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ABSTRACT

In a military scenario, commanders need to determine what kinds of information will help them execute missions.
The amount of information available to support each mission is constrained by the availability of information
assets. For example, there may be limits on the numbers of sensors that can be deployed to cover a certain
area, and limits on the bandwidth available to collect data from those sensors for processing. Therefore, options
for satisfying information requirements should take into consideration constraints on the underlying information
assets, which in certain cases could simultaneously support multiple missions. In this paper, we propose a
system architecture for modeling missions and allocating information assets among them. We model a mission
as a graph of tasks with temporal and probabilistic relations. Each task requires some information provided by the
information assets. Our system suggests which information assets should be allocated among missions. Missions
are compatible with each other if their needs do not exceed the limits of the information assets; otherwise,
feedback is sent to the commander indicating information requirements need to be adjusted. The decision loop
will eventually converge and the utilization of the resources is maximized.

1. INTRODUCTION

In a military scenario, commanders need to determine what kinds of information will help them execute missions.
They issue high-level queries describing the missions such as “Monitor high value targets in North road” and
expect to know which information is required for the missions and whether the information is available to them.
However, the amount of information available to them is subject to the underlying information assets. For
example, a limited number of sensors can only be deployed to cover a certain area and all their data may not be
collected immediately due to the network constraints. Therefore, options for information sets should take into
consideration of the underlying information assets.

In this paper, we propose a system architecture for 1) exploiting missions’ information needs and 2) allocating
resources among them. We define a mission to be a collection of ISR∗ tasks with temporal and causal relations.
The intent of the commander decides the nature of the mission and the relation among its tasks. The commander’s
queries enter the system via a knowledge base which matches the mission descriptions with predefined task
transition graphs. A task transition graph defines the spatial and causal relation among tasks of a mission. An
ISR analyst either confirms or adjust this graph and passes on the graph to the rest of the system which analyzes
the requirement of all tasks and allocates resources.

Resources are allocated among different missions but resources are associated with tasks. Resource require-
ment for each task is derived by analyzing its information needs. At a particular time, the resource requirement
of a mission is decided by its current active tasks. Missions are compatible with each other if their needs do
not exceed the limit of the information assets; otherwise, feedback is sent back to the commander suggesting
an adjustment to the information choice. The decision loop will eventually converge and the utilization of the
resources is maximized. Note that the focus of this paper is exclusively on ISR tasks, and therefore non-ISR tasks
such as “send troops to intercept a suspect” or “fire a weapon” will not be considered by the system described
below.

For a particular scenario, the task transition graph, the resource matching graph (which expresses task re-
source requirement) and the capabilities of resources are sent as input to a resource allocation problem solver.

∗ISR stands for Intelligence, Surveillance and Reconnaissance



The abstract problem is a stochastic multi-dimensional knapsack problem. We formulate this problem and pro-
vide reference on potential solutions to this problem. The solver returns admission decision to the commanders,
in the form of whether there is sufficient resource for such a mission, or the subset of missions that can be
executed simultaneously consistent with the current resource inventory. The commanders then decide if this is
satisfactory and either re-issue queries into the system or proceed to execute the mission with allocated resources.

The rest of this paper is organized as follows. Section 2 presents our system architecture. Section 3 discuss
in details the resource allocation problem. Section 4 provides an example scenario and a walkthrough of the
system. Finally, Section 5 concludes the paper.

2. SYSTEM ARCHITECTURE

In this section, we define several basic concepts and present our system. We describe how commanders express
mission queries that enter the system and trigger a series of operations in the system. We illustrate how
the system infers resource requirements for each mission, and decides on the effective allocation of ISR assets
providing feedback to commanders.

2.1 Resource, Mission and Task

Before we present the system, first we define three important concepts: mission, task and resource. A mission
needs multiple resources to execute. Resources are essentially every possible asset able to produce an ISR output.
These include sensor platforms (e.g. UAVs), sensor motes, vehicle patrols, local informants, etc. However, only
resources with capacity constraints are taken into our resource allocation problem; resources with infinite quantity
or those that can be shared by any number of missions are not included.

A mission is a collection of ISR tasks with temporal and causal relations. Each task requires a subset of all
the available resources. A mission can be executed only when its resource requirements can be satisfied during
the whole course of the mission. However, at one particular moment, not all the tasks are active. That is,
although we allocate a set of resources to a mission, the mission may use them at different times. One way to
describe the relation among tasks of a mission is to use the task transition graph. Similar to a state-machine
graph, each object (cycle) in the graph stands for a task, and arrows between the tasks indicate the temporal or
causal relation between tasks. See Figure 1 for some examples.
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Figure 1: Task transition graph

In Figure 1, there are two missions M1 and M2. The tasks marked as “0” and “∞” indicate the start and end
of the mission, respectively. All tasks in M1 are transient in that each task can be executed at most once and
once done never executed again; either T13 or T14 will be executed after T12. Tasks are recurring (not transient)
in M2 and all will be executed.



However, the resource requirement of each task is not shown in the task transition graph. In fact, each cycle
in Figure 1 is also a delegate of a subset of the resource. For the purpose of displaying the resource competitions
among missions, we introduce another type of graph: resource matching graph. Using the same example, we
draw this graph in Figure 2. An edge between a task and a resource indicates that this task requires this resource.
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Figure 2: Resource matching graph

2.2 System Components

We propose the following system architecture. In the big picture, the information flows in the system and forms a
feed-back loop starting from the commander, traversing every component of the system (see Figure 3). Based on
the admission/allocation result obtained by a Resource Allocation problem solver, either the commander needs
to readjust his command/query, or the mission obtains sufficient resources and get executed.

When the commander has an intent to initiate a mission, he sends a query such as “Monitor high value
targets in North road” to a Knowledge Base (KB). The query may be expressed through an app interface, such
as the one in Figure 4 which provides a convenient mission-entry form. The interface formulates commands using
a controlled vocabulary and with limited semantic combinations. It also allows the commander to set different
parameters of the mission such as its location on a map or its priority level. For more details about such interface
and extensions to the system presented in this paper we refer the reader to another paper published in these
proceedings.1

The query is then matched with a set of predefined task transition graphs in the knowledge base. As described
above, these graphs include information regarding how a mission should evolve as a composition of ISR tasks.
The most appropriate task transition graph from the set associated to the mission is automatically selected by
utilizing mission parameters such as its type, location and relations among tasks. The ISR analyst then confirms
the system choice or makes proper adjustments in the task transition directions and probabilities (e.g. consulting
with the commander). Finally a task transition graph is associated with the current mission. Note that if the
ISR analyst makes modifications to a task transition graph for a particular mission, then the edited graph could
be stored in the KB as the new best choice for any other newly generated mission having the same settings as
the one just submitted.

The set of ISR tasks composing the transition graph is then parsed by a reasoner-based component called



Knowledge 
Base

Commander

Request

Task Relation 
Graph

Analyze

U
pd

at
e

Resource 
Matching 

Graph

Resource
Inventory

P
arse

Input

Resource 
Allocation 

Solver

Feedback

Execute 
Mission

Satisfied

Analyst

Confirmation

SAM/ 
Reasoner

Parse Input

Input

Figure 3: System Architecture

Figure 4: App interface for submitting missions to the system.



SAM/Reasoner†, which recommends an ISR asset bundle semantically matching each tasks’ requirements and
satisfying tasks’ utility demands (e.g. in terms of minimum quality of service requested). In particular, the
reasoning process is split into two parts: first a reasoner decides what type of ISR asset bundles could potentially
match the task requirements, we call the output of this step Bundle Types (BT). Second, we search in the
resource inventory for feasible asset bundle instances matching the BT recommended at the previous step and
we evaluate if each particular instance matches the utility demand of the task. Finally, the most useful ISR asset
bundle is selected as the set of resources required by the task.

For example, based on our latest work2 for an ISR task such as Detect Wheeled Vehicle the result of the
first reasoning stage is to use BT1 = {V ideoCamera,AcousticArray}, i.e. we can use both video cameras and
acoustic sensors for accomplishing this task. Later on we look for the recommended BT in the inventory of
ISR assets and evaluate if those match the task demands. The output is therefore a set of ISR resources which
semantically match the task requirements. This allows us to be flexible in terms of allocation as the same task
could be satisfied using different BTs, and therefore the chances of satisfying that task with different ISR asset
bundles are increased.2 Note that literature is available fully describing the first reasoning stage,3 while for the
second stage we refer to our latest work.2

Based on semantic reasoning/matching, SAM will therefore parse each task requirements and output their
resource requirements. The outcome of this procedure is the resource matching graph in Figure 3. Note that,
task descriptions are sent to the SAM/Reasoner for obtaining the resource requirement per task. Then the
system gather task requirements for each mission as the input to the next component (i.e. the solver), given that
missions are the unit for the admission decision.

A resource inventory maintains the current resource capacity information. A solver takes as input the capacity,
resource matching graph and task transition graph and answers the question whether this mission can be satisfied
by the current resource inventory. In cases where more than one missions are competing for the resources, missions
will have associated profits/priorities (e.g. set using the app interface in Figure 4). Then the solver answers the
question which subset of the missions can be admitted using the resources in the inventory and maximize the
total profits/priorities. We will see in next section that this problem is in fact a stochastic multi-dimensional
knapsack problem.

Admission decision is sent back to the commander for approval: if the commander is satisfied, the admitted
missions get executed; otherwise they may adjust the mission queries and send them to the system for a re-
evaluation. The decision loop will eventually converge and the utilization of the resources is maximized.

3. RESOURCE ALLOCATION PROBLEM

In this section, we define and discuss the abstract resource allocation problem. The input to the problem include
the task transition graph, resource matching graph and the resource capacity. The output of the problem is the
admission decision— which subset of missions can be executed with sufficient resources.

3.1 Problem Definition

Given is a set R resources and a set M of m mission. Each resource Ri has a capacity ci. Each mission Mj

requires Dij of resource Ri and is associated with a profit pj if all its demands are satisfied. Let p = [p1, p2..., pm]
denote the profit vector of missions. Note that in the system described here, the profit could simply represent
the priority of a mission. We use a binary decision variable xj to indicate whether Mj ’s demand is satisfied.
That is, xj = 1 if Mj is admitted; otherwise, xj = 0. The problem is defined as the following linear program:

max
∑
j

pjxj (1)

subject to
∑
j

Dijxj ≤ ci ∀i (2)

†SAM stands for Sensor Mission Assignment



The objective is to maximize the profit of admitted tasks with respect to capacity constraints. This problem
is a multi-dimensional knapsack problem. In our problem, however, Dij is a random vector based on a certain
distribution or having some known statistics. If we solve this linear problem, it guarantees that the resource is
sufficient even in the worst case. But this allocation is very low in efficiency, for the worst may only happen
with extremely small chance. For example, if a mission’s demand in a certain resource follows exponential
distribution, the demand quantity may range from zero to infinite. As a result, this mission will never get chance
to be executed even the chance it may need a great amount of such resource is very small.

In order to allocate more efficiently, we allow the total demands of admitted mission to overflow with a certain
probability. Let ρ denote the overflow probability, which indicates the maximum frequency that admitted missions
may violate the capacity constraints. We replace Equation 2 with the following:

Pr(
∑
j

Dijxj > ci) ≤ ρ ∀i (3)

These constraints upper bound the overflow chance. This problem is in the form of a chance-constrained
program,4 and may be solved by scenario approximation5,6 or sample average approximation (SAA).7,8 It is a
hard problem in general; for some distributions such as Bernoulli,9 it is even #P-hard to compute the probability
Pr(

∑
j Dijx > ci). Detailed solution for this problem is out of the scope of this paper. Please refer to the work

by Chen et al.10 for heuristics to solve this problem. Their basic ideas is to transform this chance constrained
problem into a regular multi-dimensional knapsack using the concept of effective size. Effective bandwidth/size
was introduced by Kleinberg et al9 and has been used in solving problems such as stochastic load balancing and
stochastic knapsack.11,12

4. AN EXAMPLE SCENARIO

In this section, we present an example scenario and a walkthrough of our system. The scenario (Figure 5)
consists mainly of two crossing roads: Horizontal Rd and Vertical Rd. Potential targets may move along these
roads. Static ISR assets deployed on the field consists of three directional cameras: Cam1 is on Horizontal Rd,
Cam2 is on Vertical Rd and Cam3 is right at the crossroads. In addition, mobile ISR assets already deployed
on the field are: a police patrol on the Horizontal Rd – note a patrol is considered as an ISR asset given that
it produces reports on observed events; and an Unmanned Aerial Vehicle (UAV) flying on top of the Vertical
Rd. Note that the patrol and UAV could be moved to different locations from the ones where those assets are
deployed, although the system will try to make use of the resources already deployed first rather than trying to
move them to different locations. Therefore the decision of moving or not the mobile ISR assets is part of the
allocation mechanism.

Two missions of the same type, “Monitor any High Value Target on the X road”, enter the system via two
queries issued by the commander through the app interface in Figure 4. Here X is either Horizontal or Vertical
road and as we will cover later this will translate into different ISR task requirements for each mission. Note
that through the app interface the commander will be able to specify different details for each mission, such as
location or mission priority.

The queries are forwarded to the Knowledge Base and matched with those predefined task transition graphs
associated with that particular mission type (i.e. “Monitor any High Value Target on the X road”). The best
task transition graph is sent to the analyst for confirmation. The analyst may use information such as where
each task is located (i.e. Horizontal and Vertical Road) in order to tune the best transition graph. Since the two
missions are of the same type and have intersecting areas of interest, it is reasonable to assume that the KB will
generate the same task transition graphs for them as in Figure 6.

Besides two dummy tasks indicating the start and the end of the missions, the mission consists of three tasks.
The first task is to detect any object on the road that is potentially a high value target. Once detected, the
mission transits into the next task which identifies the detected object. If the detected target is of high value,
the mission shifts into the third task, in which assets need to be allocated in order to track the target; otherwise,
the mission reverse into the detecting task.
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Figure 6: task transition graph for both two missions in the scenario

The set of tasks together with other information inherited from the mission description such as on which road
each mission takes place is sent to the SAM/Reasoner. SAM matches each ISR task instance with the best set
of resources. As described in Section 2.2, first each task is matched to an ISR asset Bundle Type (BT) and then
we search in resource inventory for ISR asset instances matching the type of resources contained in the BT. In
this specific case we have that the “tracking” task can be satisfied by the BT1 = {Patrol, UAV }, that is either a
police patrol or a UAV could potentially satisfy the task. Instead for both “identify” and “detect” tasks the ISR
asset types which could potentially satisfy them are BT2 = BT3 = {V ideoCamera}, i.e. any number of video
cameras on the field allocated to the task might potentially satisfy the tasks. SAM then uses utility functions
to decide which exact ISR asset instances matching the BT recommended are expected to fully satisfy each of
the tasks’ demands (e.g. in terms of quality of information required). These utility functions could be based on
asset-task distances, and might include also the cost of moving a mobile ISR asset from one location to the other.
Alternatively these functions could be more complex such as non-linear functions similar to the ones described
in our previous works.2

The result of the SAM/Reasoner can then be represented in the form of a resource matching graph. For this
particular scenario (see Figure 7), the detect tasks of the two missions match with two separate cameras. The
identify tasks of the two missions match to the same “Camera 3” at the crossing, which provides not only video
capturing function but also the capacity of identifying vehicles by their license plates. However, “Camera 3”
may not be shared because it is a directional camera and it will necessarily point in opposite directions for each
of the two missions. The tracking tasks of the two missions can use different types of resources as recommended
by the SAM/Reasoner: in our case given the current deployment of the resources and the task locations, the
vehicle patrol will be the best choice for the mission on the Horizontal Rd and instead the UAV for the one on
the Vertical Rd.
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Resource requirement of each task together with the task transition graph of a mission is used to calculate
the distribution of the resource requirements of the mission. This distribution is sent to the resource allocation
solver. Note that the current availability and quantity in the field of each resource is obtained from a resource
inventory.

For this particular problem, the only resource that two missions compete for is “Camera 3”. Only one
mission can be admitted if we use Equation 1 with Equation 2. However, one mission does not necessarily
occupy “Camera 3” all the time. As we mentioned, using Equation 1 with Equation 3 is more appropriate and
leads to better utilization of resources. Therefore, for a tolerable overflow probability ρ, if each mission uses
“Camera 3” for only a fraction of the time, these two missions may be both admitted with only a small chance
of conflict. The tentative admission decision is sent from the solver to the commander for approval. If it is
satisfactory, the missions get executed and the resource inventory is updated. Otherwise, the commander may
adjust the mission query and send it into the system again.

5. CONCLUSION

In this paper, we designed a system architecture for exploiting mission resource requirement and assisting mission
admission control. Missions are initially described as queries by the commander and are then parsed into task
transition graphs and resource requirement of their tasks. This information is then sent to a solver as input
to an abstract resource allocation problem. With some allowance of resource requirement overflow, the solver
optimally allocates resources among multiple missions. The suggestion for admission control is sent back to the
commander for approval. Negative results leads to modification of the commands or new queries into the system.
The feedback loop converges when the resource utilization is maximized.
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