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ABSTRACT

Broadcast scheduling has been extensively studied in wireless environments, where a base station broadcasts
data to multiple users. Due to the sole wireless channel’s limited bandwidth, only a subset of the needs may be
satisfiable, and so maximizing total (weighted) throughput is a popular objective. In many realistic applications,
however, data are dependent or correlated in the sense that the joint utility of a set of items is not simply the
sum of their individual utilities. On the one hand, substitute data may provide overlapping information, so one
piece of data item may have lower value if a second data item has already been delivered; on the other hand,
complementary data are more valuable than the sum of their parts, if, for example, one data item is only useful
in the presence of a second data item.

In this paper, we define a data bundle to be a set of data items with possibly nonadditive joint utility, and we
study a resulting broadcast scheduling optimization problem whose objective is to maximize the utility provided
by the data delivered.

1. INTRODUCTION

Broadcast scheduling is a well-studied wireless information delivery paradigm in which one server broadcasts
messages to all users over a broadcast channel. Users may arrive or depart the problem setting at different times
and with various data needs, and therefore schedules are made in order to favor as many users as possible, to the
greatest degree possible. Recent example applications include scheduling data downloads in mobile or vehicular
networks. In one scenario, a single base station serves multiple mobile clients who want to download information
from the base station as they are traveling.

This problem is usually cast as a single machine scheduling problem in which the download of an information
item and the broadcast channel play the roles of job and machine, respectively. We assume that the download
time or job size for each piece of information is a property of the information item and does not depend on when
the download is scheduled. However, since users are traveling, this download has to be scheduled within a certain
time window. The start and end of this time window are referred to as release time and deadline. Different
pieces of information may have different levels of importance or wtility values. A common objective is then to
maximize the total utility.

The simplest way of modeling the utility of multiple items is as the sum of the individual utility values, but in
many applications this is not appropriate. Adopting terminology from economics, we will discuss substitute data
and complementary data, by analogy to substitute goods and complementary goods. First, substitute data may
provide overlapping information or the same information from different perspectives. For example, turn-by-turn
instructions and a map can both lead one to a destination, so the value of the two together may reasonably be
modeled as less than the sum of their individual utility values; that is, the value e.g. of turn-by-turn instructions
is lower if one already has the map. Conversely, complementary data increase in value when joined together.
For example, the four quadrants of a map may be more useful than four times the value of one quadrant. In
economics, complementary products are defined as “those that tend to be consumed jointly in order to satisfy
a particular need, while substitute products are those that satisfy the same need and tend to be consumed
separately”.! Classic examples of substitutes and compliments are (respectively) coffee and tea on the one hand,
and coffee and sugar on the other.!
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Figure 1: Joint utilities.

We define a data bundle to be a set of data items with a well defined joint utility function, not necessarily
additive. If not, then data items in a bundle are either substitute or complementary. In terms of utility functions,
their joint utility is then either subadditive or superadditive. Figure 1 illustrates the possibilities.

Our algorithms make decisions based on an item’s marginal utility, which is the total utility increase that
would occur if the item were added to an existing (partial) schedule (and any conflicting items were removed).
We first adapt an existing algorithm from the additive utility setting. The algorithm schedules job instances (all
possible intervals in which the job can be scheduled) in the order of increasing interval end times and replaces
scheduled instances according to a certain criterion. Then we propose another, simpler algorithm that chooses
among jobs rather than job instances, taking them in the order of decreasing marginal utility over processing
time. We also discuss a special case of this problem that can be solved optimally using dynamic programing.

The rest of this paper is organized as follows. Section 2 presents related work. Section 3 formally defines
the problem and proves its hardness. Section 4 presents two heuristic algorithms which are then evaluated in
Section 5. Finally, Section 6 concludes the paper.

2. RELATED WORK

This work concerns mobile data access? and specifically, vehicle-roadside data access. Systems such as MobiEyes?
and Thedu* have been developed in order to either collect data from or deliver data to moving vehicles. As in
our problem, vehicles can only download data within a time window that is determined jointly by transmission
range, distance to the RSU, and the vehicle’s speed, and multiple vehicles compete for the exclusive use of the
common broadcast channel. The task is to schedule access to data by multiple vehicle, subject to the time
constraints. Jiang et al.’ studied a variant in which data items are pushed to vehicles periodically; Xu et al.®
investigated another variant in which data are only pushed on-demand, as in our problem. The novel aspect
of our problem in this paper is that the utility value of a collection of data items need not be the sum of their
individual values.

On the theoretical side, the problem with additive utility is widely studied. It can be interpreted as a single
machine scheduling problem, which is denoted by 1|r;| > w;U; in the standard notation and is NP-hard. Bar-
Noy et al.” provided an LP-rounding 3-approximation algorithm and a combinatorial 3 + 2v/2-approximation
algorithm. Later, Berman and Dasgupta® and Bar-Noy et al.” gave combinatorial 2/(1 — ¢)-approximation
algorithms. These two algorithms do not appear to apply readily to the nonadditive setting, however.

Nonadditive utilities have also received attention in the field of sensor networks. Sensors might indeed make
a nonlinear contribution to the completion of a particular sensing task. For example, Rowaihy et al.!? considers
two different sensing tasks, a detection and a localization task, using a nonlinear utility function in each case to
evaluate the quality of bundle of sensors when assigned to a given task. In particular for a localization task, two
audio sensors are needed to record an audio event. The quality or accuracy of the result depends on the relative
positions of the two sensors to the location event. Let dy, do be the distances from the sensors to the event, and
let @ be the angle formed by the two corresponding rays. Then the uncertainty of the measurement'! is: %.
Therefore the quality will be maximized when 6 = 7/2 and the distances are as small as possible.

Nonadditive utility for a set of items is common in the study of combinatorial auctions, in which bidders can
express preferences on bundles or combinations of items.'? Given a fixed supply of goods, the goal of the winner



determination problem!3 is to maximize revenue earned from the sale of disjoint item combinations. This is a
difficult problem, and not just because the number of bids can be exponential in the number of items. There has
been much research devoted to this problem, in the AI, algorithm-engineering, and other communities.'* A view
sometimes expressed in the literature is that combinatorial auctions can in practice provide good approximate
solutions within reasonable time for problem instances of reasonable size (in terms of number of bids).!* In our
case the number of bids (i.e. possible schedule for each data item) could be very large and so we do not adopt
the model of combinatorial auctions.

3. PROBLEM FORMULATION
In this section, we formaly define the problem and prove it to be NP-hard.

3.1 Problem Formulation

Let D ={D;:i=1...n} denote the set of data items. Each D; is associated with a weight w; and a download
duration or processing time p;. In order to succeed, D; must be scheduled after a release time r; and must finish
before a deadline d;. Disjoint subsets By, B, ...B,, € D (B; N By, = 0,4, k) are called data bundles. Each data
bundle By, is associated with a joint utility function Ug(z). For a single data item D; € By, Ui (D;) = w;.

Let x;; denote whether D; is scheduled to start at time ¢. The objective function is to maximize the total
joint utility among all bundles. The problem can be formulated as in Table 1:

d;—pi

max ZUk( U D; Z Tit) (1)
i

D;eBy, t=nr;

subject to
dwa <1, Vi (2a)
t
t
Y wmw<1, Ve (2b)
i u=t—p;+1
where

1 if D; is scheduled at time slot ¢,
Tit =
! 0 otherwise

Table 1: Problem formulation.

The first set of constraints ensure that for each data d;, we schedule at most one instance of it. The second
set of constraints ensure that the schedule has no conflicts.

3.2 NP-hardness Result
We now present a hardness result for the general problem.
THEOREM 3.1. Problem 1 is NP-hard, even in the special case of additive utilities.

Proof. Given is an instance of the 0/1 knapsack problem with knapsack bound W and n items, each having
a weight w; and a size p;. An instance of Problem 1 is then constructed by setting r; = 0, d; = W for all i
and Uk(z) = > p, ¢, wi for all i, k, meaning that all items have the same release time and deadline and that the
utility values sum. An optimal solution to this problem instance is then a schedule that maximizes the sum of
the item weights while obeying the release time and deadline constraints. Since the release times and deadlines
are each all identical, ordering is irrelevant, and so an optimal schedule will consist of the items appearing in an
optimal knapsack solution. 0O



4. ALGORITHMS

In this section, we first present two heuristics for the general case. Then we discuss a special cases to which more
efficient algorithms apply.

4.1 Heuristics for the general case
First we attempt to adapt algorithms from additive utility case in this new setting.

The Two-Phase algorithm® first pushes job instances onto a stack when a later job’s weight is greater than
those of conflicting jobs already on the stack; then it pops job instances from the stack and places them in a
non-overlapping schedule. This works with independent job weights because when a job is pushed onto the stack,
the actual value pushed is the weight difference between that job and the overlapping jobs lower on the stack.
In the more general setting, the marginal value of a job depends on which other jobs have been scheduled, which
isn’t determined until the second phase of the algorithm. The LP rounding method by Bar-Noy et al.” does not
apply because of the nonlinear objective function implies a nonlinear program.

We therefore turn to adapting the combinatorial algorithm Admission” that considers jobs instances in the
order of nondecreasing end times. If the currently considered job overlaps with a set of scheduled jobs, we
compare its weight with the sum of the overlapping jobs and decide whether to replace them with it. Crucially,
the weight used for the currently considered job is its marginal weight when combined with the already-scheduled
non-overlapping jobs (see Algorithm 1 for details).

Algorithm 1 Modified Admission

A + 0, is the scheduled data set

I < the set of all unscheduled data instances

while I is not empty do
let I; € I be an instance of D; that terminates earliest in I
I+ I\{L}
let C; be the set of jobs in A overlapping with I;
let U. + U(A) —U(A\C;) and U; + U(A\ C; U{D;}) —U(A\ C))
if U; > pU, then
end if

: end while

: return A

— = e

The first algorithm works on data instances, considering every potential starting time of a job. However, its
main focus is not on the marginal utility but instead chooses jobs in order of earliest possible finishing time.
Therefore we propose a second algorithm (Algorithm 2) that focuses more on data items’ marginal utility. It
greedily schedules jobs with the highest marginal utility over processing time ratio. Each time an unscheduled
job with the maximum ratio is considered: if it is schedulable, we schedule it at the earliest time.

4.2 Special case with r;, =0,d; = d

One special case is that all users are moving together or stay in the communication range of the base station
during the same period. Within the common release time and deadline, the order of scheduled data items is
irrelevant to the total utility. For each data bundle, if we consider every possible combination of data items to
schedule as a “choice”, this problem is exactly the Multiple Choice Knapsack Problem. Therefore, this special
case can be solved by a dynamic programming algorithm'® in pseudo-polynomial time.



Algorithm 2 Greedy Ratio

: A+ (), is the scheduled data set
N <+ the set of all unscheduled data
while N is not empty do

U(AU{D;})-U(A)

let D; € N be a job instance maximizing o

N« N\ {D;}
if D; is schedulable then
schedule D; at the earliest possible time
end if
end while
: return A

— =
—= O

5. EVALUATION

In this section, we evaluate two algorithms with synthetically generated problem instances.

We use the discrete time-simulation environment REPAST Simphony* to simulate a base station and mobile
users in the field. In our simulation setup, we deploy the user locations uniformly at random in a 2D grid of
500mx 120m, and we place the base station at the center of the field. Assuming uniform transmission power and
rate between the base station and users, the transmission range is fixed at R = 60m. We set each user’s direction
of movement to be towards the base station, so that if a user is due east of the base station it will be moving
west. This constrains each user to cross into the base station’s transmission range exactly once over the course
of the simulation. The simulation ends when all the user have passed in and then out of base station range.
The times at which these events occur become the release times and deadlines. A sample scenario is shown in
Figurefig:simscenario, in which the red triangle is the base station and blue circles are the users. The red line
connecting a user to the base station indicates that that user is currently within transmission range.
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Figure 2: A sample simulation scenario.

For each time step, we use Random Way Point'® model to generate user movements. Users’ speeds are
randomly selected between 0 and maxzSpeed. Each user has only one download request; multiple requests
from a user can be realized as multiple users moving together. Data weights are chosen from an exponential
distribution with parameter A while processing times are chosen uniformly in the range of 0.1 to maxPT times
the time window size. DataPerSet indicates the number of data items in a bundle, each of which is associated
with either a super-additive or a sub-additive utility function. We randomly assign each data item to these
numU ser/DataPerSet sets.

In one series of tests, we vary one of following parameters while holding the others fixed: 1. numUser,
2. maxSpeed, 3. maxPT, 4. DataPerSet. The default values of these parameters are listed in Table 2.

*http://repast.sourceforge.net



Table 2: Default parameter values.
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Figure 3: Simulation results.

We also implement a First Come First Serve (FCFS) scheduler as baseline algorithm for comparison. For
each parameter value, we generate 10 problem instances and record the total utility scheduled by all algorithms.
For each problem instance, we divide the total utility value by the maximum utility of all data items, which is
a (loose) upper bound of the optimal solution value. Therefore, the relative utility we report is a conservative
estimate of the approximation factor obtained in our experiments. To examine the effect of different input
parameters, we plot separate results of the four series of tests in Figure 3.

First, we vary the number of users from 30 to 300. As shown in Figure 3a, all three algorithms have a decrease
of relative utility, which suggests that more users make the problem harder to solve. Also, when the number of
users increases beyond a certain point, a limit on the total utility achievable may be reached due to the limited
bandwidth.

Second, we vary maxSpeed from 0.43 to 4.3 meters per timestep. As we can see in Figure 3b, as the speed
increases, the relative utility increases as well. A lower speed yields a larger time window, but the maximum
processing time is fixed at half the size of the time window thus it increases correspondingly. In fact, decreasing
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Figure 4: Algorithm statistics.

the speed will increase the average number of simultaneous data items within the base station’s transmission
range, which can make the problem more difficult.

Third, we vary the maximum data processing time. To ensure each data is schedulable, maxPT must be
bounded by the size of each time window. We therefore vary it from a fraction of 0.1 to 0.5 of the size of the time
window. As we can see from Figure 3c, the total utility decreases very quickly. This is because a larger maxPT
implies that each data may occupy the channel longer, and thus it effectively reduces the number of data items
that can be scheduled.

In the last series of simulations, we vary the number of data items per set from 1 to 12. When there is only
one data per set, the problem collapses to the additive utility setting. As we can see from Figure 3d, that setting
is the easiest case to solve for all three algorithms. When we increase the number of data items per set, the
impact of nonadditive utility grows and the relative utility decreases.

Figure 4 presents some statistics on the overall performance. As shown in the CDF of relative utility (Fig-
ure 4a), the two algorithms perform much better than the baseline FCFS algorithm does, with Greedy Ratio
doing slightly better than Admission. Although 80% of the tests achieve relative utility less than 0.5, this may
be due to the looseness on the optimal value bound used. We also plot an error bar in Figure 4b using the max,
min and median of relative costs for each algorithm in order to investigate their stability. Admission is the most
stable but with only a slight advantage over Greedy Ratio, which in turn has the highest median utility value.
Overall, it appears that Greedy Ratio may have the most to recommend, since operating on data items rather
than data item instances makes it quite efficient.

6. CONCLUSION

In this paper we studied the broadcast scheduling problem under a new setting in which the joint utility of
data is in general different from the sum of the individual utilities. We began by formulating the problem and
proving its hardness. Then we adapted an existing algorithm for the additive utility case and proposed a new
greedy algorithm. Using synthetically generated problem instances, we evaluated the two algorithms. As well
as algorithms for the general case, we analyzed a special case in which data have a common time window and
found that it can solved optimally by dynamic programming.

In the future, we plan to look at more special cases which may admit efficient optimal algorithms, such as the
case with p; = 1 and sub-modular joint utility. We will implement the formulation with optimization software to
obtain the optimal, in order to better evaluate the algorithms. We also plan to adapt the data bundles concept
to more complex scenarios such as convergecast.
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