein identification than just the masses.

The key parameters for this technology are sensitivity, resolution, and the
ability to generate information-rich mass spectra. The issue of resolution arises
when one considers that every cell may express over 10,000 genes, and that the
dynamic range of abundance in complex samples can be as high as 106. Since
2DE technology can resolve no more than 1,000 proteins, clearly only the most
abundant proteins can be identified, which creates a problem when interesting
proteins are much less abundant (Pandey and Mann, 2000). Techniques have
been developed to deal with these issues (Flory et al., 2002); in general, however,
limitations in the technology translate into inaccuracies in the resulting spectra.

Finally, in the dry lab the mass spectra are compared with masses and se-
quences of peptides in databases. Here the experimenter is confronted with
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more choices: a number of different algorithms, e.g., Mascot (Perkins et al.,
1999), SEQUEST (Eng et al., 1994), exist to compute a score for the good-
ness of the match between the theoretical peptide sequences in the database
and the experimental data. Also, these algorithms may be applied to differ-
ent reference databases, and provide different indicators to assess the quality
of the match. Examples of indicators are the hit ratio (the number of peptide
masses matched, divided by the total number of peptide masses submitted to
the search), and the sequence coverage (the percentage of the number of amino
acids in the experimental sequence, to those in the theoretical sequence).

The quality of the scoring functions in particular is affected by experimental
variability, and statistical and computational methods have been proposed to
deal with the uncertainty of the identification process (see (Sadygov et al.,
2004) for a review, as well as the references in Table 4.3).

3. A SURVEY OF QUALITY ISSUES
We begin our analysis by presenting a common framework, illustrated in

Figure 4.2. At the top and the bottom are the main steps of the protein identifi-
cation and of the microarray experiments, respectively. The figure shows their
common structure in terms of the general wet lab, dry lab, and dissemination
steps, and highlights the key quality concerns addressed by experimenters at
each step. We use this high-level framework to provide structure for the analy-
sis of domain-specific issues, and the current techniques and practices adopted
to address them.

In Section 3.4, a separate discussion is devoted to the problem of annotating
information after it has been submitted to proteomic databases; this has only
been addressed in the past by relatively few and isolated experiments.

3.1 Variability and experimental design
Both transcriptome and proteome experiments consist of a number of steps,

each of which can introduce factors of variability. However, it is not only
the variability introduced in the experimental process (the so called technical
variability) that can affect the quality of the results, but also biological variabil-
ity. Systematic analyzes of variability in transcriptome studies (Bakay et al.,
2002; Yang and Speed, 2002) and proteome studies (Molloy et al., 2003) have
shown that biological variability may have a greater impact on the result.

Biological variability
This form of variability affects the results of both transcriptome and proteome

experiments, it is of rather random nature and is hard to estimate. Examples
include: (i) variability between individuals studied under the same experimen-
tal condition (Novak et al., 2002; Bakay et al., 2002) due to genetic differences
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Figure 4.2. High-level biological experiment pipeline and common quality issues
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(Molloy et al., 2003), minor infections resulting in inflammatory and immune
responses of varying intensities (Yang and Speed, 2002), environmental stress,
or different activity levels, but can also be due to tissue heterogeneity (varying
distribution of distinct cell types in tissues); (ii) variability between individuals
due to random differences in the experimental conditions, such as growth, cul-
ture, or housing conditions (Hatfield et al., 2003; Novak et al., 2002; Molloy
et al., 2003); (iii) variability within individuals and within the same tissue due
to tissue heterogeneity (Bakay et al., 2002; Leung and Cavalieri, 2003); (iv)
variability within individuals in different tissues or cell types (Hatfield et al.,
2003). In this case the differences are more distinct than within the same tissue.

These variabilities can obscure the variation induced by the stimulation of
the organism (Novak et al., 2002), leading to results meaningless in the context
of the stated hypothesis. Biological variability can be addressed in part at the
early stages by proper experimental design, for example by a sufficient number
of biological repeats (Bolstad et al., 2004; Novak et al., 2002; Yang and Speed,
2002) that can be used to average over the data and validate the conclusions
over a range of biological samples. For further validation of the results, they
should be confirmed using alternative experimental techniques on a number of
biological samples (Novak et al., 2002).

Technical variability
This usually represents some kind of systematic error or bias introduced

in the experimental process and once known can be corrected for in the data
analysis, such as normalization. It can also be reduced by appropriate exper-
imental design. Examples are mentioned in Table 4.1. To reduce technical
variability, experimental protocols that result in reproducible, reliable results
can be identified and then followed meticulously (Novak et al., 2002). Dye
swap cDNA microarray experiments, in which the labeling dye of the samples
is reversed in the repeat (Leung and Cavalieri, 2003; Kerr and Churchill, 2001),
are used to account for dye-based bias. To estimate the influence of technical
variability on results of both transcriptome and proteome experiments, techni-
cal repeats can be used (Bolstad et al., 2004; Novak et al., 2002; Leung and
Cavalieri, 2003; Molloy et al., 2003). Formulae have been devised to determine
the number of repeats and samples by taking into account the effects of pooling,
technical replicates, and dye-swaps (Dobbin and Simon, 2005).

Experimental design
Experimental design not only includes the decision about the number of bi-

ological and technical replicates, it also includes all the decisions about sample
preparation methods, experimental techniques and data analysis methods. All
these decisions should be made to ensure that the data collected in the experi-
ment will provide the information to support or reject the scientific hypothesis.
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Table 4.1. Examples of technical variability introduced in transcriptomics and proteomics

Wet lab Dry lab

Sample preparation Experimental process Data analysis
Variation in sample collection and
preparation

Variation in experimental data col-
lection processes

Variation in data processing and
analysis

Tr
an

sc
ri

pt
om

ic
s

• RNA extraction and labeling
(van Bakel and Holstege, 2004;
Bakay et al., 2002; Bolstad et al.,
2004; Hatfield et al., 2003; No-
vak et al., 2002). Variability in
the sample preparation can result
in change of the gene expression
profile.
• Sample contamination (Leung
and Cavalieri, 2003).
• Dye-based bias, i.e., one dye
might be ‘brighter’ than the other
dye (Kerr and Churchill, 2001; Le-
ung and Cavalieri, 2003).

• Variation in hybridization
process (van Bakel and Holstege,
2004; Bolstad et al., 2004; Hat-
field et al., 2003; Novak et al.,
2002; Yang and Speed, 2002).
Variations introduced in the
process can obscure changes
caused by the stimulation of
the organism, i.e., changes that
the experiment actually seeks to
determine.

• Different data processing ap-
proaches (van Bakel and Holstege,
2004; Hatfield et al., 2003). The
wide range of available analysis
approaches make it hard to assess
the performance of each of them
and to compare the results of ex-
periments carried out in different
labs.

Pr
ot

eo
m

ic
s

•Variability in sample preparation
and processing for LC/MS/MS can
lead to differences in the number
of low intensity peaks measured
(Stewart et al., 2004). This can re-
sult in the identification of fewer
peptides and proteins.

•Variability in tandem mass spec-
tra collection (LC/MS/MS) (Ven-
able and Yates, III, 2004; Stew-
art et al., 2004). Variability in-
troduced here can lead to errors in
search algorithms and ultimately to
false positives in peptide identifi-
cation.
• Quantitative variation between
matched spots in two 2D-gels and
fewer spots that can be matched in
repeated gels (Molloy et al., 2003).

•Variability in tandem mass spec-
tra processing (LC/MS/MS) (Ven-
able and Yates, III, 2004; Stew-
art et al., 2004). Some of the
search algorithms used to iden-
tify peptides might be more or
less sensitive to the variability in-
troduced during the collection of
mass spectra (Venable and Yates,
III, 2004), resulting in a different
number of identified peptides in
the same spectra using different al-
gorithms.

Badly designed experiments might not only not provide the answers to the
questions stated, but might also leave potential bias in the data that might com-
promise the analysis and interpretation of the result (Yang and Speed, 2002).
Reviews of experimental design of transcriptome and proteome experiments
can be found in (Kerr and Churchill, 2001; Yang and Speed, 2002; Bolstad
et al., 2004; Riter et al., 2005).

The number of variabilities that affect the outcome of an experiment make
it hard to assess its quality. As we argue in the next section, an accurate record
of the experimental design and of the environmental variables involved is a
necessary, but hardly sufficient, condition to provide objective indicators that
can be used to assess confidence in the experimental results.

3.2 Analysis of quality issues and techniques
Results of our survey analysis are presented in Tables 4.2 and 4.3 for tran-

scriptomics and proteomics experiments, respectively. Each group of entries
corresponds to one of the general quality concerns from Figure 4.2 (first column
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in the table); for each group, specific problems are listed in the third column,
and a summary of associated current practices and techniques including ex-
amples that illustrate the need to address the issues using those practices and
techniques follows in the last column. An additional grouping of these issues
by type of artifact produced during the process (second column) is provided
where appropriate. For instance, “repeatibility and reproducibility” (second
group) in Table 4.2 maps to two problems, of general adequacy of the process
description for future reference, and of control of variability factors. For the
latter, the issues are sufficiently distinct to suggest grouping them by artifact
(hybridized array, raw data, interpretation of normalized data).

These tables, along with the selected references associated to the entries, are
designed as a sort of “springboard” for investigators who are interested in a
deeper understanding of the issues discussed in this chapter.

Quality issues that are not addressed in the process of the experiment may re-
sult in poor data quality in form of false positives or false negatives and may lead
to incorrect conclusions. As these high-throughput experiments are frequently
used not only to test hypotheses, but due to their scale also to generate new
hypotheses, these new hypotheses might be wrong and follow-up experimental
expenses and time to test these hypotheses may be wasted.

3.3 Specificity of techniques and generality of quality
dimensions

Most of the techniques mentioned in the tables, on which we will not elab-
orate due to space constraints, are specific and difficult to generalize into a
reusable “quality toolkit” for this data domain. While this may be frustrating to
some quality practitioners in the information systems domain, we can still use
some of the common terms for quality dimensions, provided that we give them
a correct interpretation. A good example is the definition of “accuracy”: in its
generality, it is defined as the distance between a data value and the real value.
When applied to a record or a field in a relational database table, this definition
is specialized by introducing distance functions that measure the similarity be-
tween the value in the record and a reference value, for instance by computing
the edit distance between strings. Further distinctions are made depending on
the type of similarity that we seek to measure.

In the experimental sciences, the abstract definition for accuracy is identical
(see for instance (van Bakel and Holstege, 2004)), however for a value that rep-
resents the numeric output of an experimental process, accuracy is interpreted
in statistical terms, as a measure of systematic error, e.g., background noise
in the experiment. Consequently, techniques for estimating accuracy, i.e., the
equivalent of “distance functions”, are grounded in the nature of the process,
and are aimed at measuring and controlling noise. In (Fang et al., 2003), for ex-
ample, a novel statistical model is proposed for the analysis of systematic errors



Information Quality Management Challenges for High-throughput Data 75
Ta

bl
e

4.
2.

Q
ua

lit
y

is
su

es
in

tr
an

sc
ri

pt
om

ic
s

ex
pe

ri
m

en
ts

C
om

m
on

qu
al

ity
is

su
es

A
rt

ifa
ct

Sp
ec

ifi
c

is
su

es
E

xa
m

pl
es

,t
ec

hn
iq

ue
s

an
d

re
fe

re
nc

es

Q
ua

lit
y

of
sa

m
pl

e
B

io
lo

gi
ca

l
as

-
sa

y
R

N
A

co
nt

am
in

at
io

n
co

nt
ro

l
bi

ol
og

ic
al

va
ri

ab
ili

ty
te

ch
ni

ca
la

ss
es

sm
en

to
f

R
N

A
qu

al
ity

(I
m

be
au

d
et

al
.,

20
05

);
lo

w
qu

al
ity

R
N

A
m

ay
co

m
pr

om
is

e
re

su
lts

of
da

ta
an

al
ys

es
Pr

oc
es

s
re

pe
at

ab
ili

ty
,

re
su

lts
re

pr
od

uc
ib

ili
ty

(G
en

er
al

)
ad

eq
ua

te
pr

oc
es

s
de

sc
ri

pt
io

n
pr

ov
en

an
ce

,m
et

a-
da

ta
ca

pt
ur

e
st

an
da

rd
s

an
d

te
ch

ni
qu

es
fo

r
fin

e-
gr

ai
n

pr
oc

es
s

de
sc

ri
pt

io
n

(Z
ha

o
et

al
.,

20
04

;G
re

en
w

oo
d

et
al

.,
20

03
)

R
aw

da
ta

(i
m

-
ag

e
fr

om
hy

-
br

id
iz

ed
ar

ra
y)

bi
ol

og
ic

al
va

ri
ab

ili
ty

(B
ak

ay
et

al
.,

20
02

)
te

ch
ni

ca
l

va
ri

ab
ili

ty
:

co
ns

is
te

nc
y

of
im

ag
e

qu
al

ity
co

nt
ro

lp
ar

am
et

er
s

re
vi

ew
:

(L
eu

ng
an

d
C

av
al

ie
ri

,2
00

3;
H

es
s

et
al

.,
20

01
)

ex
pe

ri
m

en
ta

ld
es

ig
n

(K
er

ra
nd

C
hu

rc
hi

ll,
20

01
;D

ob
bi

n
an

d
Si

m
on

,2
00

5)

N
or

m
al

iz
ed

da
ta

si
gn

ifi
ca

nc
e

of
in

te
rp

re
ta

tio
n

gi
ve

n
bi

ol
og

ic
al

an
d

te
ch

ni
ca

lv
ar

ia
bi

lit
y

se
e

“s
ig

ni
fic

an
ce

of
da

ta
in

te
rp

re
ta

tio
n”

D
at

a
co

m
pa

ra
bi

lit
y

(G
en

er
al

)
re

pr
od

uc
ib

ili
ty

ac
ro

ss
pl

at
fo

rm
s,

te
ch

no
lo

-
gi

es
,a

nd
la

bo
ra

to
ri

es
m

et
ho

ds
to

ac
co

m
m

od
at

e
va

ri
ab

ili
ty

ac
ro

ss
pl

at
fo

rm
s

an
d

la
bs

(M
em

be
rs

of
th

e
To

xi
co

ge
no

m
ic

s
R

es
ea

rc
h

C
on

so
rt

iu
m

,2
00

5;
L

ar
ki

n
et

al
.,

20
05

)
co

ns
is

te
nc

y
of

re
su

lts
ac

ro
ss

pl
at

fo
rm

s
(W

an
g

et
al

.,
20

05
;P

et
er

se
n

et
al

.,
20

05
)

Si
gn

ifi
ca

nc
e

of
da

ta
(G

en
er

al
)

va
ri

ab
ili

ty
co

nt
ro

l
qu

an
tifi

ca
tio

n
of

m
ea

su
re

m
en

te
rr

or
s

(H
ub

er
et

al
.,

20
02

)
R

aw
da

ta
im

ag
e

ac
cu

ra
cy

:
in

te
rp

re
ta

tio
n

of
sp

ot
s

an
d

th
ei

ri
nt

en
si

ty
le

ve
ls

,n
on

-u
ni

fo
rm

hy
br

id
iz

a-
tio

n

im
ag

e
an

al
ys

is
an

d
qu

al
ity

co
nt

ro
l(

L
eu

ng
an

d
C

av
al

ie
ri

,2
00

3;
H

es
s

et
al

.,
20

01
)

ba
d

sp
ot

de
te

ct
io

n,
ba

ck
gr

ou
nd

id
en

tifi
ca

tio
n,

im
ag

e
no

is
e

m
od

el
lin

g,
m

an
ua

li
ns

pe
ct

io
n

of
sp

ot
s;

po
or

im
ag

e
qu

al
ity

m
ay

re
qu

ir
e

co
st

ly
m

an
ip

ul
at

io
ns

an
d

de
cr

ea
se

th
e

po
w

er
of

th
e

an
al

ys
is

N
or

m
al

iz
ed

da
ta

ch
oi

ce
of

no
rm

al
iz

at
io

n
al

go
ri

th
m

s
re

vi
ew

:
(L

eu
ng

an
d

C
av

al
ie

ri
,2

00
3)

;c
ho

os
in

g
an

in
ad

eq
ua

te
no

rm
al

iz
at

io
n

al
go

ri
th

m
m

ay
le

ad
to

an
in

co
m

pl
et

e
re

m
ov

al
of

sy
st

em
at

ic
er

ro
rs

an
d

af
fe

ct
th

e
po

w
er

of
th

e
do

w
ns

tr
ea

m
an

al
ys

is
;

lo
w

-l
ev

el
da

ta
an

al
ys

is
(B

ol
st

ad
et

al
.,

20
04

);
st

at
is

tic
al

er
ro

ra
na

ly
si

s,
dy

e-
bi

as
co

nt
ro

la
nd

re
du

c-
tio

n
(F

an
g

et
al

.,
20

03
);

al
go

ri
th

m
s

to
co

nt
ro

ls
ig

na
l-

to
-n

oi
se

ra
tio

s
(S

eo
et

al
.,

20
04

)
Si

gn
ifi

ca
nc

e
of

da
ta

in
te

rp
re

ta
tio

n
D

at
a

in
te

rp
re

ta
tio

n
va

lid
ity

of
da

ta
an

al
ys

is
te

ch
ni

qu
es

an
d

to
ol

s;
ro

bu
st

ne
ss

of
an

al
ys

is
w

ith
re

sp
ec

tt
o

va
ri

ab
il-

iti
es

re
vi

ew
s

on
de

si
gn

an
d

se
le

ct
io

n
of

cl
us

te
ri

ng
al

go
ri

th
m

s:
(K

am
in

sk
ia

nd
Fr

ie
dm

an
,2

00
2;

L
ev

en
-

st
ie

n
et

al
.,

20
03

)
co

m
pu

ta
tio

na
lm

et
ho

ds
to

ta
ke

va
ri

ab
ili

tie
s

in
to

ac
co

un
t(

B
ak

ay
et

al
.,

20
02

;H
at

fie
ld

et
al

.,
20

03
)

al
go

ri
th

m
pe

rf
or

m
an

ce
an

al
ys

is
by

cr
os

s-
va

lid
at

io
n

(P
ep

e
et

al
.,

20
03

)
id

en
tifi

ca
tio

n
of

si
gn

ifi
ca

nt
di

ff
er

en
ce

s
in

ge
ne

ex
pr

es
si

on
:

st
at

is
tic

al
an

al
ys

is
of

re
pl

ic
at

ed
ex

pe
r-

im
en

ts
(D

ud
oi

t
et

al
.,

20
00

);
an

al
ys

is
of

th
re

sh
ol

d
ch

oi
ce

to
ch

ar
ac

te
ri

se
di

se
as

e
vs

.
no

rm
al

ity
(L

eu
ng

an
d

C
av

al
ie

ri
,2

00
3;

Pa
n

et
al

.,
20

05
);

us
e

of
Fa

ls
e

D
is

co
ve

ry
R

at
e

fo
r

ge
ne

ra
tin

g
ge

ne
ex

pr
es

si
on

sc
or

es
(P

aw
ita

n
et

al
.,

20
05

;R
ei

ne
re

ta
l.,

20
03

)
Q

ua
lit

y
of

re
fe

re
nc

e
da

ta
(G

en
er

al
)

ac
cu

ra
cy

,c
om

pl
et

en
es

s,
sp

ec
ifi

ci
ty

,c
ur

re
nc

y
of

re
fe

re
nc

e
da

ta
ba

se
s

fu
nc

tio
na

la
nn

ot
at

io
ns

in
re

fe
re

nc
e

da
ta

ba
se

s

m
os

tly
ba

se
d

on
pr

ac
tit

io
ne

rs
’p

er
so

na
lp

er
ce

pt
io

n;
sy

st
em

at
ic

st
ud

ie
s

ar
e

ne
ed

ed
(s

ee
Se

ct
io

n
3.

4
in

m
ai

n
te

xt
)

U
ni

fo
rm

ity
of

re
pr

e-
se

nt
at

io
n,

re
-u

sa
bi

lit
y

of
re

su
lts

O
ut

pu
t

da
ta

,
pu

bl
ic

at
io

n
he

te
ro

ge
ne

ity
of

pr
es

en
ta

tio
n

da
ta

an
d

m
et

a-
da

ta
st

an
da

rd
iz

at
io

n
of

co
nt

en
ta

nd
pr

es
en

ta
tio

n
fo

rm
at

(L
eu

ng
an

d
C

av
al

ie
ri

,2
00

3;
E

di
to

rs
,2

00
2)

(s
ee

al
so

Se
ct

io
n

4
in

m
ai

n
te

xt
)



76 DATABASE MODELING IN BIOLOGY: PRACTICES AND CHALLENGES
Ta

bl
e

4.
3.

Q
ua

lit
y

is
su

es
in

pr
ot

ei
n

id
en

tifi
ca

tio
n

ex
pe

ri
m

en
ts

C
om

m
on

qu
al

ity
is

su
es

A
rt

ifa
ct

Sp
ec

ifi
c

is
su

es
E

xa
m

pl
es

,t
ec

hn
iq

ue
s

an
d

re
fe

re
nc

es

Q
ua

lit
y

of
sa

m
pl

e
B

io
lo

gi
ca

la
ss

ay
bi

ol
og

ic
al

va
ri

ab
ili

ty
,

co
nt

am
in

at
io

n
co

nt
ro

l
sa

m
pl

e
co

nt
am

in
at

io
n

w
ith

,e
.g

.,
hu

m
an

pr
ot

ei
ns

fr
om

th
e

ex
pe

ri
m

en
te

rm
ay

ob
sc

ur
e

th
e

re
su

lts
of

do
w

ns
tr

ea
m

an
al

ys
is

Pr
oc

es
s

re
pe

at
ab

ili
ty

,
re

su
lts

re
pr

od
uc

ib
ili

ty

(G
en

er
al

)
ad

eq
ua

te
pr

oc
es

s
de

sc
ri

pt
io

n
da

ta
m

od
el

lin
g

fo
rc

ap
tu

ri
ng

ex
pe

ri
m

en
td

es
ig

n
an

d
ex

ec
ut

io
n

re
su

lts
(F

en
yo

e
an

d
B

ea
vi

s,
20

02
)

th
e

PE
D

R
O

da
ta

m
od

el
(T

ay
lo

re
ta

l.,
20

03
)

se
e

al
so

un
if

or
m

ity
,b

el
ow

R
aw

da
ta

(m
as

s
sp

ec
tr

a)
te

ch
ni

ca
la

nd
bi

ol
og

ic
al

va
ri

ab
ili

ty
an

al
ys

is
of

re
pr

od
uc

ib
ili

ty
(S

te
w

ar
te

ta
l.,

20
04

)
qu

an
tit

at
iv

e
as

se
ss

m
en

to
fv

ar
ia

bi
lit

y
(C

ha
lla

pa
lli

et
al

.,
20

04
)

D
at

a
co

m
pa

ra
bi

lit
y

(G
en

er
al

)
re

pr
od

uc
ib

ili
ty

ac
ro

ss
pl

at
fo

rm
s,

te
ch

-
no

lo
gi

es
,a

nd
la

bo
ra

to
ri

es
re

vi
ew

:
(H

an
co

ck
et

al
.,

20
02

)

Si
gn

ifi
ca

nc
e

of da
ta

(G
en

er
al

)
va

ri
ab

ili
ty

co
nt

ro
l

re
vi

ew
on

st
at

is
tic

al
an

d
co

m
pu

ta
tio

na
li

ss
ue

s
ac

ro
ss

al
lp

ha
se

s
of

da
ta

an
al

ys
is

((
L

is
tg

ar
te

n
an

d
E

m
ili

,2
00

5)
)

re
vi

ew
on

an
al

ys
is

of
se

ns
iti

vi
ty

(S
m

ith
,2

00
2)

R
aw

da
ta

(m
as

s
sp

ec
tr

a)
se

ns
iti

vi
ty

of
sp

ec
tr

a
ge

ne
ra

tio
n

m
et

h-
od

s,
dy

na
m

ic
ra

ng
e

fo
rr

el
at

iv
e

pr
ot

ei
n

ab
un

da
nc

e
te

ch
ni

ca
la

nd
bi

ol
og

ic
al

va
ri

ab
ili

ty
lim

ita
tio

ns
of

te
ch

no
lo

gy
fo

rg
en

er
at

in
g

sp
ec

tr
a

re
vi

ew
on

st
ra

te
gi

es
to

im
pr

ov
e

ac
cu

ra
cy

an
d

se
ns

iti
vi

ty
of

PI
,q

ua
nt

ifi
ca

tio
n

of
re

la
tiv

e
ch

an
ge

s
in

pr
ot

ei
n

ab
un

da
nc

e
(R

es
in

g
an

d
A

hn
,2

00
5)

st
ud

ie
s

on
sc

or
in

g
m

od
el

s,
da

ta
ba

se
se

ar
ch

al
go

ri
th

m
s,

as
se

ss
m

en
t

of
sp

ec
tr

a
qu

al
ity

pr
io

r
to

pe
rf

or
m

in
g

a
se

ar
ch

,a
na

ly
si

s
of

va
ri

ab
le

s
th

at
af

fe
ct

pe
rf

or
m

an
ce

of
D

B
se

ar
ch

(S
ad

yg
ov

et
al

.,
20

04
)(

re
vi

ew
),

(B
er

n
et

al
.,

20
04

)
re

vi
ew

on
lim

ita
tio

ns
of

2D
E

te
ch

no
lo

gy
fo

rl
ow

-a
bu

nd
an

ce
pr

ot
ei

ns
(F

lo
ry

et
al

.,
20

02
)

Si
gn

ifi
ca

nc
e

of
da

ta
in

te
rp

re
ta

tio
n

M
at

ch
re

su
lts

si
gn

ifi
ca

nc
e

an
d

ac
cu

ra
cy

of
m

at
ch

re
-

su
lts

,l
im

ita
tio

ns
of

te
ch

no
lo

gy
fo

r
ac

-
cu

ra
te

id
en

tifi
ca

tio
n

de
fin

iti
on

(C
ol

in
ge

et
al

.,
20

03
)a

nd
va

lid
at

io
n

of
sc

or
in

g
fu

nc
tio

ns
re

vi
ew

on
lim

ita
tio

ns
of

te
ch

no
lo

gy
:

(N
es

vi
zh

sk
ii

an
d

A
eb

er
so

ld
,2

00
4)

st
at

is
tic

al
m

od
el

s
(N

es
vi

zh
sk

ii
et

al
.,

20
03

)
st

ud
ie

s
on

m
at

ch
in

g
al

go
ri

th
m

s
(S

ad
yg

ov
et

al
.,

20
04

)(
re

vi
ew

),
(Z

ha
ng

et
al

.,
20

02
)

Q
ua

lit
y

of
re

fe
r-

en
ce

da
ta

(G
en

er
al

)
re

du
nd

an
cy

of
re

fe
re

nc
e

D
B

(s
am

e
pr

o-
te

in
ap

pe
ar

s
un

de
r

di
ff

er
en

tn
am

es
an

d
ac

ce
ss

io
n

nu
m

be
rs

in
da

ta
ba

se
s)

ac
cu

ra
cy

,
co

m
pl

et
en

es
s,

sp
ec

ifi
ci

ty
,

cu
rr

en
cy

of
re

fe
re

nc
e

da
ta

ba
se

s

cr
ite

ri
a

fo
rt

he
se

le
ct

io
n

of
ap

pr
op

ri
at

e
re

fe
re

nc
e

D
B

(T
ay

lo
re

ta
l.,

20
03

):
us

in
g

a
sp

ec
ie

s-
sp

ec
ifi

c
re

fe
re

nc
e

da
ta

ba
se

w
ill

re
su

lt
in

m
or

e
re

al
pr

ot
ei

n
id

en
tifi

ca
tio

ns
th

an
us

in
g

a
ge

ne
ra

l
re

fe
re

nc
e

da
ta

ba
se

co
nt

ai
ni

ng
a

la
rg

e
nu

m
be

ro
fo

rg
an

is
m

s;
us

in
g

th
e

la
tte

rm
ay

re
su

lt
in

a
la

rg
e

nu
m

be
ro

f
fa

ls
e

po
si

tiv
es

U
ni

fo
rm

ity
of

re
pr

es
en

ta
tio

n,
re

-u
sa

bi
lit

y
of

re
su

lts

O
ut

pu
t

da
ta

,
pu

bl
i-

ca
tio

n
he

te
ro

ge
ne

ity
of

pr
es

en
ta

tio
n

ne
ed

fo
rr

ep
re

se
nt

at
io

n
st

an
da

rd
s

(R
av

ic
ha

nd
ra

n
an

d
Sr

ir
am

,2
00

5)
th

e
PE

D
R

O
pr

ot
eo

m
ic

s
da

ta
m

od
el

(T
ay

lo
re

ta
l.,

20
03

)
gu

id
el

in
es

fo
rp

ub
lic

at
io

n
(C

ar
re

ta
l.,

20
04

)
st

an
da

rd
s

fo
rm

et
a-

da
ta

(H
an

co
ck

et
al

.,
20

02
)



Information Quality Management Challenges for High-throughput Data 77

in microarray experiments. Here, errors that lead to low accuracy are detected
and corrected by introducing different normalization techniques, whose effec-
tiveness is compared experimentally; different statistical models are applied
depending on the specific microarray experiment design used.

Information quality practitioners will probably be on more familiar ground
when quality concepts like accuracy, currency, and timeliness are applied to
reference databases used in the experiments, e.g., for protein-peptide matches,
or to the last phase of our reference pipeline, when the differently expressed
genes in a transcriptome experiment are functionally annotated. In this case,
“accuracy” refers to the likelihood that a functional annotation is correct, i.e.,
that the description of the function of the gene or gene product corresponds to
its real function4. As mentioned, annotations may be done either by human
experts, based on publications evidence, or automatically by algorithms that try
to infer function from structure and their similarity with that of other known
gene products. In the first case, measuring accuracy amounts to supporting or
disproving scientific claims made in published literature, while in the second,
the predictive performance of an algorithm is measured.

In general, we observe a trade-off between the accuracy of curator-produced
functional annotations, which have a low throughput, and the timeliness of
the annotation, i.e., how soon the annotation becomes available after the gene
product is submitted to a database. A notable example is provided by the Swiss-
Prot and TrEMBL protein databases. While in the former, annotations are
done by biologists, with great accuracy at the expense of timeliness, TrEMBL
contains proteins that are automatically annotated, often with lower accuracy,
but are made available sooner (Junker et al., 2000). This gives the scientist
a choice, based on personal requirements. For well-curated database such as
UniProt, claims of non-redundancy (but not of completeness) are also made
(O’Donovan et al., 1999).

3.4 Beyond data generation: annotation and presentation
To conclude this section, we now elaborate further on the topic of func-

tional annotations and their relationship to quality. The aim of annotation is, in
general, to “bridge the gap between the sequence and the biology of the organ-
ism” (Stein, 2001). In this endeavour, three main layers of interpretation of the
raw data are identified: nucleotide-level (where are the genes in a sequence?),
protein-level (what is the function of a protein?), and process-level (what is the
role of genes and proteins in the biological process? how do they interact?).
The information provided by high-throughput transcriptomics and proteomics
contributes to functional and process annotation. Thus, it participates in the
cycle shown in Figure 4.3: publications are used by curators to produce func-
tional annotations on protein database entries, which in turn may stimulate the
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proposal of new experiments (automatic annotations use information from other
databases, as well).

Figure 4.3. The annotation process

Although a bit simplistic, this view is sufficient to identify the critical is-
sue with annotation: erroneous functional annotation based on biased results
and conclusions due to unaccounted variabilities in experiments can propagate
through public databases and further lead to wrong conclusions.

Most of the studies on the percolation effects of annotation errors have fo-
cused on automated annotations, in which protein function is determined com-
putationally, based on sequence similarity to other proteins in the same domain
(Karp et al., 2001; Gilks et al., 2002; Devos and Valencia, 2001; Wieser et al.,
2004; Prlic et al., 2004). However, the issue of validating curated annotations
that are based on published literature is more subtle. One approach is based on
the observation that, when standard controlled vocabularies are used for anno-
tation, the consistency of use of the terminology offered by these vocabularies
in multiple independent annotations of the same data can be used as an indicator
of annotation accuracy.

As an example, consider the Gene Ontology (GO), a well-known standard on-
tology for describing the function of eukaryotic genes (Consortium, 2000). GO
is maintained by a consortium of three model organism databases, and consists
of three parts: molecular function, biological process and cellular component
(the sub-cellular structures where they are located). Up to the present, GO an-
notations have been used to annotate almost two million gene products in more
than 30 databases. UniProt is the most prominent, accounting for almost 50%
of the annotations.

The adoption of such a standard in biology has allowed researchers to investi-
gate issues of annotation consistency. We mention two contributions here. The
first (Lord et al., 2003) has studied measures of semantic similarity between
SwissProt entries, based on their GO annotations. The authors hypothesize that
valid conclusions about protein similarity can be drawn not only based on their
sequence similarity (as would be done for instance by BLAST), but also from
the semantic similarity of the annotations that describe the biological role of
the proteins. The latter is described by metric functions defined on the GO
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structure (GO is a directed acyclic graph). Based on statistical evidence, the
authors conclude that the hypothesis is valid for various specific assumptions,
e.g., that the data set is restricted to those proteins whose annotations are sup-
ported by published literature, as opposed to being inferred from some indirect
data source.

The second contribution has studied the consistency of annotations among
orthologues in different databases5 (Dolan et al., 2005). Experiments on sets
of mouse and human proteins resulted in a useful classification of annotation
errors and mismatches, and in effective techniques for their detection.

These studies offer a partial, but quantitative validation of the main claim
that standardization of terminology improves the confidence in the annotation
process and facilitates the retrieval of information.

4. CURRENT APPROACHES TO QUALITY:
META-DATA COLLECTION, STANDARDIZATION,
VOCABULARIES

Partly to dominate the complexity of the domain and the broad variabil-
ity of available techniques, the information management community has been
adopting a general approach towards standardization based on (i) modelling,
capturing and exploiting meta-data that describes the experimental processes
in detail, known as provenance; and (ii) creating controlled vocabularies and
ontologies used to describe the meta-data.

Information quality management may benefit greatly from this approach.

4.1 Modelling, collection and use of provenance meta-data
Throughout this chapter, we have mentioned a number of variability fac-

tors that affect the outcome of an experiment. The meta-information about
these variables and their impact, i.e., the experimental design and details of
experiment execution, is known as provenance. The importance of capturing
provenance in a formal and machine-processable way has been recognized in
the recent past, as a way to promote interoperability and uniformity across
labs. The role of provenance in addressing quality issues, however, has not
yet been properly formalized. Recent research efforts have been focusing on
using provenance and other types of meta-data, to allow scientists to formally
express quality preferences, i.e., to define decision procedures for selecting or
discarding data based on underlying quality indicators (Missier et al., 2005).

Standards for capturing provenance are beginning to emerge, but much work
is still to be done. Within the transcriptomic community, one initial response
comes from the Microarray Gene Expression Data (MGED) society, which has
proposed a standard set of guidelines called MIAME (Brazma et al., 2001),
for Minimal Information About a Microarray Experiment, prescribing minimal
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content for an acceptable database submission. Along with content standard-
ization, the Microarray and Gene Expression (MAGE) group within MGED in
collaboration with the Object Management Group (OMG) also defines MAGE-
OM, an object model describing the conceptual structure of MIAME docu-
ments. The model has been mapped to MAGE-ML, an XML markup language
for writing MAGE-OM documents, resulting in a complete standard for the
preparation of MIAME-compliant database submissions.

Furthermore, MAGE prescribes that experiment descriptions be annotated
using the MGED ontology, a controlled vocabulary for the gene expression
domain. MGED is currently being redesigned, with the goal of encompassing
a broader domain of functional genomics, and will hopefully include a struc-
ture and terminology for experimental variables, which is currently missing.
Writing complete MAGE-ML documents is a lengthy process for non-trivial
experiments. At present, adoption of the standard by the research community
is driven mostly by the requirement that data submitted to major journals for
publication be MIAME-compliant.

Similar efforts are under way in the proteomic field (Orchard et al., 2003),
although accepted standards do not yet exist for data models and format (al-
though some proposed data models like PEDRo are being increasingly adopted
by the community (Garwood et al., 2004)). The Human Proteome Organisation
(HUPO) provides updated information on its Proteomics Standards Initiative
(PSI).

The challenge for these standardization efforts is the rapid development of
functional genomics. This requires these standards to be specific enough to
capture all the details of the experiments but at the same time to be generic and
flexible enough to adapt and be extended to changes in existing or evolving
of new experimental techniques. Furthermore, these standards need to cater
for different communities within the large and diverse biological community.
Examples of this diversity include the study of eukaryotes or prokaryotes, model
organisms that have already been sequenced or non-model organisms with only
limited amount of information available, inbred populations that can be studied
in controlled environment or outbred populations that can only be studied in
their natural environment6.

To allow a systems biology approach to the analysis of data from different
kinds of experiments, a further effort is undertaken by a number of standard-
ization bodies to create a general standard for functional genomics (FuGE)7.
This effort is based on the independent standards for transcriptomics and pro-
teomics mentioned above and seeks to model the common aspects of functional
genomics experiments.

One of the practical issues with provenance data is that, in the wet lab,
the data capture activity represents additional workload for the experimenter,
possibly assisted by the equipment software. The advantage in the dry lab is that
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extensive information system support during experiment execution is available,
in particular based on workflow technology, as proven in the myGrid project
(Zhao et al., 2004; Greenwood et al., 2003). In this case, provenance can be
captured by detailed journaling of the workflow execution.

4.2 Creating controlled vocabularies and ontologies
The second approach for a standardized representation of data and meta-

data is the development of controlled vocabularies and ontologies. A large
number of ontologies is being developed, including ontologies to represent
aspects of functional genomics experiments, such as the MGED ontology for
transcriptomics8 or the PSI ontology for proteomics9, both of which will form
part of the Functional Genomics Ontology (FuGO, part of FuGE).

As for the development of standardized models for meta-data, the develop-
ment of standardized controlled vocabulary faces similar challenges, such as
the rapid development of the technologies that are described in the ontology or
the knowledge presented in a controlled vocabulary. Furthermore, the represen-
tation of the ontologies varies, ranging from lists of terms to complex structures
modeled using an ontology language, such as OWL10.

5. CONCLUSIONS
We have presented a survey on quality issues that biologists face during the

execution of transcriptomics and proteomics experiments, and observed that
issues of poor quality in published data can be traced to the complexity of
controlling the biological and technical variables within the experiment.

Our analysis suggests that, despite their differences, a common structure and
a common set of quality issues for the two classes of experiments can be found;
we have proposed a framework for the classification of these issues, and used
it to survey current quality control techniques.

We argued that the scientists’ ability to make informed decisions regarding
the quality of published data relies on the availability of meta-information de-
scribing the experiment variables, as well as on standardization efforts on the
content and structure of meta-data.

The area of information management can play a major role in this efforts, by
providing suitable information management models for meta-data, and tools to
exploit it. Although the literature offers many more results on these topics that
can be presented here, we have offered a starting point for in-depth investigation
of this field.
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NOTES
1 The term “information” is often used in contrast with “data”, to underline the difference

between the ability to establish formal correctness of a data item, and the ability to provide
a correct interepretation for it. In this sense, assessing reliability is clearly a problem of
correct interpretation, hence of information quality.

2 The term gene expression refers to the process of DNA transcription for protein produc-
tion within a cell. For a general introduction to the topics of genomic and proteomics,
see (Campbell and Heyer, 2003).

3 For a tutorial on microarrays, see
http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html.

4 Assessing the completeness of an annotation is just as important; however, the intrinsic
incompleteness of the biological interpretation of genes and gene products (King et al.,
2003) makes this task even more challenging.

5 Orthologues are similar genes that occur in the genomes of different species.
6 See, e.g., http://envgen.nox.ac.uk/miame/miame env.html for a proposal to extend the MI-

AME standard to take into account requirements of the environmental genomics community.
7 http://fuge.sourceforge.net/ and http://sourceforge.net/projects/fuge/
8 http://mged.sourceforge.net/ontologies/
9 http://psidev.sourceforge.net/ontology/
10 http://www.w3.org/TR/owl-features/
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