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Abstract

In this paper we outline a framework for managing
information quality (IQ) in an e-Science context. In
contrast to previous approaches that take a very ab-
stract view of IQ properties, we allow scientists to
define the quality characteristics that are of impor-
tance to them in their particular domain. For exam-
ple, “accuracy” may be defined in terms of the confor-
mance of experimental data to a particular standard.
User-scientists specify their IQ preferences against a
formal ontology, so that the definitions are machine-
manipulable, allowing the environment to classify
and organise domain-specific quality characteristics
within an overall quality management framework. As
an illustration of our approach, we present an exam-
ple Web service that computes IQ annotations for
experiment datasets in transcriptomics.

1 Introduction

Information is viewed as a fundamental resource in
the discovery of new scientific knowledge. Scientists
expect to make use of information produced by other
labs and projects in validating and interpreting their
own results. Funding bodies expect the results of
projects to have much greater longevity and useful-
ness. As well as publishing their principal results in
the scientific literature, scientists are now required
to place a much greater proportion of their experi-
mental data in the public domain. A key element
of e-Science is the development of a stable environ-
ment for the conduct of these information-intensive
forms of science. One significant obstacle is the class
of problems that arise due to variations in the quality
of the information being shared [3]. Data sets that
are incomplete, inconsistent, or inaccurate can still be
used to good effect by those that are aware of these
deficiencies, but can be misleading, frustrating and
time-consuming for those who are not.

Research in information quality (IQ) has tended to
focus on the identification of generic quality charac-
teristics (such as accuracy, currency and complete-
ness) that are applicable in a wide range of applica-
tion domains [10]. However, IQ is inherently use-
specific, and this “one-size-fits-all” approach offers

quality characteristics so broad in their meaning that
they provide little discriminating information. An
alternative is to try to identify the quality character-
istics that are of importance in a particular domain.
For example, one group of scientists may record “ac-
curacy” in terms of some calculated experimental er-
ror, while others might define it as a function of the
type of equipment that captured the data.

The domain-specific approach to the management
of IQ for e-Science depends on two assumptions:

1. That it is possible to elicit detailed specifications
of the IQ requirements of individual scientists
or communities of scientists, preferably in a for-
mal language so that the definitions are machine-
manipulable. It must be possible for scientists to
use the definitions, by creating executable met-
rics based on them, and also to reuse definitions
created by others, by browsing and querying an
organised collection of definitions.

2. That the annotation of information resources
with detailed descriptions of their quality can
be performed in a cost-effective manner. This
means that the overhead of creating and manag-
ing the definition of a new IQ characteristic and
its associated metrics should not be too high, and
also that it should be possible to operationalise
the computation of IQ measurements over size-
able datasets.

The Qurator project1 aims to test these assump-
tions by making a detailed study of IQ management
in two domains of post-genomic biology: proteomics
and transcriptomics. As progress towards (1) above,
this paper presents the initial version of our IQ frame-
work for capturing scientists’ IQ requirements. We
use a motivating example from the domain of mi-
croarray data, and show how a domain-specific IQ
characteristic can be defined as part of our overall
framework. As an instance of (2), we introduce a Web
service that automates one kind of IQ annotation of
datasets, and apply this service to quality-assessment
of microarray data.

1Funded by the EPSRC Programme Fundamental Com-
puter Science for e-Science: GR/S67593 & GR/S67609 —
Describing the Quality of Curated e-Science Information Re-
sources, www.qurator.org.

1



Baseline
layer

Quality
preferences
layer

Presentation layer

Binding
layer

Data Testing
Process Model

Quality indicators
(any data and meta-data)

Quality-aware data visualization models
Selection of data sources based on their
quality

Process
layer

Tasks binding

Executable
Task

Executable
TaskSchema

DB DB

Data
layer

Data binding

Schema

• Logic-based class definition
• DL-based
• Rule-based

• Ranking based on metrics

Quality metrics
(functions of indicators)

Data Model

Example: Conformance of OntologyEntry 
to MGED

Example: various types of MGED-Consistency of
experiment descriptions

Example: Spec for the
OntValidator service

Example: OntologyEntry
part-of Experiment

Example:
class of “acceptable” experiments, ranking of
experiment description based on MGED-
consistency;

Example:
Dynamic setting of thresholds and other
parameters, on-the-fly filtering

Qurator environment
• Data Annotation

• Ontology browse and
search

Generic Reference
Data Quality Ontology

KB of user quality concepts

Figure 1: The Qurator conceptual framework

2 An IQ framework

We address our first assumption in Section 1 by pro-
viding the user with an environment for the creation,
management and use of semantic annotations regard-
ing the quality of data sets. The Qurator environ-
ment consists of formal models, languages, and soft-
ware tools that let users express various facets of
quality meta-data in a formal way, so that the re-
sulting annotations can be (i) exploited by quality-
aware data management applications, and (ii) shared
with other users within a community of interest.
The Qurator models are structured into a framework,
shown in Figure 1, whose layers reflect the different
levels of abstraction used during the annotation pro-
cess.

At the core of this environment is an ontology for
data quality, i.e., a formally-specified conceptualiza-
tion of generic as well as domain-specific data quality
concepts and terms [1]. The ontology, represented us-
ing the Web Ontology Language OWL2, includes the
main concepts of the framework; a small fragment
is shown in Figure 2. For example, QualityMetric
is a generic ontology concept whose semantic rela-
tionships to QualityIndicator, represented by the
property metric-based-on-indicator, means that

2http://www.w3.org/2001/sw/WebOnt/

a metric is computed as a function of zero or more
indicators. This root concept can be extended to
include many different domain-specific, user-defined
metrics, for instance MGED-global-consistency, de-
scribed futher below.

Note the ontology only records the abstract rela-
tionship between concepts, i.e., a metric and an indi-
cator, without specifying it further. A more complete
specification is provided by the framework models,
namely by the Quality Metrics model, which includes
the definition of the actual function used to compute
a specific metric like MGED-global-consistency.
Thus, the ontology and the framework models play
complementary roles: the ontology defines concepts
across all the models in the framework, and provides
an external view of the quality meta-data used in
the annotation, and of their semantic relationships;
while the different models provide a way to specify
the internal semantics of each of these concepts. Each
model is described using a potentially different, ad
hoc formalism for the required specification.

The functions of each of the models, and of the
ontology, are best described through a complete ex-
ample. In transcriptomics, microarray experiment
data is routinely captured using MAGE-OM, the
MAGE Object Model recommended by the Microar-
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Figure 2: Small fragment of the Qurator quality ontology

ray Gene Expression Data Society (MGED)3, and en-
coded using a standard XML syntax (MAGE-ML).
The MGED Ontology4 provides common terminol-
ogy for describing all aspects of the experiment design
and of its execution. Let us suppose that, in search-
ing for suitable microarray experiment data within
a database, a biologist decides to adopt the consis-
tency of use of MGED terms as an indicator for the
overall quality of the experiment. Also, for the sake
of simplicity, we assume this to be the only indicator
considered in the example; in reality, our experience
suggests that this is one of several actual indicators
that biologists are likely to use.

In general, a quality indicator for a piece of un-
derlying data is an objectively measurable quantity
whose value can be either computed from the data
using an automated procedure, or be otherwise ob-
tained interactively from the user. In our exam-
ple, the MAGE standard prescribes which MAGE-
OM entities, called OntologyEntry (OE for short),
may refer to MGED Ontology entries. A sample
XML fragment of a microarray experiment data file
is shown in Figure 3, with the OntologyEntry el-
ements highlighted. It is therefore possible to au-
tomatically verify the consistency of multiple refer-
ences (possibly hundreds) to MGED terms, found in
an experiment description. The consistency status
of each OE thus becomes an elementary quality in-
dicator that annotates the corresponding XML ele-
ment. From this fine-grain collection of indicators,
useful quality metrics can then be computed by ag-
gregation, such as the fraction of consistent values
over the entire collection, or the consistency of use
of particular MGED terms across the entire exper-
iment (indicated as MGED-global-consistency and
MGED-term-consistency in Figure 2).

3http://www.mged.org/
4http://mged.sourceforge.net/ontologies/MGEDontology.php

Figure 3: Fragment of a MAGE-ML/XML experi-
ment data file, with highlighted OntologyEntry ele-
ments

This information is captured in the ontology as
instances of existing concepts (the square elements
in Figure 2), as well as in the baseline layer of the
framework (lower part of Figure 1), which contains
the data, test process, indicators and metrics models.
The data model is an abstraction of the portions of
the underlying data whose quality we are character-
izing, that is, the experiment description, the OE el-
ements, and their part-of relationships. The test pro-
cess model describes the process used to compute the
quality indicators, in our case an “OntValidator ser-
vice” that produces the OE consistency annotations.
Depending on the level of abstraction required, the
model may define a service interface (for instance, the
WSDL description of a Web service), or some of its
implementation properties. The formalization should
be adequate to the main purpose of the model, which
is sharing and reuse of the annotations produced by
the process. Similarly, the quality metrics model de-
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scribes how indicators are combined functionally into
one or more metrics.

Underneath the baseline layer we find a binding
layer, which accounts for the data mapping between
the native representation of the data and its abstrac-
tion in the data model. In the example, the binding
maps the OntologyEntry data entity to the set of
XML elements in the actual experiment files, in this
case using XPath expressions. Similarly, the process
binding provides a mapping from the definition of a
OntValidator service, to its implementation. Note
that, if the service is a Web service, the binding is
contained in its WSDL specification.

The scientist may then use quality metrics to for-
mulate quality preference schemas that indicate how
a quality-based view of the data can be produced us-
ing the metrics. Typical schemas include the rank-
ing of the experiments collection based on the met-
ric value, their classification into acceptable / non-
acceptable classes based on a user-defined thresh-
old, or a finer classification, for example, “top”, “ac-
ceptable”, or “fair”. The purpose of the preference
schema layer is to capture the details of how met-
rics are used to construct such schemas. Consistent
with the other layers, this too has a counterpart in
the ontology, where QualityPreferenceSchema con-
cepts are associated to the underlying metrics.

The preferences model is used to represent these
schemas, and it is perhaps the most interesting, con-
sidering the variety of types and of formalisms avail-
able to formulate quality-based rules. Using a general
rule language like SWRL5, one can define classes by
giving necessary and sufficient conditions, like “an
MGED-conformant experiment is one in which for at
least 75% of ontology entries the references are con-
sistent, and the experiment was submitted within the
past 2 years”. This expression makes a reference to
one of the metrics mentioned earlier, as well as to a
timestamp (defined in the Indicators model), and it
partitions the space of experiments into two classes.

A finer classification can be defined using the
same metrics, for instance “a top experiment is one
in which more than 90% of ontology entries are
MGED-consistent”, “an acceptable experiment is one
in which between 50% and 90% are consistent”, and
so forth. Given these class definitions and a dataset
of annotated experiments, the Qurator environment
will try to classify them according to the class def-
initions. Clearly, the ability to perform automatic
classification depends on the types of conditions ex-
pressed by the user, and on the formalism used to
express them. We are currently experimenting with
various Description Logics [1], for which automated
reasoners are available (OWL-DL being a prominent
example). In the example, Qurator would use a DL
reasoner against a knowledge base of semantic qual-

5http://www.w3.org/Submission/2004/SUBM-SWRL-
20040521/

ity annotations, to automatically identify the MGED-
conformant members of a dataset. Expressing pref-
erence schemas in OWL has the advantage that the
preferences model can be naturally integrated into
our quality ontology, resulting in more useful query-
ing capabilities over the classified datasets.

The ontology is aligned with the myGrid project
data ontology [11] (for example, QualityMetric is
defined as a subclass of mygrid:data). While the
framework allows for the definition of highly domain-
specific (and scientist-specific) IQ preferences, it also
allows for the classification of these preferences under
a generic IQ categorisation drawn from the earlier lit-
erature (including [3, 10]). For example, the specific
notion of MGED Ontology-conformance may be de-
fined to be a special case of the generic notion of
“Data Accuracy”. Using this classification, a biolo-
gist could use our ontology to browse for specialisa-
tions of Accuracy pertinent to their own domain, and
potentially reuse preferences defined by other scien-
tists.

We exploit the flexibility of the Qurator environ-
ment to investigate various possibilities afforded by
different class representations. Specifically, we are
trying to determine what trade-offs between expres-
siveness and automated processing of class rules are
most suitable for real-life quality preferences.

To conclude the description of the Qurator frame-
work, we mention that preference schemas can in turn
be used to provide quality-aware views of the data
at the application level, using Qurator’s presentation
components, which are described in the presentation
layer. For instance, a Qurator data filter that can
access the quality preferences just described, as well
as their underlying indicators and metrics annota-
tions, is a presentation component that may be used
in conjunction with a client database application to
provide a quality-aware view of query results. Note
also that in the example, metrics and preferences in-
clude user-defined parameters, namely the choice of
MGED terms with respect to which metrics are com-
puted, and some filtering threshold. Thus, an inter-
active presentation component that lets users change
the parameter settings at query time may offer a rich
and dynamic quality-oriented data manipulation en-
vironment.

It is worth noting that the framework by itself does
not provide an architecture for the Qurator software
environment. However, the stacking of the layers sug-
gests dependencies among the models, which hold for
the runtime processing of quality annotations as well.
For instance, presentation components that exploit
quality annotations may require that values be pro-
vided for them by the lower layers, that is, by com-
puting metric functions and, if necessary, by provid-
ing the underlying indicator values for them. Thus,
the Qurator conceptual framework translates quite
naturally into a generic implementation framework
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that can accommodate specialized software compo-
nents, for instance for computing a particular metric
function from a specific set of indicators.

3 An example IQ service: Ont-
Validator

As a concrete example of the Qurator approach to IQ
management, we have implemented the OntValidator
ontology-conformance checking facility described in
the previous section as a Web service. This section
discusses this sample service and its current Web-
based client. In general, OntValidator is designed to
check the conformance of an XML representation of a
dataset to a set of definitions specified in an ontology.
To be realistic, we do not insist that the ontology is
defined using one particular representation; nor do we
require that the experiment data structure contain
OntologyEntry elements.

The service requires two pieces of input information
to be provided in the input SOAP message:

• The URI of an HTTP-accessible XML document
containing the experiment data.

• An XML control file specifying:

– the elements to check in the experiment
data (as XPath expressions)

– a reference to the ontology against which
the conformance of the elements is checked
(normally this will be either a “well-known”
reserved term such as “MGED”, or the base
URI reference of a Semantic Web ontology
such as “http://mged.sourceforge.net/
ontologies/MGEDontology.daml#”)

The OntValidator service returns a report in
RDF/XML6 which details the conformance of each
specified element. This conformance report can then
be used to generate IQ preference classifications and
results for presentation according to a user’s IQ pref-
erences. RDF is used as it provides a natural way
of making statements about Web resources, which is
precisely what the OntValidator service is doing, and
also integrates seamlessly with the OWL ontology.

For example, Figure 3 shows part of an XML
document PBMC HIV Patients.xml containing a mi-
croarray experiment dataset in MAGE-ML; the high-
lighted parts of the figure show two OntologyEntry
elements to be checked. Figure 4 shows a very sim-
ple control file which specifies (by XPath expres-
sion //OntologyEntry) that the OntValidator ser-
vice should validate every OntologyEntry element of
the user data file PBMC HIV Patients.xml against the
MGED Ontology. A more elaborate control file could
of course specify only a subset of the ontology entry

6http://www.w3.org/RDF/

Figure 4: An example XML control file provided to
the OntValidator service

Figure 5: An example RDF conformance report gen-
erated by the OntValidator service

elements (for example, those in a particular subtree
of the document).

In addition, Figure 5 presents part of an RDF con-
formance report as an example. In a conformance
report, each rdf:Description element specifies the
validity of an individual element of a dataset speci-
fied in the control file: the ontval:pathToNode prop-
erty states the XPath of that element, while the
ontval:qtyIndicatorValue property records the
conformance value, explained below.

The OntValidator service is designed to cope with
different ontology formats by means of plug-in han-
dlers. In the current version of the Web service,
an ontology handler has been implemented to val-
idate the MAGE-ML experiment data against the
DAML version of the MGED Ontology. (We chose
the DAML version rather than the more recent OWL
version for two reasons: firstly, our test experiment
files were created against this version, and secondly,
this emphasises the point that IQ tools must work
with “legacy” data formats.) The DAML ontology
handler is able to check conformance of both ontol-
ogy classes and individuals. The category and value
attributes of the OntologyEntry element — see Fig-
ure 3 — are interpreted as a DAML class name and
the name of an individual value of this class in the
MGED Ontology. The ontology handler returns three
kinds of quality indicator values:

• VAL OK indicating that the category corresponds
to an existing class, and the value is actually de-
fined as an individual of that class in the MGED
Ontology;

• VAL BAD IND indicating that the category cor-
responds to an existing class, but the value is
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Figure 6: OntValidator upload page screenshot

not defined as an individual of that class in the
MGED Ontology;

• VAL BAD CLASS indicating that the category does
not correspond to an existing class in the MGED
Ontology (making the value irrelevant).

Other forms of ontology and controlled vocabulary
in common use can be checked by the OntValidator
service, given alternative handlers, including simple
textual/lexical lists of terms, RDF Schemas, and the
various sub-languages of OWL. Slightly different no-
tions of conformance apply in each case, of course,
but these are abstracted to the more general notion of
conformance used at the interface between the metric
and preferences layers.

One aim of the Qurator project is to embed the
IQ management tools within the scientists’ working
environment. To this end, we have created a general-
purpose Web-based client interface to the OntValida-
tor Web service. Through this interface, users spec-
ify the experiment data files to be validated and the
control files, and in turn, the validation results are
displayed. Figure 6 shows the upload page.

Furthermore, this interface provides an implemen-
tation of a simple preference facility, which enables
users to specify their own preference rules over the
datasets, and calculates metrics to rank checked
datasets according to the preferences. This facility
corresponds to the Preference Layer of the IQ frame-
work proposed in section 2. Figure 7 illustrates a vali-
dation result for four microarray experiment datasets,
where the experiment datasets are rated according to
a user IQ preference that more than 70% of ontology
entries must be “VAL OK” and less than 25% are per-
mitted to be “VAL BAD IND”. Using the form in the
lower part of the screen, users may modify the IQ
preferences and re-calculate the metrics.

Figure 8 shows a fragment of the detailed
validation information for the VAL BAD CLASS
cases in microarray experiment dataset
CyclohexamideLPS treatment.xml. The XPaths to

Figure 7: An example of experiment data ranking

Figure 8: An Example of Detailed Validation Result

the “offending” OntologyEntry elements are shown
in each case. (These results are due to the fact that
the classes ReleaseDate and SubmissionDate are
not defined in the DAML version of the MGED
Ontology.)

In the present version of the Web client, the prefer-
ence rules are captured in a slight variant of RuleML7

to make them syntactically portable, and mappable
to SWRL or other Web rule formalisms in the fu-
ture. For example, the user preference which defines
an “acceptable” microarray experiment data as one
in which more than 70% of ontologyEntry elements
conform to the MGED Ontology is presented in Fig-
ure 9.

As part of our objective to make it easy for user-
scientists to adopt the Qurator approach and services,
we aim to embed the IQ framework within software
tools already familiar to the users. The Pedro data
entry tool8 has been designed for capturing and an-
notating genomic data for storage or dissemination
using XML and has been widely used by biologists,
so we are currently working to create an interface to
the OntValidator Web service as a plugin to this tool.

7http://www.ruleml.org
8http://sourceforge.net/projects/pedro
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Figure 9: An example user preference using RuleML

4 Related work: data quality
and provenance

One area of quality that has received significant at-
tention within e-Science is the quality of services that
are composed into in-silico experiments. As Grids
make an increasing number and variety of services
available to scientists, the problem of choosing ap-
propriate quality services grows. This has led to re-
search on annotating services to aid their retrieval,
e.g. the work on the myGrid service ontology [11],
and research on appropriate service registries for e-
Science [8]. When composing services there is the
particular problem of services that are compatible at
the semantic level, but require special glue because
of their incompatible input and output formats. Be-
yond this most research assumes that a few generic
Quality of Service (QoS) criteria, e.g. cost, reliability,
availability and response time, will be adequate.

The increasing number and variety of services is not
the only quality problem facing e-Science. There is
also a deluge of potentially relevant data, and uncer-
tainty over how much of this data should be curated
and preserved [7]. This a particular problem in bio-
sciences where the development of high-throughput
experimental, and the use of the web for publishing,
has lead to an explosion in both the amount and type
of data available. One strategy for coping with this is
the use of semantic web techniques, making the data
and particularly metadata machine manipulable, to
filter data according to the requirements of scien-

tists. One ultimate goal is for every scientist to be at
the centre of a semantic web of knowledge [5], where
rich semantic annotation makes innovative browsing
and querying possible. One source of metadata is to
record the provenance of scientific data [2, 4, 9, 12].
This can include both the originating context of the
data, when an experiment was performed, by whom,
using which resources etc., and the processes used to
derive results from original data.

In the fields of art and antiques, provenance is used
in terms of being able to prove both the origin of an
object, and that a seller really has the right to sell the
object to a potential purchaser. In e-Science, prove-
nance data is recorded to allow other scientists, or the
original scientists at a later date, to fully understand
how, and why, a specific result was obtained (and if
necessary to prove this). The originator provides the
additional metadata and this helps the future user in-
terpret the quality of the data in their context. When
results of some experiments are used as inputs of oth-
ers, one use of data derivation provenance records is
to orchestrate the automatic re-running of in-silico
experiments as new results emerge.

The use of more generic, and less experiment spe-
cific, quality indicators and quality preferences ad-
dresses the related problem of finding and filtering
from a set of potential data items. The scientist is
interested in which items from a set of experimen-
tal results, which may have been produced by quite
different methods, have their required quality char-
acteristics.

5 Conclusion

We have described the foundation concepts underly-
ing our domain-specific approach to the management
of information quality (IQ) in an e-Science context.
Rather than forcing users to describe their require-
ments in terms of a fixed collection of generic (and
therefore imprecise) quality concepts, we aim to pro-
vide an environment in which individual users can
specify their own IQ requirements, in terms of the
kinds of information and analysis tool that are avail-
able within their domain. This is in line with many
standard definitions of quality, which relate to fitness
for use for a particular purpose rather than adher-
ence to some absolute quality standard. If we take
the notion of fitness for use seriously in relation to
IQ in e-Science, then it becomes clear that respon-
sibility for managing high IQ cannot be wholly the
duty of information providers and curators. In fact,
there is some evidence from our early experiences
in Qurator that the most significant contribution in-
formation providers can make to the IQ problem is
to provide the raw information needed to support a
wide-range of domain-specific quality terms, rather
than focussing on expensive and time-consuming data
cleaning efforts.
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In designing the quality ontology and the Qura-
tor framework, it has been necessary to balance a
number of competing considerations. For example,
ideally, we would have fully declarative definitions
of each kind of quality term, but in practice this is
not possible. Instead, therefore, we are aiming for
a compromise position in which some aspects of the
quality terms are described declaratively within the
ontology, while others are implemented procedurally
as Web services (and workflows) that are bound to
the declarative terms in the ontology, in a way that
allows two-way navigation between them. A further
issue is the tension between the need to allow highly
domain-specific quality metrics and indicators to be
defined, so that the users’ IQ requirements are cap-
tured precisely, and the desire to have quality terms
that are general enough to be shared across a wide
range of users. Our solution to this issue is to create
a hierarchical model of quality, in which each level
defines examples of the terms in the preceding level
in more detail. For example, we might have a generic
concept of Consistency, which is then specialised as
Ontological Consistency, then as the various forms of
MGED Consistency. Finally, at run-time, the com-
plete (i.e. evaluable) version of the quality metric is
created, when the user provides values for the remain-
ing unbound parameters. Commonalities to support
sharing can then be found at the higher levels, while
precision and operational completeness are given by
the lowest levels.

In the next stages of the project, we are consider-
ing how to embed the software components implied
by the Qurator framework into existing data brows-
ing and loading tools, such as maxd9 and the afore-
mentioned Pedro data entry tool. We also need to
expand the set of indicators that we have available,
so that they include a variety of indicators from both
our target domains. Examples elicited so far include
IQ assessment relative to publication quality, to the
reputation of the lab which produces the data, and to
the statistical properties of the data set [6]. We also
plan to explore the different uses that can be made
of the navigational links between computed quality
annotations and the quality ontology itself.
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