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ABSTRACT   

Ontologies and semantic systems are necessarily complex but offer great potential in terms of their ability to fuse 
information from multiple sources in support of situation awareness.  Current approaches do not place the ontologies 
directly into the hands of the end user in the field but instead hide them away behind traditional applications.  We have 
been experimenting with human-friendly ontologies and conversational interactions to enable non-technical business 
users to interact with and extend these dynamically.  In this paper we outline our approach via a worked example, 
covering: OWL ontologies, ITA Controlled English, Sensor/mission matching and conversational interactions between 
human and machine agents. 
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1. INTRODUCTION 
Ontologies and, more generally, semantic representations offer great potential for knowledge capture and unambiguous 
information representation, especially when it comes to support from machine agents in the form of reasoning and 
algorithm execution.  In traditional systems ontologies can be complex to develop and understand and are usually the 
focus of technical specialists and knowledge engineers rather that business-focused “end users”.  In our previous work 
we have experimented with Controlled Natural Languages[1], specifically ITA Controlled English (CE)[2] in an attempt to 
present ontological information in a more human-friendly, consumable form, aimed directly at non-technical business 
users.  In our most recent work we have demonstrated a full natural language conversational capability[3] that enables 
human users to interact with a Controlled Natural Language Knowledge Base in their own natural language (e.g. 
English) in order to assert new knowledge, explore the current knowledge base (both in terms of the “model” and the 
“facts”) and direct their questions to specific human or machine agents[3].  Our initial experiments with human subjects 
demonstrate that untrained users are able to assert basic knowledge into the knowledge base and ask questions in both 
solitary (offline) and cooperative group (online) settings[4]. 
 
In this paper we outline the potential for extending the knowledge base model (a.k.a the ontology[5]) via these natural 
language conversational speech acts and give some brief worked examples to show how this would be experienced along 
with a detailed explanation and demonstration of how such information when authored in a CE knowledge base can be 
easily converted into more traditional ontological formalisms using OWL[6] (the Semantic Web Ontology Language).  
The main purpose of this paper is to provide a detailed exposition of how to automatically generate OWL ontologies 
from simple CE models, enabling the reader to build far more complex models in the CE language and generate the 
require OWL ontologies.  To demonstrate the scalability of the approach the results of a simple experiment to generate 
an OWL ontology for a complex sensor-mission matching ontology are given towards the end of the paper. 
 
The remainder of this paper is structured as follows: Section 2 gives a brief outline of the anticipated conversational 
basis for gathering ontology extensions from business users (e.g. personnel in the field) including mechanisms for 
representation and implementation of such changes.  Section 3 gives a detailed description of a mechanism for the 
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conversion of such information from a CE knowledge base into OWL ontologies.  The paper is concluded in section 4 
with a brief discussion of related work and potential further activities. 

2. ONTOLOGY EXTENSION THROUGH CONVERSATION 
In earlier work[3] we developed a simple model of conversational interaction based on speech act theory and embodied 
through the creation of a number of “card” concepts with different specializations which enable conversations to flow 
between human and machine agents.  The cards themselves are expressed as CE instances and they contain a “payload” 
which is the content of the conversational act as well as a rich set of meta-data including the date/time of the speech act, 
the card which it is in reply to, the user (human or machine) which created it and the user(s) (human or machine) to 
which it is sent.  The “payload” (or “content” in terms of the attribute name within the CE model) is the text which is the 
utterance made by the agent in question.  Depending on the card type this can either be Natural Language (NL) or 
Controlled English (CE), with a rich set of specialisations for CE cards to ensure that the context intended for the CE 
card is captured correctly.  For NL cards the context must be inferred based on a number of contextual factors such as the 
NL text itself, the position in the dialogue, the users sending or receiving the message etc.  These cards are generated by 
both human and machine agents, can contain either NL or CE and support human-human, human-machine, machine-
human and machine-machine communications. 

 
Figure 1. The “CE card” conceptual model 

 
We also developed a protocol[3], again based on speech act theory, identifying which acts are commonly encountered 
together and therefore the basic building blocks from which a multi-turn dialogue based conversation can be built. Using 
these simple but powerful definition we have since built a number of demonstration applications and performed a series 
of simple experiments to determine whether untrained human users are able to use this mechanism when embodied in a 
simple messenger style chat interface to successfully communicate with machine agents and collaboratively contribute 
new knowledge to an existing ontology in both solitary and collaborative modes of operation[4]. 
 
2.1 Extending ontologies through conversation 

One of the guiding principles of the CE language is that it should be aimed at the business user and should use the 
language of their domain of interest rather than forcing them to use ontological terms and set-theoretic expressions[2].  
This is motivated from the desire to appeal directly to non-technical users rather than technical specialists and knowledge 
engineers and in this paper we extend this principle to ontology extension as well, specifically in the assertion that many 
“simple” ontology extensions could provide significant benefit to a human/machine hybrid system.  For example the 
addition of a new concept (class) that provides a meaningful specialization of one or more existing concepts, or the 
addition of new relationships or properties, the definition of new simple rules etc.  All of these could support field users 
in their attempts to define an understanding of the world, especially in highly agile situations such as disaster relief or 
incident support.  This does not rule out the more complex ontology extensions that could be made, nor does it rule out 
user-defined meta-model extensions that an advanced CE user can make to extend the capabilities of the CE language 
itself.  These are not documented in this paper, however they would be implemented in the same simple mechanism, but 
using the language of the meta-model.  For example if a user had chosen to add the concept of “disjointness” to the CE 
meta-model (it is not enforced for all CE users since it is not a concept that is critical form domain modeling) then new 



 
 

 
 

 
 

disjoint assertions could still be captured via conversation since the concept of disjointness would be available within the 
CE model and therefore a potential topic of discussion along with all of the users domain terminology. 
 
Therefore, this section does not attempt to provide a definitive list of all possible ontological extensions but instead 
provides a single narrative using a simple worked example based on a disaster relief scenario involving a flooding 
situation and the need for rapid deployment of food and medical supplies to assist the local population in recovery from 
the flood.  The scenario is motivated by the desire to reuse existing publically available information to maximize the 
productivity of the field team and ensure that the situation is progressed as quickly as possible.  In this scenario the 
system has access to data on UK schools, based on data made publically available via the UK government[7] and it is 
assumed that this data is already available in the CE knowledge base.  Earlier work has demonstrated that the existing 
csv data can easily be described and subsequently translated into the CE language based on a simple csv conversion 
process[8]†. 
 
Conversation 1: Creating a new concept 
In this conversation we show how the human user creates a new concept within the knowledge base. 
 

Field user: I need to identify possible staging areas 
 
Machine agent: I don’t understand 

 
This initial dialogue is intentionally included to remind the reader that we are using a simple “bag of words” parsing 
system so it is unrealistic to expect that the machine agents will be able to understand all forms of Natural Language, 
especially in cases such as this where some of the given words are the name to be given to a new feature within the 
knowledge base.  With further configuration and tuning the system could be developed further to correctly interpret a 
wider range of input patterns, however it will always remain a simple mechanism.  So let’s try again: 
 

Field user: Create new concept named possible staging area 
 
Machine agent: Did you mean: 

conceptualise a ~ possible staging area ~ P. 
? 

 
Field user: Yes 

 
Machine agent: I have added that knowledge to the knowledge base. 

 
In this second attempt we show the interaction that successfully creates a new concept within the knowledge base and 
confirms the creation back to the user.  The text in this style is valid CE and in this example is shown directly to the 
user for their interpretation and confirmation.  This is because in this scenario we envisage that the field user has some 
exposure to the system and some familiarity with the CE language, however if this was a novice/casual user then we 
could employ the “gist” style card to transform the raw CE into a natural language summary that is more immediately 
consumable to casual users but still demonstrates that the machine agent has correctly interpreted the natural language 
text provided by the human field user. 
 
Conversation 2: Identifying instances 
 
The field user now wishes to query information from the CE knowledge base, in this case any known information about 
existing “sites”. 
 

Field user: List known sites nearby 
                                                
† There is also an existing video (here – https://www.usukitacs.com/sites/default/files/UKdata.mp4) that demonstrates 
the definition of the “possible staging area” concept against the school data, but this is in pure CE since it pre-dates the 
most recent conversational interaction research. 



 
 

 
 

 
 

 
Machine agent: I am aware of schools – there are 7 within a 10km radius 

 
Through concepts defined in the ontology (and potentially the use of synonyms if the human field user wishes to use 
different terminology to the defined ontology) the system is able to interpret this request and identify that the field user is 
asking about sites.  In the knowledge base the concept “school” is defined as being a sub-concept of the “site” concept 
and therefore the machine agent is able to provide a meaningful response.  Part of the meta-data provided in the CE cards 
model is the geo-location of the users that are generating the cards, and this knowledge in addition to the lat/lon 
coordinates provided with the schools data enable the machine agent to reply with a contextually meaningful answer, 
identifying how many instances are “nearby”.  The concept of nearby (e.g. 10km or 1km or some other value) is also 
able to be defined in the CE knowledge base, and the human user can override this default assumption if needed, e.g. if 
they are asking the question ahead of moving to some other area of operation. 
 

Field user: Show details 
 
Machine agent: (lists all attributes for the 7 schools) 

 
In this interaction the machine agent applies the knowledge of the previous dialogue to understand that “show details” is 
to be taken in the context of the previous speech act and is able to show the details of the 7 school instances directly to 
the user.  As previously shown, this can either be in CE directly, or in a summarized natural language “gist” form, 
depending on the configuration of the system.  In our example we are basing the knowledge of school attributes purely 
on the data available from the public UK government data.  This does not contain any information about building size or 
location, and does not contain elevation data (which would be of critical importance in a flooding situation).  It is likely 
that elevation data for a given latitude and longitude coordinate could be provided by a separate generic service and if 
available the school data could be automatically augmented with this data by a machine agent invoking the service and 
adding the elevation data to the CE knowledge base before returning the result to the user, but that is ignored for this 
simple scenario. 
 
Upon seeing the school data the field user is initially disappointed that more meaningful/relevant information is not 
available, but they then realize that they can make a “quick and dirty” assumption based on their own experiences of the 
UK school system.  The “common sense” rule that comes into the field users head is “A school will generally have a big 
hall if it has a large number of students” – because schools tend to gather their pupils together for assembly meetings.  
Since the field user is seeking to identify possible staging areas they know they’ll need locations which have large 
internal spaces that could shelter displaced people or provide storage for supplies and equipment.  The field user realizes 
that they can use this knowledge to rule out certain schools and automatically classify others as possible staging areas: 
 

Field user: If a school has more than 1000 students then it is a possible staging area. 
 
Machine agent: Did you mean: 
  if 
    ( the school S has the value N as number of students ) and 
    ( the value N > 1000 ) 
  then 
    ( the school S is a possibly staging area ). 
  ? 
 
Field user: Yes 
 
Machine agent: I have added that knowledge to the knowledge base. 

 
This simple exchange demonstrates the definition of a formal semantic rule (in CE) as a result of the realization of the 
field user that their “common sense rule” could be useful.  They could also have done the same for a flooding rule if 
elevation data were available (although clearly there could be access issues if the school in question were locally 
elevated and a hill, but cut off from all access roads).  The confirmation of the rule by the field user asserts the rule into 



 
 

 
 

 
 

the knowledge base at which point it can be executed by a simple machine agent.  This execution leads to the inference 
of a number of new instances of “possible staging area” based on the existing school data and the recently added rule.  
As a result of the earlier question by the field user the machine agent is able to determine that these new instances of 
possible staging area will be of potential interest to the field user and the machine agent interjects with a new alert (in the 
form of a standard card in the normal conversational interaction) advising the field user of this new knowledge.  Such an 
alert could be sent to many users, not just the user who created the new rule.  This would be based on a number of 
criteria such as proximity, role and previous discussions. 
 

Machine agent: Be aware, there are 3 possible staging areas in your vicinity 
 
There are many more simple conversational acts that could be demonstrated to show the potential power of a knowledge 
base system that is directly accessible to, and extensible by, non-technical field users, but we do not have the space to 
provide these examples in this paper.  The remainder of the paper provides detail on how CE knowledge bases can be 
converted into OWL ontologies to allow integration from this potentially powerful CE form that is aimed at provide agile 
capabilities to edge users without specialist knowledge of ontology languages.  The ability to seamlessly transform to 
and from OWL ontologies offers the potential for integration into the wider Semantic Web community and the many 
approaches that make use of the Open Standard OWL approach. 

3. OWL ONTOLOGIES FROM ITA CONTROLLED ENGLISH 
A knowledge base system models a domain of interest and allows reasoning over data populating the domain. One 
approach to producing such a system is to use the Web Ontology Language (OWL) and an associated software 
‘reasoner’. However, whilst domain experts can express the entities and their behaviours required for such a system in an 
abstract sense, converting this into OWL requires detailed knowledge of the semantics of OWL, as well as being 
comfortable with the chosen syntax or tooling. Furthermore, the most commonly used serialization of OWL (RDF/XML) 
is not particularly intuitive to a non-expert user. 

An alternative approach is to use a controlled natural language (CNL), which enforces precision and a lack of ambiguity 
in the statements made, but using a readily understandable syntax. The difficulty in using OWL directly, and the 
possibility of using a CNL was investigated by Schwitter et al[9], who compared three CNLs that were each produced 
with the aim of authoring OWL, or having this as a significant use-case. 

Another approach is to use a CNL to define and interact with the knowledge base, but with an option to export this to an 
OWL representation if required. The emphasis is then on expressing the CNL in OWL, rather than OWL semantics in a 
given CNL (with a view to ultimately generating OWL output). Here the conversion of ITA Controlled English (CE) into 
OWL is investigated. 

Translatable CE semantics and features 
CE concentrates on a level of expressivity that allows useful knowledge bases to be built, whilst keeping language 
features to a minimum. The built-in features are confined to value (string) types, and user-defined complex types, which 
may have properties which are either values, or user-defined complex types. Thus, the built-in features are fairly 
minimal. However, the language allows richer behaviours to be modelled through the capability to define rules that act 
on instances of these types, and the ability to interact with the underlying CE metamodel (a model of the base built-in CE 
concepts that are instantiated to represent the user’s knowledge base). 

There are three implementations of CE in use within the ITA[10] project, a Java-based implementation known as ce-
store‡, a lightweight NodeJS implementation known as CENode§, and a rich Prolog-based implementation known as ce-
prolog**. The CE language features provided by each differ, with the ce-prolog implementation being (approximately) a 
small superset of the ce-store Java implementation and the CENode implementation being a smaller subset still, designed 
for use at the very edge of the network within a browser on a mobile device.  All three implementations support CE 
model and CE fact sentences that are described later in this paper. 

                                                
‡ ce-store is available as open source, for download at http://github.com/ce-store 
§ CENode is available as open source, for download at http://cenode.io 
** ce-prolog is not yet publically available 



 
 

 
 

 
 

The fuller implementations of the CE language include additional capabilities in the areas of the expressiveness available 
when interacting with the metamodel (for example the ability to define a general case symmetric property rule rather 
than multiple rules specific to named types), defining ordered sequences, treating CE statements as variables, and 
features to assist in handling assumptions and uncertainty. The Java ce-store implementation includes a sample graphical 
user interface (GUI) known as the “Engineering Panel”, HTTP APIs for user code to interact with, and hook points for 
user ‘agent’ and ‘trigger’ code within the Java runtime environment. In this section we concentrate on translating CE 
held in ce-store to OWL’s RDF/XML serialization format.  

Mace et al[11] investigated which semantic features of OWL could be expressed in CE. In addition, new syntax to enable 
the expression of missing OWL semantics in CE was suggested, as well as extending the syntax to provide more natural 
means to express semantics that were expressible, but in a non-compact or unintuitive form. The work also reinforced the 
point that CE rules play a significant part in the language. So, although some features such as transitive or symmetric 
relations are not built-in (unlike in OWL), rules may be defined to provide the required behaviour. For example, a rule 
that acts on instances of given types may enforce a symmetric relation in a manner similar to the example that follows, 'if 
the person A is a friend of the person B, then the person B is a friend of the person A'. A corollary of this investigation 
was the identification of the features of OWL that are already provided by CE. 

Another approach is to examine the OWL metamodel that is defined by[12]. This model describes the built-in types and 
their relations, instances of which are created to represent a user's ontology. The document remarks that ‘The structural 
specification of OWL 2 consists of all the figures in this document and the notion of structural equivalence given below. 
It is used throughout this document to precisely specify the structure of OWL 2 ontologies and the observable behaviour 
of OWL 2 tools. An OWL 2 tool MAY base its APIs and/or internal storage model on the structural specification’. Thus 
inspection of the UML figures within the document is a good way to understand the available OWL semantics and how 
they are related, and so enumerate the available options for mapping from CE to OWL. 

Although this is an instructive process, the conclusion from this, and from considering the Mace document, is that the 
'obvious' mapping is the simplest and best choice - CE concepts map to OWL classes, CE value properties map to OWL 
data properties, and CE concept properties map to OWL object properties. Instances of concepts (including any 
properties) map to OWL individuals of the appropriate class (with the appropriate properties). The richness encoded in 
CE rules is hard to translate into OWL from a practical point of view, as unlike the type and instance systems, there is no 
built-in model of these rules available to inspect at run-time, hence it is hard to find what has been encoded into the rules 
a user has defined. However, even if rules are not translated, the other features will suffice for taxonomies and simpler 
models. 

CE also allows properties to be expressed in two syntactical forms, 'functional-noun' and 'verb-singular'. The distinction 
between these two alternatives was deemed not worth capturing as the choice is purely linguistic or syntactical and has 
no effect on the properties defined, and furthermore there is no natural fit in OWL (though if desired, this information 
could be captured, perhaps by using OWL annotations). 

Mapping CE to OWL ontologies 
Although the mapping of CE concepts, properties and instances to equivalent OWL constructs is readily achievable, CE 
and OWL differ in how their statements are partitioned or grouped. 

Leaving aside rules and queries, CE has two types of statements, model sentences and fact sentences (the latter of which 
create instances of the concepts and properties defined in the former). It also has a flat namespace so that all sentences 
are globally visible. However, any model sentences that define concepts or property concepts may be headed by an 
annotation declaring a 'model' name. The sentences then belong to the named model, which is purely used for 
convenience to identify related model sentences. Any model sentences not in the scope of a declared model annotation 
are placed in a default model named 'global'. 

ce-store also uses another mechanism to group sentences. A 'source' is associated with any sentences that are loaded into 
the system (sources are specific to the ce-store implementation, rather than being a defined part of the CE language). For 
example, loading a file into the system via a CE command creates a new source for the file's contents, entering CE via 
the ce-store GUI uses another source, as does uploading a file via the GUI. A source may contain both fact and model 
sentences (for example it is permissible for a CE file to contain both types of sentence), but a model only contains model 
sentences. 



 
 

 
 

 
 

OWL statements do not inhabit a flat, globally-visible namespace, instead they are grouped into ontologies, with an 
explicit import being required to make statements in one ontology visible to another ontology. In addition, OWL uses 
IRIs (internationalised URIs) to identify OWL elements such as classes, properties, instances, and ontologies as a whole. 
In OWL’s RDF/XML serialization, XML namespaces may be introduced to aid the construction of the contained IRIs. 

One common approach is to place a single ontology in a file, declare elements using IRIs in an XML namespace specific 
to the ontology (usually the same XML namespace as that of the ontology IRI), set the xml:base XML element to this 
namespace to use it by default in any places in the file where absolute IRIs are not used, and import ontologies that 
declare any referenced external elements (for example, class or property definitions referred to in the declaration of 
instances, or an external class definition used when creating a subclass). 

Note that the XML namespace used in IRIs uses a different notion of the term ‘namespace’ to that used previously here. 
An XML namespace is an XML construct in the RDF/XML serialization that aids constructing IRIs. The previous usage 
of the term namespace was used to describe the mutual visibility (or otherwise) of CE sentences or OWL statements. In 
OWL this visibility is controlled by placing the statements into ontologies, and then importing other ontologies as 
desired to make their statements visible.  

The simple scheme of using one XML namespace per ontology (which includes all the elements declared within the 
ontology) is not practical if some element, say a class, has definitions spread across multiple ontologies. An example of 
this is to declare a class in one ontology, and declare it to be a subclass of some other class in another ontology. Since the 
class is identified by its IRI, this must be constant in all the ontologies that contribute to the class definition. This 
requirement means that the simplistic scheme outlined above must be relaxed so that each ontology does not use a 
unique namespace for all the elements it declares or modifies. Note that one ontology must still import another to see the 
statements that the second contains, regardless of the XML namespaces used. 

We choose to map CE sentences to OWL ontologies such that the sentences in each model are mapped to elements in a 
corresponding ontology (so that there is an OWL ontology per CE model). In addition, all fact sentences from a given 
source are mapped to a corresponding ontology (so there is an OWL ontology per source that contains fact sentences). 
Thus we separate model statements from fact statements, and further partition by model and source. This arrangement 
avoids the production of one large monolithic ontology containing the entire contents of the ce-store system, aiding 
legibility and componentising the knowledge base into understandable sub-units. 

Due to CE's flat namespace it is trivial to refer to and add to the definitions for a given concept across multiple models - 
the name of each concept is assumed to be unique (so any reference to the same name must refer to the same concept) 
and import statements are not required (since all CE sentences are loaded into a single unpartitioned namespace).  

Consider loading the following CE into ce-store: 

 
 

and then loading the following : 

 
 

Model one declares a person concept, and the subsequent load of model two could be interpreted as the addition of an 
age property to the concept. In fact both sentences are complete definitions for a person concept, with the end result 
being the union of the definitions. In this case the result of the union is the same as just using model two. There is no 

Model : two 

conceptualise a ~ person ~ P that 

 has the value A as ~ age ~. 

Model: one 

conceptualise a ~ person ~ P. 



 
 

 
 

 
 

explicit way in CE to add a property to some concept that must have been declared elsewhere, when model two is loaded 
the person concept is effectively declared again with an age property as an additional part of this redeclaration. 

There is no single ‘root’ definition for a concept whose definitions span multiple models. In the case above we could 
attempt to use specific XML namespaces for each resulting ontology, and use the namespace for model one wherever we 
refer to the person concept, following our intuition that the ‘plain’ version of the concept (without any properties) is the 
root definition. However, in general such a definition may be present in multiple models, or indeed there may be no plain 
concept declared anywhere (for example the concept may be declared with various properties in various models). The 
assumption that the plain concept declaration is somehow more significant that others is questionable in any case as 
explained previously. 

In conclusion, concept declarations may easily span models in CE. A common mechanism by which this occurs is to 
declare properties for a given concept in different models, or to declare a plain concept without any properties in one 
model and add properties elsewhere. In addition, picking a single ‘root’ model that defines the concept (with a view to 
determining a single XML namespace for a class, based on that of a ‘root’ defining ontology for the class) is also 
impractical. 

The simplest solution to this situation is to mirror CE and use a common XML namespace in all ontologies, and for all 
the elements declared within the ontology. This means that, as required, a single OWL class is declared for any given CE 
concept, regardless of the ontologies it spans, and properties also inhabit the same XML namespace. 

We can however use separate XML namespaces for model and instance statements since the statements in each of these 
two partitions do not add to the definitions for elements in the other partition (the only dependency is for the required 
ontology import statements in instance ontologies for the model declarations they reference but do not modify). 

Implementation 
In order to evaluate the proposed approach a basic implementation was developed using the simple machine agent 
infrastructure within the ce-store environment. The agent outputs each ontology to a separate file. The agent concept is 
defined in the usual manner, together with a named value that will be used to hold the destination directory for the 
resulting files: 

 
 

An example configuration is: 

 
 

Full implementation details are not provided here for reasons of brevity, however the full implementation will be 
subsequently published as a technical report before the completion of the ITA research program.  The remainder of this 
section provides some additional detail about some parts of the implementation. 

XML namespace settings 
If desired, the XML namespaces used in the generated OWL may be modified by small alterations to the configuration of 
the agent. 

there is an owl output agent named 'ce to owl agent' that 

has 'com.CeToOwlAgent' as class name  and 

has '/Users/myuser/OWLOutput' as output directory path. 

 

conceptualise an ~ owl output agent ~ A that 

is a CE agent and 

has the value V as ~ output directory path ~. 



 
 

 
 

 
 

By default the following settings are used, 

• URI_ROOT_MODEL = http://www.ita-ce.com/model 

• URI_ROOT_INSTANCE = http://www.ita-ce.com/instance 

These settings result in the behaviour outlined previously (all model statements in one XML namespace, and all fact 
statements in another). 

To place all model and fact statements in the same XML namespace, edit the code so that, 

• URI_ROOT_MODEL = http://www.ita-ce.com 

• URI_ROOT_INSTANCE = http://www.ita-ce.com 

The two URIs may be set to any identical value. 

Mapping multiple dependent CE models to OWL 
Given three files containing the following model CE: 

 
 

 
 

 
 

And given a file containing the following fact CE, 

 
 

Then three corresponding OWL ontologies are produced for the three CE models, each in their own files, 

Model: Super Model 
 
conceptualise a ~ superclass ~ C. 

Model: Super Prop Model 
 
conceptualise a ~ superclass ~ C that 

has the value V as ~ valueproperty ~. 

Model: Sub Model 
 
conceptualise a ~ subclass ~ C that is a superclass. 

there is a superclass named 'my superclass'. 
 
there is a subclass named 'my subclass' that 
  has the value 'my value' as valueproperty. 



 
 

 
 

 
 

 
 

 
 

 
 

<?xml version="1.0" encoding="UTF-8"?> 
 
<!DOCTYPE rdf:RDF [ 
  <!ENTITY xsd  "http://www.w3.org/2001/XMLSchema#"> 
  <!ENTITY rdf  "http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
  <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#"> 
  <!ENTITY owl  "http://www.w3.org/2002/07/owl#">]> 
 
<rdf:RDF 
  xmlns:xsd="&xsd;" 
  xmlns:rdf="&rdf;" 
  xmlns:rdfs="&rdfs;" 
  xmlns:owl="&owl;" 
  xml:base="http://www.ita-ce.com/model"> 
 
  <owl:Ontology rdf:about="http://www.ita-ce.com/model/supermodel"> 
  </owl:Ontology> 
 
  <owl:Class rdf:ID="superclass"> 
  </owl:Class> 
 
</rdf:RDF> 

  <!-- xml headers and footers removed for brevity, xml:base is as before --> 
 
  <owl:Ontology rdf:about="http://www.ita-ce.com/model/superpropmodel"> 
    <owl:imports rdf:resource="http://www.ita-ce.com/model/supermodel"/> 
  </owl:Ontology> 
 
  <owl:Class rdf:ID="superclass"> 
  </owl:Class> 
 
  <owl:DatatypeProperty rdf:ID="valueproperty"> 
    <rdfs:domain rdf:resource="#superclass"/> 
    <rdfs:range  rdf:resource="&xsd;string"/> 
  </owl:DatatypeProperty> 

  <!-- xml headers and footers removed for brevity, xml:base is as before --> 
 
  <owl:Ontology rdf:about="http://www.ita-ce.com/model/submodel"> 
    <owl:imports rdf:resource="http://www.ita-ce.com/model/supermodel"/> 
    <owl:imports rdf:resource="http://www.ita-ce.com/model/superpropmodel"/> 
  </owl:Ontology> 
 
  <owl:Class rdf:ID="subclass"> 
    <rdfs:subClassOf rdf:resource="#superclass"/> 
  </owl:Class> 



 
 

 
 

 
 

And a single OWL ontology is produced to correspond to the CE fact sentences associated with the source that was used 
when loading the CE fact file: 

 

 

Mapping a CE instance (with multiple CE concepts) 
Given the following fact CE sentences (and appropriate model CE to match): 

 
 

Then the generated corresponding OWL is, 

<?xml version="1.0" encoding="UTF-8"?> 
 
<!DOCTYPE rdf:RDF [ 
  <!ENTITY xsd  "http://www.w3.org/2001/XMLSchema#"> 
  <!ENTITY rdf  "http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
  <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#"> 
  <!ENTITY owl  "http://www.w3.org/2002/07/owl#"> 
  <!ENTITY submodel "http://www.ita-ce.com/model/submodel#"> 
  <!ENTITY supermodel "http://www.ita-ce.com/model/supermodel#"> 
  <!ENTITY superpropmodel "http://www.ita-ce.com/model/superpropmodel#"> 
  <!ENTITY model "http://www.ita-ce.com/model#">]> 
 
<rdf:RDF 
  xmlns:xsd="&xsd;" 
  xmlns:rdf="&rdf;" 
  xmlns:rdfs="&rdfs;" 
  xmlns:owl="&owl;" 
  xmlns:nssubmodel="&submodel;" 
  xmlns:nssupermodel="&supermodel;" 
  xmlns:nssuperpropmodel="&superpropmodel;" 
  xmlns:nsmodel="&model;" 
  xml:base="http://www.ita-ce.com/instance"> 
 
<owl:Ontology rdf:about="http://www.ita-ce.com/instance/src010"> 
    <owl:imports rdf:resource="http://www.ita-ce.com/model/submodel"/> 
    <owl:imports rdf:resource="http://www.ita-ce.com/model/supermodel"/> 
    <owl:imports rdf:resource="http://www.ita-ce.com/model/superpropmodel"/> 
  </owl:Ontology> 
 
  <nsmodel:subclass rdf:ID="mysubclass"> 
    <nsmodel:valueproperty rdf:datatype="&xsd;string">my value</nsmodel:valueproperty> 
  </nsmodel:subclass> 
 
  <nsmodel:superclass rdf:ID="mysuperclass"> 
  </nsmodel:superclass> 
 
</rdf:RDF> 

there is a concept 1 named 'multiple concept instance'. 
 
the concept 1 'multiple concept instance' is a concept 2. 



 
 

 
 

 
 

 
 

Note that here we use a slightly different form of OWL to declare the types for the instance to that used when a single 
class is involved. 

Visualising translated OWL 
The previous examples given in this document use concise, simple CE examples to convey the way that CE is converted 
into corresponding OWL elements. This example proves that an existing, large and realistically rich CE model can also 
be successfully translated. The example used is the ISTAR asset model as described in “Tasking and Sharing Sensing 
Assets Using Controlled Natural Language”[13]. The model describes sensors and capabilities for intelligence, 
surveillance and reconnaissance scenarios. The CE version of this model converts into an OWL file that loads without 
error into Protégé[14], which in turn reports that the ontology contains 115 classes and 18 properties. It also successfully 
loads into the WebVOWL online OWL visualisation tool[15], which produced the image of the ontology shown below, 
giving an impression of the overall hierarchy and organisation of the classes within the ontology.  Please note that the 
image is not intended to be readable at this scale but is included here to show the size and complexity of the existing 
complex CE model that was successfully converted to OWL without modification, such that existing OWL tooling is 
able to make immediate use of the generated ontology information. 

 

  <owl:Thing rdf:ID="multipleconceptinstance"> 
    <rdf:type rdf:resource="&model;concept1"/> 
    <rdf:type rdf:resource="&model;concept2"/> 
  </owl:Thing> 



 
 

 
 

 
 

  
 

Figure 2. Concepts (classes) converted to OWL from the ISTAR CE model 

4. RELATED WORK 
Donohue et al[17] use the same ITA Controlled English based conversational mechanism to outline the potential for 
ontology development but with more of a focus on OWL ontologies, positioning the role of the CNL and conversation as 



 
 

 
 

 
 

a simple human-friendly mechanism for gathering ontology extensions from the field rather than being the main 
semantic representation format.  In their work they find good potential for such an approach but are unable to 
demonstrate that a language such as CE is required to achieve such a solution.  Given the necessary focus on the OWL 
representations and subsequent OWL outputs for their work it is unsurprising that this conclusion is reached, since the 
role of CE in that context is very much just a simple human-friendly secondary representation of the “master” OWL 
ontology in which case any readable text could be used without the need for it to be based on a formal semantic 
representation.  In the work described in this paper (and much of our previous research) we position the role of CE as 
both the human-friendly representation language and the formal machine format.  This therefore explains the difference 
between the two approaches and therefore the difference in importance of the role of a language such as CE within the 
solution: In Donohue et al the formal representation is OWL and the role of CE is simply to provide a human-friendly 
representation format with which the user can have conversational interaction with the system, whereas in this paper the 
formal representation is CE, with the OWL components being generated directly from the CE knowledge base.  The 
distinction is subtle but in the case where CE is the language used for formal knowledge representation as well as the 
human-friendly information exchange language we believe the potential for building increasingly rich semantics into the 
possible ontology extensions from the end user in increased significantly. 

In addition to our on-going research into the ITA CE language there is a rich field of work into Controlled Natural 
Languages in the context of the Semantic Web[18].  The purposes of the languages vary, as do the specific 
implementations, style of language and intended operational usage.  In our ITA CE research we have tried to create a 
language that is different from others in this field, both in terms of complexity, expressivity and intended usage.  In this 
paper we do not attempt to position ITA CE against these other languages however it is likely that the mechanism for 
capturing ontology extensions from end users in the field could be achievable with many of these other languages, 
assuming that they are able to be used directly as the formal semantic representation, and that they are able to be 
embedded into a higher level natural language conversational interaction mechanism. 

5. CONCLUSION AND FUTURE WORK 
In this paper we have outlined the potential value of a human-machine conversational system that enables non-technical 
end users in the field to make limited extensions to existing ontologies.  Examples have been given that show the 
potential power of such an approach even with a deliberately limited subset of possible ontological actions.  Since this 
mechanism uses ITA Controlled English (CE) as the basis we also demonstrate a simple technique for converting from 
CE knowledge bases into standard OWL ontologies and showcase an example implementation by converting an existing 
complex ISTAR ontology to OWL for consumption by standard OWL tooling such as the WebVOWL ontology 
visualiser. 

In terms of future work: we believe that there is significant potential to be gained in investigating techniques involving 
the OWL metamodel, but these are not reported here as they have not yet been formally investigated. However, if output 
is desired in different OWL serialization formats, it may be useful to investigate if the OWL metamodel can be modelled 
in CE, and rules devised to translate the CE concepts, properties and instances into instances of this representation of the 
OWL metamodel. This would introduce an abstract representation of the OWL equivalent to the CE present in the 
system. This representation could then be traversed by a number of agents, each of which could serialize it to a different 
format (e.g. RDF/XML, N3, Manchester Syntax). Furthermore, simple CE rules (say those that represent reflexive, 
symmetric and transitive relations) could possibly be translated from simple parsing of the rule text into appropriate 
OWL elements.  In this same area we also concluded that a possible investigation into the translation of CE rules into a 
rules language such as the Semantic Web Rule Language (SWRL)[16] could be of some value. SWRL is designed to 
provide a rules language for an OWL knowledge base and the existing CE rule implementation will have a close 
semantic relationship to the SWRL language. 
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