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ABSTRACT

In this paper, we propose a system architecture for decision-making support on ISR (i.e., Intelligence, Surveil-
lance, Reconnaissance) missions via optimizing resource allocation. We model a mission as a graph of tasks, each
of which often requires exclusive access to some resources. Our system guides users through refinement of their
needs through an interactive interface. To maximize the chances of executing new missions, the system searches
for pre-existent information collected on the field that best fit the needs. If this search fails, a set of new requests
representing users’ requirements is considered to maximize the overall benefit constrained by limited resources.
If an ISR request cannot be satisfied, feedback is generated to help the commander further refine or adjust their
information requests in order to still provide support to the mission. In our work, we model both demands for
resources and the importance of the information retrieved realistically in that they are not fully known at the
time a mission is submitted and may change overtime during execution. The amount of resources consumed by
a mission may not be deterministic; e.g., a mission may last slightly longer or shorter than expected, or more
of a resource may be required to complete a task. Furthermore, the benefits received from the mission, which
we call profits, may also be non-deterministic; e.g., successfully localizing a vehicle might be more important
than expected for accomplishing the entire operation. Therefore, when satisfying ISR requirements we take into
account both constraints on the underlying resources and uncertainty of demands and profits.

Keywords: Non-deterministic Resource Allocation, Stochastic Knapsack Problem, Feedback-based ISR Decision-
making Support

1. INTRODUCTION

Resource allocation is a fundamental and critical problem studied in different forms in various communities,
including military scenarios, in which resources can be classified as many types, such as information (e.g., pictures,
videos), platforms (e.g., UAVs, patrols), systems (e.g., cameras, clusters), services (e.g., network bandwidth,
storage space), etc., and are often subject to limited capacity. Commanders issue their ISR information needs
(which we call ISR missions) and need to make the final decisions on how to execute these missions depending on
the availability of necessary resources. However, in most cases, it is neither realistic for the commanders to fully
understand the overall picture of available resources, nor to carefully study the plan of resource deployment.
Instead, commanders should only issue high-level queries describing their missions such as “detect and track
some specific high-valued targets on the crossroad of Street A and B”, and expect to know the probability of
successful execution of the missions, without worrying about the fine details on how the actual resource allocation
is performed.

F. Chen et al .1 defined a mission to be a collection of tasks with temporal and causal relationships, and
introduced a system architecture, which exploits the demands of missions for resources and searches for the
optimal resource allocation solutions. Each mission instance may have different requirements on resources, and
successfully satisfying all requirements of a single mission can generate some profit. In addition, multiple missions
are said to be compatible with each other if their combined demands do not exceed the available capacity of
requested resources. The objective is to suggest the best subset of compatible missions that produces profit as
much as possible. In our paper, we propose an improved system architecture providing more flexible decision-
making support on ISR missions via refining users’ intent, optimizing resource allocation process, and enhancing
the feedback mechanism.



In our system, we apply a new interactive interface, CE-SAM (Controlled English Sensor Assignment to
Missions), developed from the work of A. Preece et al.2 and refined in D. Pizzocaro et al.,3 which guides users to
1) build a scalable knowledge base of various functionalities of ISR resources and corresponding ISR requirements
they can meet, 2) refine their ISR missions without requiring a technical background in formal query languages
or ontology building, and 3) match their missions with proper sets of resources represented in the knowledge
base.

Since the capacities of resources are often limited, it is rare that all submitted missions can be fulfilled
concurrently, where further adjustment is needed. Moreover, we model both demands for resources and the
importance of mission completion realistically in that they are not fully known at the time a mission is submitted
and may change overtime during execution, which can be formulated as a variation of stochastic knapsack
problem4,5 (SKP). We developed a heuristic algorithm for this problem, which returns temporal admission
decisions along with additional instructive feedback reports, instead of simply returning “accepted” or “denied”,
to facilitate commanders in understanding current conditions.

For example, suppose that a commander submits the mission “detect and track some specific high-valued
targets on the crossroad of Street A and B”. To complete this mission, some cameras (either fixed or mounted
on other mobile sensing platforms, like UAVs) already deployed by the roadside may be required. However,
the ability to detect and track partially depends on the traffic conditions (e.g., big trucks may block the sight
of our targets), which causes the actual number of necessary cameras to be unpredictable. Assume that the
number of cameras needed follows some known distribution, such as Poisson distribution P(10), and there are
only 10 cameras available at that time. In this case, according to the theory of statistics, our system could inform
the commander that the failure probability of his mission is about 42%, and provide some suggestions, such as
temporarily preempt 2 more cameras may significantly decrease the failure chance to one half as 21%, as flexible
decision-making support if additional adjustments are necessary.

The rest of this paper is organized as follows. Section 2 explains some basic concepts of ISR resource,
task and mission, and presents our system architecture. Section 3 discusses in details our stochastic resource
allocation problem setting, and shows an example scenario to explain our feedback based decision-making support
mechanism. Finally, Section 4 concludes this paper.

2. SYSTEM ARCHITECTURE

In this section, we define some basic concepts of ISR resource, tasks and missions and explain the condition
when a mission-resource matching can generate profit. We then illustrate our system architecture including
descriptions of components and operations within the system. We describe how the system guides users to
compose queries to perform their missions, optimizes the resource allocation plans, and helps users take the best
decisions through providing instructive feedback reports.

2.1 Basic Concepts of Resource, Task and Mission

In the scope of this paper, ISR resources essentially can be divided into two groups: information that is requested
by the commanders to complete their missions, and other types of resources regard to provide such information.
For example, assume that a mission requires the collection of some pictures of an area. We can either directly
provide pictures to the commander if they have already been taken by other missions, or allocate some ISR assets
like cameras to take the pictures requested. Here both pictures and cameras can be considered as resources,
while the difference is that the former is directly what the commander expects, and the latter is utilized to collect
the former.

Among all types of resources with different features, only the ones with limited quantity (e.g., the fixed
cameras deployed along the North Road) that are not able to be shared by an infinite number of missions (e.g.,
a UAV sometimes may serve multiple detection missions simultaneously, but the number of paralleled missions
has a limit) are taken into account in our resource allocation problem.

In our model, an ISR mission consists of multiple tasks, each of which is required to return some supporting
information to the mission. A task is taken as “completed” when the portion of information supposed to be
generated by this task has been collected. For a “completed” task, its returning information may be obtained



either directly from the outcome of other tasks, or from the output of a bundle of proper ISR assets. Thus, an
incomplete task demands a set of resources to execute, and it is said to be satisfied when all requested resources
are allocated during the process of the mission.

A mission is expected to produce some profit only when all its tasks are completed. When a mission is
admitted, we first complete some of its tasks by match their needs with some pre-existing sets of information,
and then allocate a set of resources that enables simultaneous execution of all tasks remaining. This type of over
allocation is inefficient because not all tasks use all resources consistently.

However, the advantage of this over-allocating policy is that it increases the probability of achieving a suc-
cessful completion of admitted missions in case in which some tasks require more resources than expected. The
spare resources can, in fact, be used as a backup and scheduled among the active tasks to meet excessive needs
or improve performance.

Figure 1 shows an example that illustrates how missions and resources are matched. Two missions M1 and M2

are represented as diamonds, while subordinate tasks and different types of resources are indicated by circles and
squares, respectively. Triangles represent pre-existing information sets, among which those that are shadowed
are unavailable at this time. An edge between a task and a resource or an information set indicates that this
task requires either all linked resources or this information set to be completed, and a mission is comprised of
all linked tasks.

Figure 1. Mission-resource Matching Graph

For more details about the relationship among missions, tasks and resources, we refer to the work in F. Chen
et al.1, in which tasks of the same mission have a temporal or causal relationship with each other and can be
represented as a task transition graph. The conversational user interfaces (CUIs) used in our CE-SAM component
is able to deal with potential task relationships by modelling the high-level user requests into interlinked tasks.
In fact, one of the advantages of CUIs is that they allow to reason about hypothetical objects of future events
which do not have an immediate graphical representation and therefore cannot be represented in the graphical
user interfaces (GUIs).

2.2 System Components and Operations

Compared to previous work in F. Chen’s paper1, our system architecture is improved in the following aspects: 1)
reasoning component including CUIs which allows interactive refinements of mission requirements, 2) stochastic
resource allocation problem solver that is adaptable to more complicated and realistic conditions, and 3) in-
structive feedback reports generated from the cooperation of 1) and 2) that provide more flexible and powerful
decision-making support.

Figure 2 shows our system architecture and work flows, in which “CE-SAM” and the “Resource Allocation
Solver” are the two most important components. Starting from refining high-level ISR mission requests from



commanders, the operations within our system form two separate feedback loops, which are derived from those
two key components, respectively.

Figure 2. System Architecture and Work Flows

One loop starts when the commanders submit their requests and is repeated until our system finally under-
stands the information needs correctly through raising questions via CE-SAM to guide users to refine the ISR
requirements of their missions based on their actual information needs. A precisely described mission can be
then decomposed as a set of related tasks, based on which the mission is eventually matched with necessary
resources.

The other feedback cycle takes as input the well defined mission-resource matching graphs generated by the
first loop, solves the resource allocation problem, and returns temporary solutions along with the feedback re-
ports to the commanders. Acceptable solutions lead the commanders to make their final decisions immediately;
otherwise, the feedback reports describe details about current conditions such as success probability and bot-
tleneck resources, and provide some alternative solutions to assist the commanders in making readjustments on
their ISR mission requests.

The CE-SAM component provides an interactive interface that, via a mixture of Natural Language parsing
and conversational interaction, helps the users refine their information needs and express those in a form which
is understandable for the system. The CUIs allow for complex user interactions with our system without re-
quiring extensive training or a professional technical background (e.g., in formal query languages or ontology
building). To leverage the advantages of CUIs, CE-SAM guides users through refining and satisfying their in-
formation requirements in the context of ISR operations. CE-SAM allows to relate the information needs to
pre-existing concepts in the ISR knowledge base, via conversational interactions implemented on a tablet device.
The knowledge base is represented using Controlled English (CE) – a form of controlled natural language that
is both human-readable and machine processable (i.e., can be used to implement automated reasoning). Users
interact with the CE-SAM conversational interface using natural language, which the system converts to CE for
feeding-back to the user for confirmation (e.g., to reduce misunderstanding). This process not only allows users
to access the ISR assets that can meet their mission needs, but also assists them in extending the CE knowledge
base with new concepts.



In Figure 3 we show the prototype of our conversational interface which assists users in the refinement from
high level information requirements to low level ISR information needs, represented using the ISR ontology
as shown in A. Preece’s work2. Basically CE-SAM helps to translate the information needs of ISR missions
in the form of questions or statements (e.g., “I am looking for intruders”) to an equivalent ISR sensing task
representation which the system can then use in order to match the requests with existed information sets and
ISR assets via our stochastic resource allocation algorithm. We refer to our previous work2 and latest paper3 for
more details about CE-SAM.

Figure 3. CE-SAM conversational interface: refinement of the information needs

The output of CE-SAM is the mission-resource matching graph in Figure 1, which is utilized by the Resource
Allocation Solver component. This component runs our heuristic algorithm to solve the stochastic resource
allocation problem even if both the demands for resources and profits of missions are not deterministic. The
output would be a subset of submitted missions which is recommended to be admitted for a good payoff while also
taking into account the availability of current resources. Besides, our algorithm also generates feedback reports
for the commanders to describe rationale on both admitted and non-admitted mission sets, such as probability
of a successful execution for the admitted set, and the bottleneck of resources that blocks those non-admitted
missions. Both the temporary solutions and the feedback reports are delivered back to the commanders via the
CE-SAM conversational interface so that the commanders can either agree with the system-suggested resource
allocation plan, or readjust their ISR needs depending on the assistance from the feedback reports. A commander
could for example reconsider to set a lower chance of success for admitting more missions, temporarily preempt
some amount of bottleneck resources to facilitate current mission set, or partially cut down information more or
less to skip off the unavailable resources.

3. RESOURCE ALLOCATION PROBLEM

In this section, we formally define and discuss our stochastic resource allocation problem setting, and present an
example case thereafter. Taking at input a set of missions with stochastic demands and profits, our algorithm
searches for a subset of missions to be admitted, which can be supported by sufficient resources (i.e., the prob-
ability that actual required resources exceed available capacity is low) and is capable of maximizing the total
benefit. Since the total profit is no longer constant, we change our objective to search for the optimal profit that
can be achieved with high confidence.



3.1 Problem Formulation

Suppose that a set R of resources and a set M of missions are given. Each resource Ri has a capacity ci, and
each mission Mj can produce a profit Vj if each of its demand Dij for Ri is satisfied. Our objective is to find
the optimal subset of M to be admitted, which leads to the best total profit without violating any capacity
constraint in all dimensions. We use a binary decision variable xj to indicate whether Mj is admitted or not.
That is, xj = 1 means that Mj is authorized to exclusively access resources as requested; otherwise, xj = 0. The
problem thus can be formulated as the following linear program:

max
∑
j

Vjxj (1)

s.t.
∑
j

Dijxj ≤ ci ∀i (2)

In a general knapsack problem6 setting, both Dij ’s and Vj ’s are constants. In our problem, however, they
are modeled as random variables following some known distributions, which is believed to be more reasonable
when simulating most cases in the real world. For example, a mission may last slightly longer or shorter than
expected, consuming more or less resources than originally requested; or a detection mission may turn out to be
either successful or failed, which is unpredictable until its completion, achieving total different levels of profit.
Therefore, we take into account such uncertainty of both demands and profits as well as the capacity constraints
on the underlying resources.

Although it is ideal that the chosen subset of M is finally allocated adequate resources as expected, for the
demands following unbounded distributions (e.g, Gaussian, Poisson), a low capacity overflow frequency may be
tolerated because the capacity constraints always have a chance to be violated. Let pi denotes the tolerant
overflow rate of Ri, then equation (2) is replaced by the following equation:

Pr(
∑
j

Dijxj > ci) < pi ∀i (3)

The problem now, with stochastic demands and constant profits, is in the form of a chance-constrained
program7, and may be solved by scenario approximation8,9, sample average approximation10,11, and heuristic
equivalent transformation4.

However, as mentioned before, according to our setting, the profit variables are also stochastic, which makes
the problem more complicated to evaluate the total combined profits of different subset selections. For instance,
when facing two candidate subsets of missions, one of which has 80% chance to produce more than 100 units of
profit, while the other shows 80% probability to return at least 50 units of profit but 20% confidence to return
more than 200 units, it is hard to tell which one is better since for the second subset the probability of achieving
a very high level of benefit is unacceptably low. Similarly, a better expectation of the combined profit is not
necessarily reliable, because sometimes those great numbers ranging within the low probability zone significantly
increase the value of expectation. Therefore, to define our objective more reasonably, another probability, q, is
introduced, based on which we can calculate the maximum acceptable level of reward obtained from a given set
of admitted missions.

For an admitted set S, if the chance of getting at least some level of profit λS is equal to or higher than q, we
call this λS meaningful, and define λSq as the greatest meaningful λS . Then our objective is changed to search

for the optimal λSq among all potential admitted subset choices. Take the example in the last paragraph and
set q as 80%. Let the two subsets be S1 and S2, respectively. For S1, the probability of achieving any level of
profit no more than 100 units should be no less than that of getting 100, which is just 80%. Thus here λS1

q is

100. Similarly, we can calculate λS2
q as 50. As a result, we prefer S1 to S2 if only one of them can be selected,

because in this case λS1
q is greater than λS2

q .



We can describe the relationship between λS , λSq and q for a given S as follows:

Pr(
∑
j

Vjxj ≥ λS) ≥ q

Pr(
∑
j

Vjxj ≥ λSq ) = q (4)

Then combining (3) and (4), finally we are able to formulate our problem setting as follows:

max λSq

s.t. Pr(
∑
j

Dijxj > ci) < pi ∀i

Pr(
∑
j

Vjxj ≥ λSq ) = q

where S = {Mj |xj = 1}

3.2 An Example Case

Details about our stochastic resource allocation heuristic are out of the scope of this paper, and can be found in
the work of N. Hu et al.12 Here we present an example scenario to show how our problem formulation described
above leads to a recommended solution along with a flexible decision-making support feedback report.

Suppose that a commander submits 3 missions (M1, M2 and M3). After the requirement refinement loop, it
is found that, to produce profit, every mission needs some amount of resource R, whose available capacity is 50
units at that time. Both demands for R and profits are random variables following known normal distributions,
details of which are shown in Table 1.

Random Variables Demands Profits
Parameters Means Variances Means Variances

M1 10 100 15 5
M2 15 50 30 5
M3 20 25 20 30

Table 1. Distribution Details of Missions

Furthermore, the commander sets p and q as 0.2 and 0.8, respectively, which means the admitted mission set
should have no more than 20% chance to require more than 50 units of R, and the expected profit could be met
with at least 80% confidence.

According to the theory of statistics, we can calculate the result of every combination of mission which is
shown in following Table 2.

Solutions x1 x2 x3 Necessary R Overflow Rates λSq
S1 1 1 0 35 0.02 42
S2 1 0 1 39 0.04 30
S3 0 1 1 42 0.04 45
S4 1 1 1 56 0.35 60

Table 2. Results of Some Combinations of Missions

As defined in previous section, our objective is to maximize λSq while the capacity overflow rate is lower

than 20%. Therefore, the best solution is S3, which admits M2 and M3 and achieves the greatest λSq without
violating the capacity overflow constraint. Moreover, based on the information displayed in Table 2, additional
suggestions could be reported to the commander as feedback that assists this desicion-making process. Such
feedback reports offer some alternative suggestions, which include but are not limited to:



• “Trade profit for lower resource consumption”: although λS1
q is slightly lower than λS3

q , the fact that S1

requests much less R makes it possibly a better solution leaving more resources for the missions submitted
afterwards;

• “Loose overflow constraint” or “Preempt some bottleneck resources”: considering S4’s one-third profit
improvement over S3, either taking the risk of S4’s higher failure probability or rescheduling 6 more units
of already allocated R to temporarily serve this mission set may pay off.

Via our CE-SAM interface, the commander sees not only the recommended solution {M2, M3}, but also
alternatives as described above. If the commander satisfies with the suggested solution, M2 and M3 are executed
directly; otherwise, he can tailor his mission according to the feedback reports and reconsiders the new solution
recommended by our system, until finally a satisfactory result is reached.

4. CONCLUSION

In this paper, a system architecture is designed and proposed for decision-making support on ISR missions.
Commanders can submit their ISR missions via an interactive conversational user interface, which helps refine
their information needs and exploits resource requirements of each mission. The interface matches each mission
with a bundle of corresponding resources after parsing users’ requirements, and then delivers such matching as
an input to the component in charge of allocating resource among multiple missions. This resource allocating
component runs a heuristic algorithm to solve stochastic knapsack problem even if both the demands for resources
and profits produced by missions are non-deterministic and may change overtime. Sets of admitted missions are
returned as temporary suggested solutions to the commanders along with some additional details about current
conditions, which assist the commander in making best decision by providing alternative selections, indicating
current resource bottleneck, etc. Such extra information forms a feedback cycle between the commanders and
our system, which converges when both the final resource allocation plan and expected profit are satisfied by the
mission issuers.
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