Handling Soft Constraints in the Semantic Web
Architecture

Alun Preece

apreece@csd.abdn.ac.uk

Jeff Z. Pan

jpan@csd.abdn.ac.uk

Stuart Chalmers

schalmer@csd.abdn.ac.uk

Craig McKenzie

cmckenzie@csd.abdn.ac.uk

Peter Gray

pgray@csd.abdn.ac.uk

Department of Computer Science, University of Aberdeen, Aberdeen AB24 3UE, UK
http://wuw.csd.abdn.ac.uk/research/akt/cif/

ABSTRACT

In this paper we present a proposal for representing soft
CSPs within the Semantic Web architecture. The proposal
is motivated by the need for a service-providing agent to
reason about its commitments as soft constraints. The two
essential requirements addressed are: the need to associate
utility values with constraints, to reflect the relative im-
portance of satisfying them, and the need to make state-
ments about which constraints are satisfied and violated by
a given solution. The proposal builds upon previous work
in defining a Semantic Web Constraint Interchange Format
(CIF), which itself builds on the proposed Semantic Web
Rule Language (SWRL).The main contribution of this pa-
per is a new ontology for representing soft CSPs; we also
extend the previous form of CIF/SWRL. The soft CSP on-
tology is intended to be used with CIF/SWRL, but is also
potentially usable with other constraint and rule represen-
tations.

1. INTRODUCTION

Constraint satisfaction is an important type of reasoning,
with broad applicability in the Semantic Web context. Ex-
amples include extending the definitions of concepts in Web
ontologies, in a similar way to rules [8], representing and rea-
soning about capabilities of Semantic Web services [15], and
supporting information integration through the interchange
of constraints and data [12].

Constraints are often soft: they do not have to be sat-
isfied for a solution to be valid or acceptable [4]. Instead,
the goal of the constraint-solving procedure becomes to find
an optimal solution that satisfies a maximal subset of the
constraints [6]. In this context, constraints often have as-
sociated wtility values, indicating the relative importance
of satisfying individual constraints or clauses [2, 7]. Im-
portantly, these utilities are generally not absolute: they
are relative to the particular constraint satisfaction problem
(CSP) in which the constraint is being applied. In relation
to a particular solution, a given constraint may be satisfied
or violated, and it is often useful to be able to represent and
reason about which constraints are satisfied/violated by a
given solution [5]. The ability to make statements about
whether a constraint is satisfied or not in a given context is

Copyright is held by the author/owner(s).
WWW2006, May 22-26, 2006, Edinburgh, UK.

commonly called constraint reification.

A class of applications where the handling of soft con-
straints is a key issue is that of commitment management for
service provisioning in virtual organisations. In these appli-
cations — commonly seen in domains such as e-commerce [14],
e-science [16], and e-response’ — a service-provider manages
particular resources, and commits these resources to meet
specific goals. Often, the commitment of resources to goals
is governed by service-level agreements. The commitments
can be modelled as constraints on the resources, and com-
mitments managed as a soft CSP. When a service-provider
is presented with a new potential commitment, it must per-
form reasoning to determine if it can take on this commit-
ment, possibly by dropping (breaking) existing lower-utility
commitments.

In this paper we present a proposal for representing soft
CSPs within the Semantic Web architecture, using the com-
mitment management scenario as motivation. The proposal
builds upon previous work in defining a Semantic Web Con-
straint Interchange Format (CIF) [13], which itself builds on
the proposed Semantic Web Rule Language (SWRL) [10].
This paper extends the previous form of CIF/SWRL, and
proposes a new ontology for representing soft CSPs which is
intended to complement CIF/SWRL (but is also potentially
usable with other constraint and rule representations).

The paper is organised as follows: Section 2 presents an
abstract scenario involving an agent reasoning about it’s
commitments using constraint solving, motivating the need
to represent utility values and constraint reification; Sec-
tion 3 describes our SWRL-based Constraint Interchange
Format; Section 4 surveys approaches to handling soft and
reified constraints in various CSP-solving frameworks; Sec-
tion 5 introduces an ontology for representing soft CSPs;
Section 6 provides discussion and conclusion.

2. MANAGING COMMITMENTS AS CON-
STRAINTS

To illustrate the use of soft constraints for modelling and
managing commitments, we now present a detailed example.
This example is a simplification of the type of problem that
occur in the virtual organisation service-provisioning appli-
cation domains alluded to in the introduction (see also [14]).

Consider two service-providing agents, al and a2. Each

"http://e-response.org/

Resour ce/ Agent

124 ‘
al cl
Li5x 0->5]: ‘ c2
RN s 3x 6->10 22 Schedul e 1
10 I Reject N
‘ ‘ c3 Satisfy cl,c2&c3
a2 ..'.'5x0->7_'_'.".‘ .
TR Rt Fseies FtreH I Ti me
"0 1 23 456 78 9 10
Resour ce/ Agent
12
al
5X 0->5 4 Schedul e 2
3x 6->10 Break c1&c2.
10] I Satisfy N
T c3 (a: 12x, a2:3x)
a2 ':':EX%-')7":':'::"‘
) 10”

Resour ce/ Agent

12 [] I
e
al cl
CfEiex 0->5 ‘ c4 Schedule 3
PN MR I Si3x 6->10 Lol Break c3
10 Satisfy N
(al: 5x, a2: 10x)
a2 5x 0->7
0 10"
Resour ce/ Agent
12
X//J Schedul e 4
al L i Break c1&c3
et ~ satisfy N
— i (al:12x - 0->6
10 9x - 6->10
G 4% a2:3x - 0->6
a2 5x 0->7 6x - 6->10)
) 10”

. exi sting % resources contributed

conm t nent to new comm t nent

3 Broken Free
Conmi t nent Resour ces

Figure 1: Agent al & a2’s options for providing new
commitment N

agent can provide a certain amount of resource x (12 units
from a1l and 10 from a2). The agents have existing commit-
ments — c1, ¢c2 and c3 on those resources, as shown in the
first schedule in Figure 1:

e ci1: 5x from time 0—5 on al
e c2: 3x from time 6—10 on a1
e c3: 5x from time 0—7 on a2

Note that in this simple example we only look at a single
type of resource (x). However, the solution to the commit-
ment management problem presented here generalises to any
number of resource types and combination [5]. We restrict
ourselves to a single resource type here only for the sake of
clarity.

If a new request, N is received by the agents to provide
15x from time 0—10, then the agent has four main choices:

e Reject N and satisfy existing commitments c1, c2 & c3
(Schedule 1 in Figure 1)

e Accept N and break c1 & c2 (Schedule 2)

e Accept N and break ¢3 (Schedule 3)
e Accept N and break c1 & c3 (Schedule 4)

(Note that there are many permutations of the exact amounts
of the resource x, but in terms of commitments satisfied or
broken these are the four main choices.)

As the number of agents and commitments increases the
number of possible combinations of solutions that satisfy all
the commitments (and solutions that break commitments)
grows exponentially. Also the number of trivial solutions
(i.e. solutions that vary in extremely small detail) increases
(e.g. schedule 3 could take 7x from al and 8x from a2 rather
than 5x and 10x which would not affect the commitments
broken). The main emphasis behind the CSP-solving proce-
dure is to find solutions that break commitments (i.e. solu-
tions that are different enough in outcome that they break
different commitments). As a result of this we need to equip
the CSP solver with a method for differentiating between so-
lutions. We also need a way to prioritise commitments so
that we can rule out solutions that break commitments that
have been specified a priori as ‘must-complete’ tasks.

The commitment management system is implemented as
a reification extension to a cumulative scheduling CSP solver
that uses a combination of reification and constraint value
labeling to provide the required commitment management
and prioritisation — details are provided in [5].

3. A CONSTRAINT INTERCHANGE FOR-
MAT BASED ON SWRL

Our Constraint Interchange Format (CIF) is based on the
Colan [1] constraint language, which is based on range re-
stricted first order logic. (The term “constraint” is often
used rather freely; in this paper we use the term for logical
expressions within the scope of Colan — see [13] for broader
discussion of the relationship between rules and constraints.)
Earlier versions of the language were aligned with RDF [11]
and SWRL [13]. CIF constraints are essentially defined as
quantified implications, so we re-use the implication struc-
ture from SWRL, but allow for nested quantified implica-
tions within the consequent of an implication. An exam-
ple CIF constraint is shown in human-readable SWRL-style
syntax below:

(V7x€X, ?y€Y) p(?x,7y) A Q(?x) =

(V?z€Z) q(?x,7z) A R(7z) =
FrveV) s(?y,?v)
Commitment c2 from the example in Section 2 can be writ-
ten in this syntax as follows:

(V?7t€Time) 7t>6 A 7t<10 =

(3?7c€Commitment) hasService(?c,?s) A
hasServiceType(?s, ‘x’) A hasAmount(?s,3)

Compared to the SWRL syntax in [10], this simply adds
the quantifiers and supports nested implications. Note that
the innermost-nested implication has an empty body as it is
always of the form “true = ...”. In the above syntax this
is implicit; the following abstract and RDF syntaxes make
this explicit.

Figure 2 shows the CIF extensions to the abstract syn-
tax given in SWRL and OWL documentation [10], using
the same EBNF syntax. We refer to this form of CIF as
CIF/SWRL. A constraint retains the URIreference and

constraint ::= ’Implies(’ [URIreference] { annotation }
quantifiers antecedent consequent ’)’

antecedent = ’Antecedent(’ { expr } ’)’

consequent = ’Consequent (’ consexpr ’)’

consexpr = constraint | { atom }

expr = atom | disjunct | conjunct | negation

disjunct =0r(C’ { expr } ’)’

conjunct = 2And(’ { expr } ’)’

negation = ’Not(’ expr ’)’

quantifiers ::= ’Quantifiers(’ { g-atom } ’)’

q-atom = quantifier ’(’ g-var g-set ’)’

quantifier = ’forall’ | ’exists’

q-var = I-variable

q-set = description

Figure 2: CIF/SWRL abstract syntax in EBNF

annotation syntax features from SWRL so as to allow state-
ments to be made about the constraints themselves (see
Section 5). Note that nesting is handled by extending the
original SWRL grammar, allowing a constraint to appear
recursively inside a consequent.

The definition of antecedent is extended from SWRL to
allow combinations of disjunction, conjunction, and nega-
tion expressions. In the simplest case where an antecedent
is a conjunction of atoms, the syntax allows omission of an
explicit And structure — the “and” is implicit (as in the
SWRL syntax). However, disjunctions and negations are
always explicit, as are any conjunctions within them. It is
worth noting that a consequent can be only a conjunction
— CIF/SWRL does not allow disjunction or negation here.

As defined by the SWRL EBNF, an atom may be a unary
(class) predicate (for example, P(I-variable(x)) or a bi-
nary (property) predicate (for example, q(I-variable(y)
I-variable(z))). The only other significant new piece of
syntax is the quantifiers structure, a list of individual
quantifier expressions, each of which contains a reference
to a SWRL I-variable and an OWL description. So, in
the informal expression “?x € X” x is an I-variable and X
is an OWL/RDFS class identifier. In more complex cases,
the OWL description may be a restriction or other more
elaborate expression allowed by the OWL syntax.

This new syntax also differs from an earlier version pub-
lished in [13] by allowing disjunction and negation in the
antecedents, and any OWL description as the value of a
g-set.

The informal example re-cast into the abstract syntax
is shown in Figure 3. Note the empty antecedent in the
innermost-nested implication.

3.1 CIF/SWRL RDF Syntax Summary

To support publishing and interchange of CIF constraints
in the Semantic Web context, we provide an RDF/XML
syntax as an extension to the one given for SWRL. The full
RDF Schema for the CIF/SWRL syntax is available at the
project website?; here we merely summarise the necessary
extensions to the SWRL RDF syntax:

e We define a new rdfs:Class Constraint, with proper-
ties hasQuantifiers and hasImplication. The range
of the former is an RDF list (of quantifier structures in
practice) and the range of the latter is a ruleml: Imp.

Zhttp://www.csd.abdn.ac.uk/research/akt /cif/

e We define the parent class Quantifier with two sub-
classes: Forall and Exists. Two properties var and
set complete the implementation of the g-atom from
the abstract syntax. The range of both is an RDF
resource: in the case of var this will be a URlIref
to a SWRL variable, while for set it will identify an
OWL/RDFS class.

e Note that the SWRL RDF syntax allows the body of
an implication to be any RDF list, so it already allows
the nested inclusion of a Constraint.

e Finally, we define OrExpression and AndExpression
as sub-classes of rdf:List, and a Negation class that
has a swrl:argumentl property to point to the negated
atom.

The RDF /XML for the constraint c2 is shown in Figure 4.

4. REPRESENTING SOFT CONSTRAINTS
IN CSP SYSTEMS

Before presenting our soft CSP ontology, we examine com-
mon features of soft CSPs in the literature and in practical
implementations, in order to identify the minimal features
required of the ontology.

Soft constraints can be represented and implemented in a
variety of ways, depending on language and system used. In
this section we look at a number of CSP-solving frameworks
(based on Prolog and Java), and describe ways in which we
can model soft constraints using the features available in
those frameworks. We then give a brief overview of some of
the soft constraint literature.

4.1 Prolog Implementations

In many Prolog implementations, the issue of soft con-
straints can be modelled with reification. Reification is the
attachment of a boolean value to each constraint. If a con-
straint is satisfied, then the boolean value is set to true,
otherwise it is set to false. This means that it is possible
to reason about the constraints, by reasoning about these
boolean values.

Given an unsatisfiable problem, the aim then is to find
the best subset of simultaneously satisfiable constraints (i.e.
true values), by utilising the attached boolean values.

These values themselves can then form the basis for a
meta-level CSP, the solution to which is an assignment of
reification values to constraints at the lower level. SICS-
tus®, GNU Prolog? and SWI Prolog® all provide a system of
reification.

4.2 Java Implementations

In Java, two dominant constraint libraries are Java Con-
straint Library (JCL)® and Choco”.

The JCL attaches a floating point number to each tuple
of a constraint rated from 0.0 (important) to 1.0 (not im-
portant), so each outcome pairing is given a value showing
its preference as a solution. When solutions are returned
from the solver they are given a ‘score’ dependent on what

http://www.sics.se
“http://gnu-prolog.inria.fr/
http://www.swi-prolog.org/
Shttp:/ /liawww.epfl.ch/JCL/
"http://choco.sourceforge.net/

Implies(
Quantifiers(forall(I-variable(x) X) forall(I-variable(y) Y))
Antecedent (p(I-variable(x) I-variable(y)) Q(I-variable(x)))
Consequent (
Implies(
Quantifiers(forall(I-variable(z) Z))
Antecedent (q(I-variable(x) I-variable(z)) R(I-variable(z)))
Consequent (
Implies(
Quantifiers(exists(I-variable(v) V))
Antecedent ()
Consequent (s (I-variable(y) I-variable(v))))))))

Figure 3: Example constraint shown in the CIF/SWRL abstract syntax

<cif:Constraint rdf:about="“#c2” />
<cif:hasQuantifiers rdf:parseType= “Collection” >
<cif:Forall>
<cifivar rdfiresource=“#t” />
<cif:set rdfiresource=“&schedule;#Time” />
< /cif:Forall>
< /cif-hasQuantifiers>
<cif:hasImplication>
<swrl:Imp>
<swrl:body rdf:parseType=*“Collection” />
<swrl:DatavaluedProperty Atom>
<swrl:propertyPredicate rdf:resource=“&swrlb;#greaterThanOrEqual” />
<swrl:argument1 rdf:resource=“#t”/>
<swrl:argument2 rdf:datatype=“&xsd;#int” />6< /swrl:argument2 />
< /swrl:DatavaluedProperty Atom>
<swrl:DatavaluedProperty Atom>
<swrl:propertyPredicate rdf:resource=“&swrlb;#lessThanOrEqual” />
<swrl:argument1 rdf:resource=“#t”/>
7swrll:]grgumert?c;gf:datatyp:: “&xsd;#int” />10< /swrl:argument2 />
< /swrl:Datavalue ropertyAtom>
</swrl:body>
<swrl:head rdf:parseType=“Collection” >
<cif:Constraint>
<cif:hasQuantifiers rdf:parseType=“Collection” >
<cif:Exists>
<cif:var rdfiresource="“#c” />
<cif:set rdf:iresource=“&schedule;# Commitment” />
< /cif:Exists>
< /cif:hasQuantifiers>
<cif:hasImplication>
<swrl:Imp>
<swrl:body />
<swrl:head rdf:parseType=“Collection” >
<swrl:IndividualProperty Atom>
<swrl:classPredicate rdf:resource=“&schedule;#hasService” />
<swrl:argumentl rdf:resource=“#c” />
<swrl:argument2 rdf:resource=“#s” />
< /swrl:IndividualProperty Atom>
<swrl:IndividualProperty Atom>
<swrl:classPredicate rdf:resource=“&schedule;#hasServiceType” />
<swrl:argument1 rdf:resource=“#s”/>
<swrl:argument2 rdf:resource=“&service;#x" />
< /swrl:IndividualProperty Atom>
<swrl:IndividualProperty Atom>
<swrl:classPredicate rdf:resource=“&schedule;#hasAmount” />
<swrl:argument1 rdf:resource=“#c” />
<swrl:argument2 rdf:datatype=“&xsd;#int” />3< /swrl:argument2 />
< /swrl:IndividualProperty Atom>
</swrl:head>
</swrl:Imp>
< /cif:hasImplication>
< /cif:Constraint>
</swrl:head>
</swrl:Imp>
< /cif-hasImplication>
< /cif:Constraint >

Figure 4: RDF /XML for the constraint (commitment) c2

tuple has been chosen. These may be used to prioritise the
solutions dependent on preferences.

This method can easily model the reification described in
the Prolog systems. If we add ‘0’ to each domain of possible
values for each variable, we can class this as a ‘not applied’
value for that variable (i.e. if the variable is assigned to 0, we
take it to be not satisfied). We can mark a constraint tuple
where an assigned value is 0 as 1.0 (i.e. not important), and
other possible values as anywhere between 0.0 to 0.9; there-
fore the preference will to be find a value other than 0 for
that constraint (i.e. satisfy the constraint). Obviously this
requires some work-arounds when zero value assignments
are required for specific values, but in the case of the com-
mitment management examples we have been investigating,
this method has proved satisfactory.

Choco is a system for solving constriants, also written
in Java. It is a library for constraint satisfaction problems
(CSPs), constraint programming (CP) and explanation-based
constraint solving that is built upon an event-based prop-
agation mechanism. The type of constraints that can be
handled by Choco are arithmetic constraints (equality, dif-
ference, comparisons and linear combination), boolean and
user-defined N-ary constraints. The propagation engine main-
tains arc-consistency for binary constraints throughout the
solving process, while for n-ary constraints, it uses a weaker
propagation mechanism with a forward checking algorithm.
Choco uses a system of explanation based solving®. Using
this method, a constraint program can describe why certain
decision were taken (i.e. why variable x cannot take the
value a) and so show why a problem fails. This information
can then be used to find subsets of satisfiable constraints
within the given set.

4.3 Soft Constraints In the Literature

A number of people in the literature look at the scoring, or
ordering, of constraints in CSP solving in two main ways [2]:

e Assigning values to each possible tuple in a constraint.
e Assigning a value to the actual constraint itself.

There are a number of ways that these two methods are
modelled. Fuzzy CSPs [7] allow constraint tuples to have an
associated preference (1 = best, 0 = worst). Again, as de-
scribed in the Java Constraint Library section, we can still
model (and have modelled) partial CSPs using this method,
by adding a tuple with 0 values to the domain of possible
values, and assigning this a ‘1.0’ preference (i.e. worst out-
come). Similarly weighted CSPs [4] assign preference, but
the value given with each tuple is associated with a cost.
The main factor in these types of CSP is that a value is as-
sociated with the individual tuples in a constraint, not the
actual general constraint itself.

Freuder and Wallace [6] talk more in terms of the actual
constraints themselves, and relaxing them. They talk about
sets of solutions, rather than the actual individual solutions
to each variable. They then talk about a partial ordering
of solutions, where the solutions are ordered by a given dis-
tance metric.

5. DEVELOPING THE CSP ONTOLOGY

We were interested in developing a well formed means of
representing a set of one (or more) constraints that, when

Shttp://www.e-constraints.net /

combined, form a single (soft) CSP, the ultimate goal being
to facilitate interchange of information between a CSP prob-
lem constructor and an appropriate solver. The solver would
process the problem and return to the constructor zero or
more solutions, each solution identifying those constraints
that are satisfied and those that are violated by that solu-
tion. This would then allow the CSP constructor to decide
itself which solution to select.

As discussed in Section 4, soft CSP solvers typically allow
each constraint to be assigned a wutility value, defined as a
floating point number with a value ranging from 0 to 1 inclu-
sive. These values represent the significance, or importance,
of that constraint with respect to the other constraints com-
prising the CSP. Essentially, this value represents the degree
of softness of each constraint, with a higher number imply-
ing a lower softness, and therefore a greater desirability to
satisfy that constraint. However, depending upon the strat-
egy employed by the CSP solver, a constraint with a lower
utility value may still be satisfied in preference to violating
another constraint with a higher utility value.

To help clarify these requirements, consider the following
scenario from an e-response domain. A controller within an
ambulance dispatch centre is trying to solve the CSP of as-
signing an individual ambulance to a series of emergencies
(each emergency can be regarded as a constraint). The util-
ity value of each constraint is a combined representation of
the time taken for the ambulance to respond and the gravity
of the situation. There are three quick trips involving trans-
porting patients from one local hospital to another. Each of
these constraints is assigned a utility value of 0.2 as they are
not urgent but still desirable to free up beds. There has also
been a traffic accident where someone is injured but not crit-
ically — this incident is therefore assigned a utility value of
0.5. Finally, someone has been badly burned in a house fire
and is needing emergency treatment, unfortunately the lo-
cation is difficult to get to and will tie up the ambulance for
some time — this emergency gets assigned a utility value of
0.9. These are then given to the CSP solver to produce pos-
sible solutions of how the ambulance should respond, taking
into account the utility values of each constraint, and at-
tempting to produce the highest combined overall utility.
One solution may be to only satisfy one constraint and at-
tend to the burns victim (0.9). Another solution may lean
toward satisfying more constraints and helping more people
by attending the traffic accident and moving two of the three
patients (0.5 + 0.2 4+ 0.2 = 0.9). The controller must then
make the final decision of which solution is preferable. The
key issue is that these assigned utility values are all subjec-
tive. A second controller may deem the traffic accident as
more important and assign it a higher utility value, likewise
he might regard the patient transfers as being more trivial
and lower their utility values.

From the preceding discussion, it is clear that a utility
value is not an intrinsic part of a constraint itself, rather it
can be viewed as a kind of annotation on a constraint, with
respect to a particular CSP (set of constraints). Similarly,
the status of a constraint in terms of whether it is satisfied
or not can be seen as an annotation of that constraint with
respect to a particular solution. Therefore, we decided to
create a separate ontology to represent a CSPs, indepen-
dent of the (CIF/SWRL) representation of the individual
constraints themselves. The following sections describe two
variant representations of the CSP ontology.

ConstraintProblem

hasSolution

hasConstraint

hasConstraintGroup
overallUtility

Literal**xsd:float

ConstraintGroup

‘containsConstraint

isSatisfied

Literal**xsd:boolean

hasExpression

- CIF/SWRL Constraint

Figure 5: Graph of the OWL DL CSP ontology

ValuedConstraint

hasUlilityValue

5.1 CSP Ontology in OWL DL

Figure 5 is a graphical depiction of the OWL DL ver-
sion of the CSP ontology (classes are drawn as ovals, prim-
itive data types as rectangles, and properties are arcs going
from the domain and pointing to the range of that prop-
erty). Initially, a CSP constructor would create an instance
of a ConstraintProblem with one, or more, instances of
ValuedConstraint. Each ValuedConstraint is assigned a
utility value (real number) with the actual constraint ex-
pressed using CIF/SWRL. At this point the constructor
would have only a representation of the CSP itself; there
would be no instances of the Solution class. Only once
the CSP has been passed onto a solver will any instances of
Solution be created (or not, if no solution can be found).

In order to describe the state of a ValuedConstraint (i.e.
whether it is satisfied or not with respect to a particular
Solution instance), this version of the ontology features a
sub-class of Solution called ConstraintGroup. This class
acts as a container for a set of ValuedConstraints involved
with a particular Solution instance and attaches a single
boolean-valued property isSatisfied to each member of
the ConstraintGroup. (Enforcing this restriction of a single
isSatisfied property is the main reason OWL DL was used
to define the soft CSP ontology.)

5.2 CSP Ontology in OWL DL + SWRL

The second variation of our CSP ontology is shown in Fig-
ure 6. The motivation for this variant is to capture the direct
relationships between individual solutions and constraint in-
stances. The ConstraintGroup class and its boolean prop-
erty isSatisfied are replaced by the properties satisfies
and violates, both of which have domain Solution and
range ValuedConstraint. Clearly, the use of these proper-
ties must be disjoint between the same instances: a given
constraint can only be satisfied or violated with respect to a
given solution. OWL DL does not enable us to enforce this

ConstraintProblem

hasSolution

hasConstraint

Literal*xsd:float

ValuedConstraint

hasUtilityValue

hasExpression

CIF/SWRL Constraint

SWRL Rule for property disjointedness:
satisfies(?x,?y) & violates(?x,?y) = {empty}.

Figure 6: Graph of the CSP ontology using a SWRL
rule to enforce the disjunct properties satisfies and
violates

check?, so we define a rule to enforce data integrity in this
case. Using SWRL:

csp:satisfies(?z,?y) A csp:violates(?z,7y) = L

(L denotes the empty consequent i.e. trivially false [10].)
In principle, both variants of the ontology can be used;
however, we prefer the simplicity and directness of this sec-
ond variant. In this representation, the first two solutions
from Figure 1 are as follows:
<ex:solnl> <csp:satisfies> <ex:cl>
<ex:solnl> <csp:satisfies> <ex:c2>
<ex:solnl> <csp:satisfies> <ex:c3>
<ex:solnl> <csp:violates> <ex:N>

<ex:soln2> <csp:violates> <ex:cl>
<ex:soln2> <csp:violates> <ex:c2>
<ex:soln2> <csp:satisfies> <ex:c3>
<ex:soln2> <csp:satisfies> <ex:N>

While adding SWRL rules to a DL knowledge base can
make inference undecidable [9], this particular rule is within
the DL-safe subset of SWRL (as the disjointness is imposed
on named ValueConstraints rather than any possible ones).
Therefore, it is still possible to have decidable reasoning sup-
port for our OWL DL 4+ SWRL version of the CSP ontolgy.

6. DISCUSSION AND CONCLUSION

In this paper we presented a proposal for representing soft
CSPs within the Semantic Web architecture. The proposal
was motivated by the need for a service-providing agent to
reason about its commitments as soft constraints. The two
essential requirements addressed were: the need to associate

9Disjoint property axioms are expected to be available
in OWL 1.1, which is still decidable: http://www-
db.research.bell-labs.com /user/pfps/owl/overview.html

utility values with constraints, to reflect the relative impor-
tance of satisfying them, and the need to make statements
about which constraints are satisfied and violated by a given
solution. While there exists an XML-based proposal for rep-
resenting CSPs [3], to the best of our knowledge our proposal
is the first CSP interchange format founded on RDF and
OWL.

The proposal built upon previous work in defining a Se-
mantic Web Constraint Interchange Format (CIF), which
itself built on the proposed Semantic Web Rule Language
(SWRL). This paper extended the previous definition of
CIF/SWRL to allow disjunction and negation in implication
antecedents, and the ability to use OWL descriptions in the
scope of quantifiers. Note that, while the CSP ontology is
designed to work with CIF as the constraint representation,
it is conceivable that other constraint and rule representa-
tions could be used as the values of the expression properties
of ValueConstraints . As work continues on standardising
Semantic Web rule and constraint languages'®, we will con-
sider suitable extensions to the CSP ontology.

The SWRL FOL proposal to extend SWRL to full first-
order logic! shares many of the features we earlier proposed
for CIF/SWRL. While, at the time of writing, the SWRL
FOL proposal lacks an RDF syntax, we anticipate it would
not be hard to fully align CIF/SWRL with SWRL FOL. The
main differences are in the syntactic form for the quantifier
parts of expressions, a more expressive consequent (SWRL
FOL allows disjunction and negation here), and a more com-
plex syntax for simple conjunctions (SWRL FOL opts not
to follow the SWRL “list format” for these).

It is worth emphasising that the CSP ontology and CIF
are intended to be interchange formats — to solve a CSP it is
necessary to translate the CSP and the individual CIF/SWRL
constraints to a native format, such as one of those surveyed
in Section 4. This will involve some degree of (often non-
trivial) conversion and mapping of the various elements of
the CSP. For example, as mentioned in Section 2 our cur-
rent implementation of the commitment management sys-
tem uses the Java Constraint Library and, as a result, utility
values need to be mapped from the 0 (softest)...1 (hard-
est) scale used in the ontology (Section 5) to the 1 (soft-
est)...0 (hardest) scale used in the JCL (Section 4). In
previous work, CIF has also been translated to the native
formats of the Sicstus Prolog FD library and ECLiPSe [12,
11].

Our immediate future plans lie in developing the interac-
tion between constraint solving and the user using our two
interchange formats. Using an emergency response applica-
tion domain'? as a test-bed scenario for our commitment
management system, we aim to experiment with various
styles of user interface to allow a user to pose a constraint
satisfaction problem to a solver, receive a number of solu-
tions with various overall utilities, and choose a preferred
set of commitments.

7. ACKNOWLEDGMENTS

This work is supported under the Advanced Knowledge
Technologies (AKT) Interdisciplinary Research Collabora-
tion (IRC), which is funded by the UK Engineering and

Physical Sciences Research Council (EPSRC) under grant
number GR/N15764/01. The AKT IRC comprises the Uni-
versities of Aberdeen, Edinburgh, Sheffeld, Southampton,
and the Open University. See also: http://www.aktors.org
The commitment management service was developed in
the context of the CONOISE and CONOISE-G projects, in-
volving the Universities of Aberdeen, Cardiff, and Southamp-
ton, and British Telecom, and funded by the DTI/Welsh e-
Science Centre, and BT. See also: http://www.conoise.org

8. REFERENCES

[1] N. Bassiliades and P. Gray. CoLan: a Functional
Constraint Language and Its Implementation. Data
and Knowledge Engineering, 14:203-249, 1994.

[2] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi,

T. Schiex, and G. Verfaillie. Semiring-based CSPs and
Valued CSPs: Basic properties and comparison. In
M. Jampel, E. Freuder, and M. Maher, editors,
Over-Constrained Systems, pages 111-150.
Springer-Verlag LNCS 1106, Aug. 1996.

[3] F. Boussemart, F. Hemery, and C. Lecoutre.
Description and representation of the problems
selected for the first international constraint
satisfaction solver competition. Technical report,
CRIL, Université d’Artois, 2005.

[4] K. Brown. Soft consistencies for weighted csps. In
Proceedings of Soft’03: 5th International Workshop on
Soft Constraints, Kinsale, Ireland, September 2003.

[5] S. Chalmers, A. D. Preece, T. J. Norman, and
P. Gray. Commitment management through
constraint reification. In 3rd International Joint
Conference on Autonomous Agents and Multi Agent
Systems (AAMAS 2004), pages 430—437, 2004.

[6] E. C. Freuder. Partial Constraint Satisfaction. In
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, IJCAI-89,
Detroit, Michigan, USA, pages 278-283, 1989.

[7] H. W. Guesgen and A. Philpott. Heuristics for solving
fuzzy constraint satisfaction problems. In 2nd New
Zealand Two-Stream International Conference on
Artificial Neural Networks and Ezxpert Systems
(ANNES ’95), 1995., 1995.

[8] S. Hawke, editor. W3C Workshop on Rule Languages
for Interoperability, 2005.
http://www.w3.0rg/2004/12/rules-ws/.

[9] 1. Horrocks and P. Patel-Schneider. A proposal for an
OWL Rules Language. In Thirteenth International
World Wide Web Conference (WWW 2004). ACM,
2004.

[10] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A Semantic Web rule
language combining OWL and RuleML. Technical
report, W3C, 2004.
http://www.w3.org/Submission/SWRL/.

[11] K. Hui, S. Chalmers, P. Gray, and A. Preece.
Experience in using RDF in agent-mediated
knowledge architectures. In L. van Elst, V. Dignum,
and A. Abecker, editors, Agent-Mediated Knowledge
Management (LNAI 2926), pages 177-192.

Phttp://www.w3.org/2005 /rules/ Springer-Verlag, 2004.
Yhttp://www.daml.org/2004/11/fol / [12] K. Hui, P. Gray, G. Kemp, and A. Preece. Constraints
Lhttp: //e-response.org/ as mobile specifications in e-commerce applications. In

[13]

[14]

R. Meersman, K. Aberer, and T. Dillon, editors,
Semantic Issues in e-Commerce Systems, pages
327-341. Kluwer, 2003.

C. McKenzie, P. Gray, and A. Preece. Expressing fully
quantified constraints in CIF/SWRL. In G. Antoniou
and H. Boley, editors, Rules and Rule Markup
Languages for the Semantic Web (RuleML 2004),
pages 139-154. Springer-Verlag, 2004.

T. J. Norman, A. D. Preece, S. Chalmers, N. R.
Jennings, M. M. Luck, V. D. Dang, T. D. Nguyen,

V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian.
CONOISE: Agent-based formation of virtual
organisations. Knowledge-Based Systems, 17:103-111,
2004.

M. Nottingham and P. Le Hégaret, editors. W3C
Workshop on Constraints and Capabilities for Web
Services, 2004.
http://www.w3.0rg/2004/09/ws-cc-program.html.

J. Patel, . M. L. L' Teacy, N. R. Jennings,

S. Chalmers, N. Oren, T. J. Norman, A. Preece,

P. M. D. Gray, P. J. Stockreisser, G. Shercliff, J. Shao,
W. A. Gray, N. J. Fiddian, and S. Thompson.
Agent-based virtual organisations for the grid. In Proc
1st International Workshop on Smart Grid
Technologies, 2005.

