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Abstract. Drawing on experience gained over a series of distributed
knowledge base and database projects, we argue for the utility of an
expressive quantified constraint language for the Semantic Web logic
layer. Our Constraint Interchange Format (CIF) is based on classical
range-restricted FOL. CIF allows the expression of invariant conditions
in Semantic Web data models, but the choice of how to implement the
constraints is left to local reasoners.
We develop the quantified constraint representation as an extension of
the current proposal for a Semantic Web Rule Language (SWRL). An
RDF syntax for our extended CIF/SWRL is given in this paper. While
our approach differs from SWRL in that existential quantifiers are han-
dled explicitly rather than using OWL-DL constructs, we believe our
proposal is still fully compatible with the use of the various OWL species
as well as RDFS.
We demonstrate the use of the CIF/SWRL representation in the context
of a practical Semantic Web reasoning application, based on the CS AK-
Tive Space demonstrator (the 2003 Semantic Web Challenge winner).
We indicate where in our application it makes sense to use the existing
SWRL directly, and where our CIF/SWRL allows more complex con-
straints to be expressed in a natural manner.

1 Introduction and Motivation

Over the course of several projects, we have developed an approach to knowledge
fusion in open, distributed environments [2, 10, 11]. The central idea in our ap-
proach is, in response to some user’s request, to gather pertinent data from mul-
tiple network sources, along with constraints on how the data can be used. These
data and constraints are then fused by mediator software into a dynamically-
composed constraint satisfaction problem (CSP), which is then dispatched to a
solver on the network. The solutions (if any) are then relayed back to the user.
The data and constraints are expressed against a semantic data model/ontology
because it may be necessary to transform them at run-time; for example, en-
tities/classes in the data model may need to be mapped (rewritten) from a
local schema/ontology to a common interchange schema/ontology. Constraints



in our approach are represented using an expressive quantified constraint lan-
guage — the Constraint Interchange Format (CIF) — based on classical range-
restricted first-order logic, and derived from the Colan/Daplex constraint/query
languages [1].

This approach has been applied chiefly to e-commerce problems, where some
package goods need to be assembled and configured to meet some requirement,
and each component of the package puts constraints on the other components.
For example, in configuring a personal computer system for a user, the choice
of operating system may constrain the choice of peripherals; or, in configuring a
package holiday, the choice of excursions may constrain the timing of the trip.

In recent work we have applied this approach to the Semantic Web [6, 12]. In
many ways, this “new generation” Web is an ideal environment for the kind of
problem-solving activity we envisaged in our earlier work, as it fits the W3C’s
vision of a task-oriented Web “better enabling people and computers to work in
cooperation”1. The lower layers of the Semantic Web architecture (RDF/RDFS)
fit our minimal requirements for data to be expressed against a semantic data
model, while the ontology layer (OWL) allows far richer modelling, and also
supports some elements of ontology mapping (for example, equivalentClass).

The current leading proposal for a representation at the Semantic Web logic
layer is the Semantic Web Rule Language (SWRL)2. While we embrace this pro-
posal, we will argue in this paper that it is not sufficiently expressive for our own
needs, and we therefore propose an extension to SWRL that allows the represen-
tation of the kinds of fully-quantified constraints used in our earlier versions of
CIF. In doing this, we bring forward some aspects of an earlier RDF-compatible
encoding of CIF [12] and align this with the constructs of SWRL, to create a
layered CIF/SWRL representation (with an accompanying RDF syntax). We
will make arguments for allowing forms of logic more expressive than current
SWRL on the open Semantic Web, and also discuss how a representation based
on range-restricted FOL (which takes a closed-world assumption) does not in
practice contradict the vision of an open-world Web.

To illustrate our approach situated in the Semantic Web context, later sec-
tions of the paper introduce a new application which builds on the CS AKTive
Space demonstrator (winner of the 2003 Semantic Web Challenge) [13]. The CS
AKTive Space is a large-scale repository of semantic metadata on computing
science activities in the UK; our application — AKTive Workgroup Builder —
uses constraints to select individuals from the CS AKTive Space to form work-
ing groups that satisfy particular requirements. This could be used, for example,
to form “expert panels”, suggest partners for collaborative projects, or organise
workshops. We will show how “vanilla SWRL” and CIF/SWRL are both useful
for the AKTive Workgroup Builder.

The paper is organised as follows: Section 2 discusses various forms of rule
used in database and knowledge-based systems, and compares these forms with
the kind of fully-quantified constraints used in our approach. Section 3 introduces

1 http://www.w3.org/2001/sw/
2 http://www.w3.org/Submission/SWRL/



the proposed CIF/SWRL representation, including its abstract and RDF syn-
taxes, aligned with those of SWRL. Section 4 presents our illustrative AKTive
Workgroup Builder application, and highlights examples of the use of SWRL
and CIF/SWRL in this demonstrator. Section 5 discusses issues arising from
our approach, and Section 6 concludes with some pointers to ongoing and future
work.

2 Rules and Constraints: How they Differ

People use the word “rules” rather freely. In fact there are a variety of different
kinds which need to be distinguished. We discuss these below, with examples
from SWRL and from our own work using Colan and Daplex [1]: derivation rules,
rewrite rules, event-condition-action (ECA) rules, and quantified constraints.

Derivation Rules Derivation rules are the simplest form. They are essentially a
rule for calculating a derived value on-the-fly, often by some kind of table lookup
in a database, They are a technology often used to provide views of stored data
in databases. For example, we have a rule for a person’s uncle (adapted from
the SWRL proposal, and using the informal SWRL syntax where ?x denotes a
variable, and adding explicit universal quantifiers):

(∀?x,?p,?s,?g) hasParent(?x,?p) ∧ hasSibling(?p,?s) ∧
hasSex(?s,?g) ∧ (?g=‘male’) ⇒ hasUncle(?x,?s)

In our Daplex language, originally used to define integration schemas for het-
erogeneous distributed databases on the Multibase project, we would define the
relationship functionally thus:

define hasUncle(P in Person) ->> Person

Sb in hasSibling(hasParent(P)) such that hasSex(Sb) = ‘male’

Here a predicate rel(X,Y) is replaced by Y in relfunc(X), where relfunc is a
function whose values may be stored or computed. In this example it computes
the set of those siblings of the parent of P who are male. The set is computed
by the function hasUncle, and it may, of course, be empty for some individuals.
The functional form helps to make clear the functional dependency of the derived
information.

Rewrite Rules These rules are useful in query optimisation, for replacing one
expression by an equivalent expression, usually involving less database access.
For example in our Antibody Protein database [8] we have:

with common C in chain, i in integer

rewrite r in residues(C) such that pos(r) = i

into absolutepos(C,i)

This replaces a sequential search down a protein chain for the ith residue in
sequence by a direct lookup of the residue using a precomputed table-driven
function absolutepos. In FOL we could write this as:



(∀?c,?r,?i) Chain(?c) ∧ hasResidue(?c,?r) ∧ hasPos(?r,?i)

⇒ hasAbsolutePos(?c,?i,?r)

It looks the same as a derivation rule but it is used differently. The implication
should really be replaced by ⇔ (is logically equivalent to). This means that
we can substitute an occurrence of the body, which has particular expressions
denoting values for ?c, ?i and ?r, by the head having used the same expressions
in place of ?c, ?i and ?r. Having done this substitution, we can then do algebraic
simplification and further substitutions. Consequently the final formula may look
very different from the original one. Thus we do not execute a chain of rules at
runtime, instead we execute them at compile time and compile away various
unneeded computations, which is a very powerful query optimisation technique.

Event-Condition-Action (ECA) Rules The rewrite rule used above relies on
the correctness of a stored table, relating residue to position in a protein chain.
Fortunately, such relationships do not change, except slowly by evolution, and
then we would be referring to a different chain. If we were referring to something
more dynamic, like pre-booked seats in a passenger aircraft, then we would need
a mechanism to update our stored relationship and keep it in correspondence
with changes in passenger bookings for a given flight. This can be done by ECA
rules (sometimes called triggered rules). For example:

ON Death of Passenger P

WHERE P isBookedOnFlight F and (Other Conditions...)

DO RemoveBooking(P,F).

As is well known, combinations of ECA rules can interact in unpredictable ways
through side-effects in their state changing actions. A neat way of overcoming
this is to code-generate the rules so that they satisfy invariant constraints that
must be maintained under update [3]. This allows us to keep the declarative
stance of pure logic, despite using rules with state changing actions. We shall
now review such constraints.

Quantified Constraints A quantified constraint [4] is not just an isolated
condition. It is a formula of FOL, where all the free variables have universal or
existential (or maybe numerical) quantifiers. Such formulae are very suitable for
expressing domain-specific semantics for collections of stored data. For example,
suppose it is a rule that all tutors with “research” status in some department only
supervise students with computing grades above 60. In FOL this is expressible
as:

(∀?t,?s,?g) Tutor(?t) ∧ hasStatus(?t,‘research’) ∧
supervises(?t,?s) ∧ hasSubjectGrade(?s,‘Computing’,?g) ⇒ (?g>60)

This is easily representable in SWRL, since it is a conjunctive DataLog query.
However, the interesting question is how it is interpreted pragmatically. It is not
really worth using it to infer an inequality about the value of ?g when using a



database, since we can just ask the database for the actual value of ?g directly!
Instead, it is more about keeping consistency of groups of values stored in a
database, so that we can compile away certain checks that would otherwise be
made at runtime.

In order to maintain the validity of the constraint efficiently, we code generate
a number of ECA rules which are triggered by changes in supervisors’ status, or
creation of new supervisees, and which make only those checks that are necessary
for data to be valid for the given incremental change. The creation of these rules
can be done systematically from a knowledge of the constraints and the schema,
as explained in [3], following original ideas in [9]. Better still, if new constraints
are added, or old ones retracted, then the ECA rules can be updated accordingly
— an example of automatic maintenance which is far superior to that of relying
on collections of hand-coded checks and triggers installed over time by a mix of
different programmers.

Thus the lesson for the Semantic Web is that quantified constraints may have
alternative implementations. It should be possible to send a constraint across the
Web, and to allow the remote site to process or implement the constraint as it
thinks best. If it is an equational constraint the site’s processing engine might
enforce it by a derivation rule which always calculates the derived property
value according to the constraint equation. If the derived property depends on
accessing many other stored data values (a large “join”, in database terms) then
it may be better to cache the derived value and use triggered ECA rules to keep
it up to date. There is much literature on how to do this efficiently. We feel that
this approach is in keeping with the spirit of the Web, by granting the local site
autonomy to choose how to implement the constraint, while the constraint itself
guarantees what is being held invariant.

Using Mixed Quantifiers in Quantified Constraints Quantified Con-
straints need not be pure DataLog; they may wish to conclude the existence of
some fact or the truth of some relationship(association). In the example above
we established that research tutors should only supervise bright students, with
grades above 60. However, the constraint leaves open the possibility that a re-
search tutor supervises no students. To make a stronger statement we need an
existential quantifier on the right-hand side, in the conclusion, as below:

(∀?t) Tutor(?t) ∧ hasStatus(?t,‘research’) ⇒
(∃?s,?g) supervises(?t,?s) ∧ hasSubjectGrade(?s,‘Computing’,?g) ∧

(?g>60)

This is a straightforward piece of range-restricted FOL, but it is not DataLog.
The existential quantifier is represented by a Skolem function of the enclosing
quantified variable ?t, and thus the formula in conjunctive normal form is no
longer function free; it includes terms like supervises(?t,Student(?t)) which
are not allowed in DataLog.

In our experience with using the Colan data sublanguage [1, 4], in a number
of projects [3, 6, 11], we have found the need to express constraints of the form:



(∀?x,?y) P1(?x) ∧ q1(?x,?y) ∧ ... ⇒
(∀?r,?s) P2(?r) ∧ q2(?x,?s) ∧ ... ⇒

(∃?u,?v) Pn(?u) ∧ qn(?y,?v) ∧ ...

Thus there are some universally quantified implications, followed by a conjunc-
tion of predicates, possibly existentially quantified. There is a special case with
no universal quantifiers followed just by existential quantifiers, asserting a min-
imum cardinality for some entity type or relationship type. We have not found
the need for further universal quantifiers inside the existential quantifiers. Our
constraint syntax is recursive, and allows for this possibility, but we have not
found the need for it.

Constraint Interchange Format (CIF) Following our experience with Colan
in the KRAFT and Conoise projects, we proposed [12] a constraint interchange
format that was based purely on RDF and RDFS, which was expressive enough
to encode constraints of the form above. It was based purely on range-restricted
FOL with the usual connectives (and, or, not). The intention was that constraints
could be passed to a constraint logic solver or theorem prover, or Prolog solver
for Horn clauses with function symbols. We could have included Description
Logic, but found that the data model provided by RDFS was perfectly adequate
for our uses. This is because we were basically doing A-Box reasoning, relying on
the presence of assertions and instances, rather than T-Box reasoning without
them.

We defined constraint types recursively by the following BNF3:

<Constraint> ::= <ImpliesConstraint> | <ExistsConstraint> | <unQuantifiedBody>
<ImpliesConstraint> ::= Each <Var> in <Entity> [SuchThat <BoolExp>] <Constraint>
<ExistsConstraint> ::= Some <Var> in <Entity> [SuchThat <BoolExp>] <Constraint>
<unQuantifiedBody> ::= <BoolExp>

Here <BoolExp> expands to any well-formed formula using only variables that
have been quantified in an outer construct. The Predicates in the formulae may
refer to membership of a specific collection of entities or stored relationships, or
may be evaluable predicates (as in Prolog). The entities and relationships have
RDFS declarations. This syntax is serialisable in RDF/XML.

Compared to SWRL, this form of RDF had the virtue that it treated uni-
versal and existential quantifiers on a similar footing and was easy to parse.
By contrast, we feel that SWRL has got into difficulties by trying to combine
RuleML, based on DataLog which does not allow existential quantifiers in the
consequent [5], with OWL which allows existential quantifiers in T-Box fashion
as a someValuesFrom construct in an OWL DL expression. This means that
existential quantifiers become a restricted special case which is much harder to
parse, analyse and transform.

Our vision is in accordance with that of Section 7 of the May 2004 SWRL
proposal4, in that we want to see a Semantic Web logic language that can be

3 http://www.csd.abdn.ac.uk/research/akt/cif/
4 http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/



used with a variety of reasoners. In particular, we have a vision of constraints ex-
pressed against one ontology that can be transformed, by simple homomorphism,
to apply to data stored in another ontology, or a shared ontology, in which the
constraints can then be combined with constraints similarly transformed from
other ontologies.

3 Extending SWRL to CIF/SWRL

In designing a re-formulation of CIF we undertook to incorporate SWRL con-
structs where possible, while also striving to simplify the original CIF syntax.
Constraints are essentially defined as quantified implications, so we re-use the
implication structure from SWRL, but allow for nested quantified implications
within the consequent of an implication. The innermost-nested implication will
have an empty body as it is always of the form “true ⇒ . . . ”. In line with the
presentation of SWRL, we first introduce an informal, human-readable syntax,
then present the formal abstract syntax and finally the RDF serialisation.

The human-readable syntax is straightforward, as it simply adds the quanti-
fiers and supports nested implications, where the innermost has an empty body:

(∀?x∈X, ?y∈Y) p(?x,?y) ∧ Q(?x) ⇒
(∀?z∈Z) q(?x,?z) ∧ R(?z) ⇒

(∃?v∈V) s(?y,?v)

Abstract Syntax Here we focus on the extensions to the abstract syntax
given in SWRL and OWL documentation, using the same EBNF syntax. A
constraint structure retains the URIreference and annotation features from
OWL/SWRL so as to allow statements to be made about the constraints them-
selves (see Section 5). Note that nesting is handled by extending the orig-
inal SWRL grammar, allowing a constraint to appear recursively inside a
consequent. The definition of antecedent is unchanged from SWRL and ap-
pears here only for completeness. As defined by the SWRL EBNF, an atom
may be a unary (class) predicate (for example, P(I-variable(x)) or a bi-
nary (property) predicate (for example, q(I-variable(y) I-variable(z))).
The only other significant new piece of syntax is the quantifiers structure, a
list of individual quantifier expressions, each of which contains a reference to a
SWRL I-variable and an OWL/RDFS class. So, in the informal expression
“?x ∈ X” x is an I-variable and X is an OWL/RDFS class identifier.

We have simplified the original CIF syntax to have just one generic form of
constraint, which may have a mixture of quanitifiers in any order desired. In
practice this greatly flattens the nested structures.

constraint ::= ’Implies(’ [ URIreference ] { annotation }

quantifiers antecedent consequent ’)’

antecedent ::= ’Antecedent(’ { atom } ’)’



consequent ::= ’Consequent(’ constraint | { atom } ’)’

quantifiers ::= ’Quantifiers(’ { q-atom } ’)’

q-atom ::= quantifier ’(’ q-var q-set ’)’

quantifier ::= ’forall’ | ’exists’

q-var ::= I-variable

q-set ::= classID

Here is the informal example re-cast into the abstract syntax. Note the empty
antecedent in the innermost-nested implication.

Implies(

Quantifiers(forall(I-variable(x) X) forall(I-variable(y) Y))

Antecedent(p(I-variable(x) I-variable(y)) Q(I-variable(x)))

Consequent(

Implies(

Quantifiers(forall(I-variable(z) Z))

Antecedent(q(I-variable(x) I-variable(z)) R(I-variable(z)))

Consequent(

Implies(

Quantifiers(exists(I-variable(v) V))

Antecedent()

Consequent(s(I-variable(y) I-variable(v))))))))

RDFS Syntax (Sketch) Rather than present the full, verbose RDFS XML
definitions for our additional CIF syntax, here we merely sketch the necessary
extensions to the SWRL RDF syntax:5

– We define a new rdfs:Class cif:Constraint, with two attached properties
cif:hasQuantifiers and cif:hasImplication. The range of the former is
an RDF list (of quantifier structures in practice) and the range of the latter
is a ruleml:Imp.

– We define the parent class cif:Quantifier with two sub-classes: cif:Forall
and cif:Exists. Two properties cif:var and cif:set complete the imple-
mentation of the q-atom from the abstract syntax. The range of both is
an RDF resource: in the case of cif:var this will be a URIref to a SWRL
variable, while for cif:set it will identify an OWL/RDFS class.

– Note that the SWRL RDF syntax allows the body of an implication to be
any RDF list, so it already allows the nested inclusion of a cif:Constraint.

Example CIF/SWRL constraints in RDF syntax are shown in the next section.

4 Illustrative Application: AKTive Workgroup Builder

As a test-bed for our reformulated CIF we sought a Semantic Web application
that was practical, used real-world RDF data, and in which realistic constraints
5 Definition of an XML syntax for CIF/SWRL, extending the SWRL/RuleML XML

syntax, would be trivial. We do not cover this here, preferring the pure-RDF ap-
proach to Semantic Web structure encoding.



could be expressed. The AKT project (of which the CIF work is a part) had al-
ready developed the CS AKTive Space application (winner of the 2003 Semantic
Web Challenge) [13]. The CAS includes a very large repository of RDF data cov-
ering computing science research in the UK. We therefore decided that the task
of dynamically composing “workgroups” from the pool of available computing
science academic staff suited our criteria for a test-bed application.

The process of constructing a workgroup involves several steps:

– Defining constraints about the nature of the workgroup; for example, defining
the minimum and maximum group size, the focus of the workgroup, etc.

– Gathering the RDF data about the pool of people to be considered.
– Understanding and reasoning against the data to determine eligibility; for

example, is a person available to participate, do they have the relevant
skills/interests, etc.

– Finally, using a constraint satisfaction problem solver to compose workgroups
that satisfy the constraints.

Our AKTive Workgroup Builder (AWB) could be used, for example, to form
“expert panels”, suggest partners for collaborative projects, or organise work-
shops.

In its current form, the AWB does not directly import its data from the
CAS for several reasons. Most fundamentally, the data in the CAS repository
is expressed against the AKT Portal Ontology6, which is OWL Full. The lack
of reasoning support for OWL Full led us to produce a restricted reformulation
of the core of the AKT Portal Ontology in OWL Lite, allowing us to use the
software included in HPs Jena toolkit7 to perform ontological inference and rea-
soning. The other problems in directly using the CAS data related to scalability
and data provenance. The sheer size of the full repository (currently over 10
million RDF statements covering over 2000 people and their related projects,
publications and other activities) made direct use of this data in developing the
AWB very difficult. Because the data is harvested from the open Web/Semantic
Web, it inevitably contains contradictions, errors, duplications, incompleteness,
and other provenance issues. These problems of scale and trust, while being in-
teresting and exciting problems in their own right, were tangential to our current
scope of work.

For the initial version of the AWB, then, we elected to focus on data relating
to the members of the five partner groups in the AKT project: Aberdeen, Edin-
burgh, Open University, Sheffield and Southampton. Essentially, this cut-down
AWB would allow us to compose working groups for our own activities. So, the
data in the current AWB repository can best be regarded as a locally-cached
subset of the full CAS data store, expressed against an OWL Lite cut-down ver-
sion of the AKT Portal Ontology. The instance data is almost identical to the
original, while the ontology definitions are mostly just weakenings of the OWL
Full original.
6 http://www.aktors.org/ontology/portal
7 http://jena.sourceforge.net



The AWB is implemented as a J2EE application with Jena managing the
RDF processing, and MySQL as the back-end DBMS. Since the reasoning usually
takes longer than a user is prepared to wait with a Web application (even with
the cut-down dataset), the AWB uses a messaging mechanism in order to “call
back” the user when the results are ready for inspection.

Reasoning in the AWB: SWRL The entailments generated by the Jena Owl
Reasoner used by the AWB are all class or property based derivations. For exam-
ple, a Professor-In-Academia is a sub-class of Person, therefore all instances of
Professor-In-Academia are also Persons. Similarly, a Person with the prop-
erty has-supervisor must be the more specific sub-class of PhD-Student as
dictated by the domain of this property (only the PhD-Student class has the
has-supervisor property).

For our reasoning to cover realistic situations we needed more expressivity.
For example, if someone has published a paper on Machine Learning, this implies
that they have an interest in this area, even if they have not explicitly stated it
in their research interests. The fact cannot be derived from a class or property
hierarchy. While the Jena reasoner API has its own internal form for inference
rules, it was important to us to state these derivation rules on the Semantic Web
using SWRL. To illustrate, suppose we are interested in deriving the ontology
property has-base-location for a person, from the rule: “if a person has an
affiliation with an organisation, and that organisation has a postal address with
a city then this implies that the person has a base location of the same city”. In
FOL:

(∀?p,?u,?a,?c) Person(?p) ∧ Organisation(?u) ∧
has-affiliation(?p,?u) ∧ has-postal-address(?u,?a) ∧

address-city(?a,?c) ⇒ has-base-location(?p,?c)

In SWRL RDF syntax this looks as shown in Figure 1. Note that the ontology
URI is represented by the entity “&akt;” all classes in this reduced version of the
AKT Portal Ontology are OWL classes, defined only with OWL Lite constructs.

Reasoning in the AWB: CIF The above example works well because it uses
ontology properties of an individual to derive further ontological information
about that same individual and uses only the universal quantifier. However,
trying to express an existentially quantified sentence (from which we wish to
form a constraint) in SWRL is more awkward. For example, if we wanted to say,
“every workgroup must contain at least 1 member who is a Professor”:

(∀?g∈Workgroup)(∃?p∈Professor-In-Academia) has-member(?g,?p)

In the SWRL document it is shown how this kind of existentially-quantified
statement can be expressed implictly using the OWL DL someValuesFrom con-
struct as part of a class restriction on the Workgroup class. As we argued in
Section 2, we prefer to express all the quantifiers uniformly and explicitly, and
leave the reasoner the option of transforming the constraint expressions to a



<swrl:Imp>
<swrl:body rdf:parseType=”Collection”>

<swrl:ClassAtom>
<swrl:classPredicate rdf:resource=”&akt;#Person”/>
<swrl:argument1 rdf:resource=”#p”/>

</swrl:ClassAtom>
<swrl:ClassAtom>

<swrl:classPredicate rdf:resource=”&akt;#Organization”/>
<swrl:argument1 rdf:resource=”#u”/>

</swrl:ClassAtom>
<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource=”&akt;#has-affiliation”/>
<swrl:argument1 rdf:resource=”#p”/>
<swrl:argument2 rdf:resource=”#u”/>

</swrl:IndividualPropertyAtom>
<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource=”&akt;#has-postal-address”/>
<swrl:argument1 rdf:resource=”#u”/>
<swrl:argument2 rdf:resource=”#a”/>

</swrl:IndividualPropertyAtom>
<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource=”&akt;#address-city”/>
<swrl:argument1 rdf:resource=”#a”/>
<swrl:argument2 rdf:resource=”#c”/>

</swrl:IndividualPropertyAtom>
</swrl:body>
<swrl:head rdf:parseType=”Collection”>

<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource=”&akt;#has-base-location”/>
<swrl:argument1 rdf:resource=”#p”/>
<swrl:argument2 rdf:resource=”#c”/>

</swrl:IndividualPropertyAtom>
</swrl:head>

</swrl:Imp>

Fig. 1. SWRL RDF/XML for the rule: “if a person has an affiliation with an organ-
isation, and that organisation has a postal address with a city then this implies that
the person has a base location of the same city”.



<cif:Constraint>
<cif:hasQuantifiers rdf:parseType=”Collection”>

<cif:Forall>
<cif:var rdf:resource=”#g”/>
<cif:set rdf:resource=”&akt;#Workgroup”/>

</cif:Forall>
<cif:Exists>

<cif:var rdf:resource=”#p”/>
<cif:set rdf:resource=”&akt;#Professor-In-Academia”/>

</cif:Exists>
</cif:hasQuantifiers>
<cif:hasImplication>

<swrl:Imp>
<swrl:body rdf:parseType=”Collection”/>
<swrl:head rdf:parseType=”Collection”>

<swrl:IndividualPropertyAtom>
<swrl:classPredicate rdf:resource=”&akt;#has-member”/>
<swrl:argument1 rdf:resource=”#g”/>
<swrl:argument2 rdf:resource=”#p”/>

</swrl:IndividualPropertyAtom>
</swrl:head>

</swrl:Imp>
</cif:hasImplication>

</cif:Constraint>

Fig. 2. RDF/XML for the constraint, “every workgroup must contain at least 1 mem-
ber who is a Professor”.

suitable implementation form (for example, a rewriting of the constraint to use
an OWL DL reasoner would be possible in this case). So CIF/SWRL makes it
possible to represent both the quantifiers in a uniform and explicit way. The
CIF/SWRL for this constraint in RDF syntax is shown in Figure 2. Note the
empty body.

We will now examine a more complex constraint, that would be far more
cumbersome and unintuitive to capture in SWRL/OWL DL alone, and also illus-
trates how solving in CIF can interplay with rule-based reasoning in SWRL. Con-
sider the constraint, “any workgroup with at least 5 members must contain peo-
ple from different sites”. For this we use the derived property has-base-location
from our SWRL example to indicate a persons “site”. The FOL is:

(∀?g∈Workgroup) has-size(?g,?s) ∧ (?g≥5) ⇒
(∃?p1,?p2∈Person) has-member(?g,?p1) ∧ has-base-location(?p1,?b1) ∧

has-member(?g,?p2) ∧ has-base-location(?p2,?b2) ∧ (?b1 6=?b2)

What makes this example interesting is that ordering and positioning of the
quantifiers can be retained and the meaning does not need to be compromised
to be able to write this in CIF/SWRL. The RDF/XML for this example is
shown in Figure 3; note the nested implication where the recursive nesting of
Constraint structures terminates with an implication where the body is empty.



<cif:Constraint>
<cif:hasQuantifiers rdf:parseType=”Collection”>

<cif:Forall>
<cif:var rdf:resource=”#g”/>
<cif:set rdf:resource=”&akt;#Workgroup”/>

</cif:Forall>
</cif:hasQuantifiers>
<cif:hasImplication>

<swrl:Imp>
<swrl:body rdf:parseType=”Collection”>

<swrl:IndividualPropertyAtom>
<swrl:classPredicate rdf:resource=”&akt;#has-size”/>
<swrl:argument1 rdf:resource=”#g”/>
<swrl:argument2 rdf:resource=”#s”/>

</swrl:IndividualPropertyAtom>
<swrl:DatavaluedPropertyAtom>

<swrl:propertyPredicate rdf:resource=”&swrlb;#greaterThanOrEqual”/>
<swrl:argument1 rdf:resource=”#s”/>
<swrl:argument2 rdf:datatype=”&xsd;#int”>5</swrl:argument2>

</swrl:DatavaluedPropertyAtom>
</swrl:body>
<swrl:head rdf:parseType=”Collection”>

<cif:Constraint>
<cif:hasQuantifiers rdf:parseType=”Collection”>

<cif:Exists>
<cif:var rdf:resource=”#p1”/>
<cif:set rdf:resource=”&akt;#Person”/>

</cif:Exists>
<cif:Exists>

<cif:var rdf:resource=”#p2”/>
<cif:set rdf:resource=”&akt;#Person”/>

</cif:Exists>
</cif:hasQuantifiers>
<cif:hasImplication>

<swrl:Imp>
<swrl:body rdf:parseType=”Collection”/>
<swrl:head rdf:parseType=”Collection”>

. . . details of body omitted: simply a list of </swrl:IndividualPropertyAtom>s . . .
</swrl:head>

</swrl:Imp>
</cif:hasImplication>

</cif:Constraint>
</swrl:head>

</swrl:Imp>
</cif:hasImplication>

</cif:Constraint>

Fig. 3. RDF/XML for the constraint, “any workgroup with at least 5 members must
contain people from different sites”.



5 Discussion

In our previous work, we have shown how the solving of CIF constraints can
be implemented by dynamically composing the constraints and available data
instances into a constraint satisfaction problem, code-generated for use with a
particular finite domain solver [7, 6]8. This approach works well with the CIF
constraints, which are range-restricted FOL. Of course we are making a closed
world assumption here, at the time the finite domain CSP is composed, and
this might seem contradictory to the general vision of an open world Semantic
Web (and specifically the open world assumption underpinning OWL DL). In
practice, there is no contradiction: a finite number of candidate instances are
always available at run-time, whether gathered from a local cache (as in the
current AWB) or acquired through some wider search (which is always “best-
effort” on the Web). As explained in Section 2, this is because we are essentially
doing A-Box reasoning, relying on the presence of assertions and instances, rather
than T-Box reasoning without them.

As we said before, our approach is not incompatible with the use of other
reasoning mechanisms (in fact, part of our motivation for doing this work is to
explore the interplay of multiple reasoners — see Section 6). For example, OWL
DL class restrictions can usefully be employed in CIF expressions to specify the
domains of variables, both in the quantifier expressions (as the value of a cif:set
property) and within the heads and bodies of the implications (allowed by the
abstract syntax in Section 3 as unary-predicate atoms). We have yet to properly
explore the computational complexities arising from this usage, however, or to
come to a point where we can recommend “best practice”.

However, an important point about the original design of CIF, which is re-
tained in the reformulation presented here, is that it is perfectly feasible to use
CIF with only RDFS data models. This is true of SWRL as well, although of
course SWRL has no way to handle existential quantification without OWL DL
constructs — not a problem for CIF. Given the relatively much wider use of
RDFS than OWL on the current Semantic Web (Dublin Core, RSS, vCards,
and FOAF9 are among the most widely-instantiated Semantic Web schemas) we
feel this makes CIF immediately useful for practical applications.

One part of the proposed CIF syntax that we have not explored in this paper,
chiefly for reasons of space, is the representation of disjunction and negation.
These are allowed in CIF implication heads and bodies, although we are still
experimenting with various forms to avoid over-complexity in the RDF/XML
syntax. Again, we also aim ultimately to move to a point where we can recom-

8 Solvers used to date include ECLiPSe (http://www.icparc.ic.ac.uk/eclipse/)
and the Sicstus Prolog FD library (http://www.sics.se/isl/sicstus/)

9 Technically FOAF (Friend-of-a-Friend) is an OWL Full ontology; however, there is
only very limited use of OWL constructs in FOAF term definitions, chiefly to indicate
which properties can be used a unique identifiers for instances. Users of FOAF need
little or no real understanding of OWL to use it, which perhaps explains its rapid
uptake; see, for example: http://www.plink.org



mend “best practice” in the use of these more elaborate forms of constraint; we
believe more research is needed generally in this area.

As a final point, it is worth noting that the URIreference and annotation
features from OWL/SWRL allow statements to be made about constraints. This
supports the usual authorship and provenance information to be attached to con-
straints, which is always useful, but also allows other kinds of metadata specific
to the usage of constraints. For example, we may attach properties indicating
the “strength” of the constraint — is it hard or soft (that is, can it be relaxed?),
or are there particular exceptional conditions under which it may become hard
or soft? In general, we have an interest in using constraint reification in the solv-
ing process [2], where it becomes useful to reason about which constraints are
currently satisfied and which are not, and to use techniques such as negotiation
and argumentation to relax (or in some cases harden) constraints. We hope that
the the URIreference and annotation features will be a useful mechanism in
constraint reification.

6 Conclusion & Future Directions

In this paper, we have proposed a representation for fully-quantified constraints
at the Semantic Web logic layer, in the form of an extension to the implica-
tion constructs available in the SWRL proposal. We illustrated the use of the
CIF/SWRL constraints alongside SWRL derivation rules in a practical applica-
tion: the AKTive Workgroup Builder. Work on the AWB is ongoing; currently
we are employing three forms of reasoning:

– Jena is used to perform OWL Lite reasoning at the ontology level, as part
of the task of assembling candidate instances for the solving process.

– We are experimenting with the use of Hoolet10 to implement the SWRL
derivation rules.

– Through a PrologBeans interface we are harnessing the SICStus Prolog finite
domain constraint solver.

Looking ahead, our interest lies in combining these various mechanisms into
a practical hybrid reasoning suite, and in exploring complexity and scalability
trade-offs.

Related work within the AKT project at Aberdeen covers other constraint-
solving approaches and support tools. For example, we are applying constraint-
satisfaction to configuration design, and are developing a constraint editor to
allow end-users to express CIF constraints.11
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