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Abstract. In this paper, we discuss the need for a hybrid reasoning ap-
proach to handing Semantic Web (SW) data and explain why we believe
that the Blackboard Architecture is particularly suitable. We describe
how we have utilised it for coordinating a combination of ontological
inference, rules and constraint based reasoning within a SW context.
After describing the metaphor on which the Blackboard Architecture is
based we introduce its key components: the blackboard Panels containing
the solution space facts and problem related goals and sub-goals; the
differing behaviours of the associated Knowledge Sources and how they
interact with the blackboard; and, finally, the Controller and how it
manages and focuses the problem solving effort.
To help clarify, we use our test-bed system, the AKTive Workgroup
Builder and Blackboard (AWB+B) to explain some of the issues and
problems encountered when implementing a SW Blackboard System in
a problem oriented context.

1 Introduction & Motivation

The W3C Semantic Web Activity Group1 describes the Semantic Web (SW)
as providing “...a common framework that allows data to be shared and reused
across application, enterprise, and community boundaries.” Unfortunately, since
this machine processable information is essentially a “symbolic” version of the
current web, the drawback is that there is no regulation over the proffered con-
tent, creating many complicating factors and making the task of utilising (and
reasoning against) “open web” data far from trivial. Because the Logic Layer of
the SW architecture means not only the use of logic to enrich data but also the
application of logic to “do something” with the data [12], our research interest
lies in exploring the suitability of a Blackboard System to utilise incomplete, SW
information in a closed world, problem oriented context, i.e. using SW data to
create a (finite domain) Constraint Satisfaction Problem (CSP) before attempt-
ing to solve it.

An interesting starting domain was within the context of the CS AKTive
Space2 [16], namely the Computing Science (CS) community in the UK. Our

1 http://www.w3.org/2001/sw/
2 http://cs.aktivespace.org



demo application, the AKTive Workgroup Builder and Blackboard (AWB+B),
is a SW application that attempts to construct one or more working groups of
people from a pool of known individuals. Workgroup composition must adhere
to a set of user defined constraints, e.g. “the workgroup must contain between 5
and 10 individuals” or “at least half the members of the workgroup must have
a research interest of Agents”.

Since our problem combines ontological inference, rules and constraint based
reasoning, we believe that a combination of reasoning methods are necessary.
The “one size fits all” reasoning theory was questioned in [17] when a DL based
reasoner was compared to a First-Order prover. The final conclusion was that
when dealing with a very expressive OWL DL ontology a combination of both
is necessary because there was no known single reasoning algorithm able to
adequately cope with the full expressivity possible with the OWL DL language.
They also flagged slow performance speed as a potential hurdle. Therefore, for
this to be efficient, a hybrid reasoning [2] approach is required.

Once this necessity for hybrid reasoning was identified, we realised that there
is nothing in the architecture of the Semantic Web for coordinating this effort. We
believe the Blackboard architecture is appropriate as it meets our requirements
– supporting the use of distributed Knowledge Sources (KSs) responding to a
central, shared knowledge base via a control mechanism [15, 3].

The paper is organised as follows: Section 2 introduces our test-bed applica-
tion, the AWB+B, and explains the process of building workgroups; Section 3
describes the blackboard analogy before comparing the traditional approach to
our Semantic Web based approach; Section 4 describes the role of the Knowledge
Sources and discusses their individual attributes; Section 5 describes the con-
trolling mechanism of the blackboard; Section 6 describes the planned direction
of our future work; and Section 7 provides discussion and our conclusions.

2 Building Workgroups

The AKTive Workgroup Builder and Blackboard (AWB+B) is a new incarnation
of our earlier version of the system (AWB [13]) that did not use the blackboard
architecture. Like its predecessor, the AWB+B is a web-based application that
tackles the problem of assembling a workshop containing one or more work-
groups from a pool of known people. Since the user is not expected to have
knowledge about the lower level operations of the blackboard, we assume that
all the necessary RDF information resources (describing the people, constraints,
derivation rules, etc) to be included are known to the user (via URIs). This al-
lows the blackboard to be initialised and the KSs to be dynamically created and
registered with the blackboard “behind the scenes”.

The RDF data processed by the AWB+B contains information about each
individual’s research interests, publications and projects they have been involved
in. The detail of this information will vary depending upon what is published
by a particular data source. Ideally, this information will need to be reasoned
against in order to infer additional facts that may not have been explicitly stated



– for example projects that a person has worked on or papers that they have
published can imply additional research interests.

3 The Blackboard Analogy

The concept of a Blackboard System is based upon a metaphor whereby a group
of people, each with differing expertise and knowledge, are all standing around a
blackboard deliberating over a problem that has been written up on it. Everyone
understands that the ultimate goal is to solve the problem and that they will
know the solution when they see it but, at this point in time, no single individual
can derive the final solution on their own. The process begins when one person
looks at the problem description on the board and realises that he/she can make
a small relevant contribution. They write their finding onto the blackboard for
the others to see. This inspires another person to a further idea, which they also
write on the blackboard. This scenario continues until eventually a solution is
reached via these incremental, cooperative steps (for a fuller description see [15]).
No-one is allowed to communicate directly, everything must be done through the
blackboard which becomes a shared “thinking space” for all the participants. We
must also consider the protocol of how everyone writes on the blackboard. For
example, if there is only one piece of chalk, how is the decision made as to whom
gets to use it (and when) to write on the blackboard? Potentially, this could be
by having someone act as a controller. In computing terms, the architecture of
a Blackboard System has the “blackboard” as a shared Knowledge Base, and
the “people” as various Knowledge Sources – we discuss KSs in more detail in
Section 4.

3.1 Traditional Approach

The pioneering blackboard systems (Hearsay-II [6], HASP/SIAP [8], CRYSALIS
[5] and OPM [11]) maintained the blackboard as a shared data repository repre-
senting a communal work area or “solution space” of potential solution compo-
nents. The associated KSs were able to view the contents of the blackboard and
react by indicating what they could contribute. They were only allowed to mod-
ify the contents of the blackboard if/when requested to do so by the Controller.
For this to work efficiently, the data held on the blackboard must be structured
hierarchically into Abstraction Levels (see Figure 1); multiple distinct hierarchies
were referred to as Panels.

This organisation served two purposes. Firstly, it aided each KS to check if
it can contribute (i.e. the KS was activated, or triggered, by the propagation
of information onto an abstraction level that it was monitoring). Secondly, it
helped focus the search for the solution. As the name suggests, each layer is an
abstraction using concepts that hide the detail on the layer below it. To clarify,
using the domain of speech understanding, suppose the lowest abstraction level
could be the phonetic sounds accepted by the system; the level above could be
potential combinations of these sounds into letter groups; the next level being



Fig. 1. Each Knowledge Source (KS)
can view the Abstraction Levels within
a Blackboard Panel. A KS can be trig-
gered by any of the items on black-
board, allowing it to contribute some-
thing at any of the abstraction levels.

Fig. 2. The core architectural compo-
nents of a Blackboard System. Each
KS can view the contents of the Black-
board Panels, but it is the Controller
that decides which KS(s) are allowed
to contribute to the Blackboard.

single words; the next level could be phrases; with, finally, the topmost level
consisting of potential whole sentences. A word-dictionary KS would examine
the phonetic letter groups and combine these to form words, which (controller
permitting) it would then post onto the level above.

The nature of each abstraction level and the actual entries within each level,
can vary from implementation to implementation depending upon the nature of
the problem attempted. Instead of the bottom-up approach used in the example,
a top-down approach may be required, so the first abstraction level is vague with
later ones becoming more refined. Likewise a KS’s trigger could span multiple
layers with a contribution also affecting one or more layers (see Figure 2).

As mentioned already, the decision of what is (or is not) placed on the
blackboard is made by the controller, and the complexity of the solving strat-
egy adopted can vary from a simplistic “just action everything” approach to a
more complex goal driven algorithm. The key point is that it directs the solving
process, via goals and sub-goals, that each of the KSs can be triggered by. This
also helps to ensure that only relevant information is added. Since the triggering
action can be dependent upon information added by a different KS, this results
in an opportunistic solving paradigm. A blackboard system is fundamentally
backward chaining – it is goal driven. In our case, the initial goal placed on the
blackboard is to find a solution to a specified workgroup problem.

3.2 Semantic Web Approach

Our Semantic Web Blackboard maintains all the principles of the traditional
blackboards but improves upon them by incorporating some of the concepts of
the Semantic Web. The notion of Abstraction Levels aligns itself well to the
hierarchical, structured nature of an ontology. In our test-bed system, AWB+B
(discussed later), the information represented on blackboard is stored as an RDF



graph. This also has the advantage that the contents of the blackboard can be
easily serialised into textual form – either for debugging purposes or propagation
of the contents – and represented in a well known and understood format (e.g.
RDF, N3).

To the best of our knowledge, in the past the blackboard has always been
passive with any deductive mechanism placed in the KSs. While not wishing
to stray too far from the original concepts of the architecture, we decided to
introduce an element of intelligence to the blackboard itself by enabling it to
perform reasoning on the class hierarchy being added to it. Here we are only
materialising all the transitive sub-class/property relations and all the instance
type relations. For example, if a class C1 is defined as being a sub-class of C2 and
C2 is a sub-class of C3 then the blackboard would assert that C1 is a sub-class
of C3. The blackboard also has the ability to assert new <rdf:type> statements
about individuals. Continuing the previous example, if X is an instance of C1

and C1 is a sub-class of C2 then we can assert that X is also an instance of C2.
We elected to only perform this type of reasoning and not a richer type

of classification that is possible within OWL (e.g. using property domain and
ranges) since this is such a common operation that having it done by the black-
board eliminates the need for frequent call outs to KS that would perform the
same function. Unfortunately, enabling the Blackboard to make inferences about
itself must be treated with caution. Since reasoning is both difficult and time
consuming, it would be undesirable if the actual blackboard became a bottle-
neck while it attempted to fully reason about itself and denied all KSs from
contributing – hence we have not increased the blackboard’s inference ability
any further. The problem is that there is absolutely no guarantee of decidability
w.r.t. information placed on the blackboard. In ontological terms, a KS could
contribute triples that make the blackboard contents OWL Full (meaning that
it could not be fully reasoned against anyway). To prevent this, we inhibit the
statements placed by the KSs to be OWL Lite. We can guarantee decidability
by ensuring all contributed statements are based upon a known URIs which can
be checked to classify its OWL species. This can be done in one of two ways: the
underlying ontology is checked against a register of known OWL Lite Ontologies;
or, providing it is not too computationally expensive, the OWL species can be
checked with an existing validator (e.g. Pellet3, WonderWeb4, BBN5).

4 Behaviours of Knowledge Sources

The KSs represent the problem solving knowledge of the system. Each KS can
be regarded as being an independent domain expert with information relevant
to the problem at hand. The key point is that no assumptions should be made
about the capabilities of a KS – conceptually it should be regarded as a black
box. Due to the tightly coupled nature of the KSs and the Blackboard, all KSs

3 http://www.mindswap.org/2003/pellet/species.shtml
4 http://phoebus.cs.man.ac.uk:9999/OWL/Validator
5 http://owl.bbn.com/validator/



must be “registered” so that they can view the blackboard contents and inform
the Controller of any potential contributions.

KSs can access the blackboard and continually check to see if they can con-
tribute. Each one has a precondition (or event trigger) and an action (what it
can add to the blackboard). The blackboard is monotonic, facts are only ever
added by the KSs, never retracted. This mechanism is usually overseen by a
controller that monitors changes to the blackboard and delegates actions ac-
cordingly. The whole process is driven by the posting of goals which a KS either
offers a direct solution to, or breaks down further into sub-goals, indicating that
more knowledge is required.

The following sub-sections describe the main types of KS currently imple-
mented within the AWB+B system based on their behaviours w.r.t. the black-
board. This is by no means an exhaustive list of all the possible types of KS and
it should be noted that future KSs could combine some of these behaviours, but
we have not explored this yet. Since our interest lies in rule and constraint based
reasoning, we discuss the KSs relating to these areas in greater depth.

4.1 User (Human) KS

While this may not be immediately obvious, the user of the system can be re-
garded as a type of KS. This represents “human” knowledge which is entered via
the web-based user interface. In AWB+B terms this would be a user specifying
the problem parameters, e.g. the number of workgroups to be built, the size
of each workgroup, any associated compositional constraints etc. Once all the
necessary information for the CSP has been entered, the KS transforms it into
the starting goals for the system which are then posted onto the blackboard.
Each starting goal is a skeletal instance of the Workgroup class containing only
those properties that describe its composition and constraints. There are no
hasMember properties implying its membership. It is the posting of these goals
onto the blackboard that kick-starts the whole process.

In the current AWB+B implementation this interaction is minimal, merely
the problem definition. However, there is nothing to prevent a more “interactive”
human KS. Another variation of a User KS could, for example, continually check
the blackboard for inconsistencies and when one is found present the user with
pop-up windows asking them to offer a possible resolution, i.e. it gives the user
a “view” of inconsistencies found on the blackboard.

4.2 Instance based KS

This type of KS contains instance data corresponding to an ontology but not the
actual schema itself. This could either be from a simple RDF file, a Web Service
or data held in an RDF datastore. This KS contributes in the following way:

i) Try to add a “solution” to a posted (sub-)goal by adding instance data for
classes and/or properties defined on the blackboard.



ii) Try to add a “solution” to classify any property’s direct subject and/or
object which the blackboard does not have a class definition for.

For example, if the ontological class Professor is defined on the blackboard and
this KS has instances of that class then, as per (i), the offered solution is all the
Professor instances that it knows about. Property definitions work in the same
way, but are slightly more complex. As per (i), when this KS responds to the
property based goal worksFor the KS would offer the statement:
<ex:john> <ont:worksFor> <ex:abdnUni> .

However, this gives no information about the subject or the object of that triple.
This is not an issue if they are already instantiated on the blackboard, but if
they are not (and assuming the object is not a literal) then subsequently, as per
(ii), the KS could also offer the following:
<ex:john> <rdf:type> <ont:Lecturer> .

<ex:abdnUni> <tdf:type> <ont:University> .

Since this KS does not know the underlying schema, it cannot contribute class
definition information about the Lecturer or University classes.

If this KS is a repository of RDF triples (e.g. 3Store [9]) then no reasoning
ability is assumed. We require a wrapper for this KS, allowing us to commu-
nicate with the datastore via its API. In the case of the 3Store, it uses a http

interface that accepts SPARQL6 queries. We transform any blackboard goal into
a query, the result of which can be transformed into triples and asserted onto
the blackboard.

Since this type of repository can contain a vast amount of information, this
raises the issue of the state which that information is in. Since access to the data
is via a query mechanism, we are still effectively querying an RDF graph for
which we have no means of knowing whether all, some or no additional entail-
ments have been inferred. For example, while an ontology describes a Professor

as a sub-class of Academic and the datastore contains instances of Professor

for this schema, it might not actually contain the triples saying that Professor
instances are also Academics. Consequently, a SPARQL query for Academics
would not return the Professors as it does not follow sub-class links. The only
way around this is to query for all the sub-classes; which will eventually occur,
as the Schema based KS (described next) will post the sub-classes as sub-goals
prompting more refined queries.

4.3 Schema based KS

This represents a KS that only contains information at an ontological schema
level. Since the blackboard initially contains no ontological structure (i.e. it does
not contain any RDFS/OWL statements for the domain), it is the job of this
KS to help facilitate the construction of the relevant ontological parts on the
blackboard. This type of KS attempts to contribute in the following ways:

6 SPARQL (SPARQL Protocol And RDF Query Language), is documented at:
http://www.w3.org/TR/rdf-sparql-query/



i) Try to add new sub-goals to the blackboard by looking for:
- Ontological sub-classes of a class defined on the blackboard.
- Ontological sub-properties of property defined on the blackboard.

ii) Try to improve the (limited) reasoning ability of the blackboard by adding
and inferring:

- subClassOf statements connecting classes already defined on the black-
board.

- subPropertyOf statements connecting properties already defined on the
blackboard.

Note: Statements are only added for direct sub-class/sub-property relations.
iii) Try to add new sub-goals for any property’s subject and/or object on the

blackboard that does not have a class definition. The sub-goals, in this case,
being the missing class definitions.

In (i) and (ii) super-classes/properties are never added to the blackboard as
these are deemed irrelevant and would widen the scope of the blackboard con-
tents too much. Likewise, we need to be careful in (iii), as we do not just want
to use the domain and range values of a property because they might (inten-
tionally) be set very open. Continuing our previous example from section 4.3,
let us suppose that when the ontology was first authored, the worksFor prop-
erty was assigned a domain of Person and a range of <owl:Thing>. This was
because the author believed that only a Person is capable of working, but what
it is they actually work for could either be another Person or an Organisation.
Therefore, for simplicity, they just widened the domain to encompass as many
classes as possible. If we were to use these domain and range values, we would
introduce a sub-goal asking for all instances of <owl:Thing> which would end
up with each KS offering every instance it has. Therefore, in an attempt to nar-
row the search space as much as possible, only the class definitions of instances
with the worksFor property are added as sub-goals (in this case Lecturer and
University respectively).

4.4 Rule Based KS

A Rule KS, like all the other KS types, can be viewed as a black box, encapsu-
lating its rules and keeping them private. The ability to derive new information
through rules is an extremely important and powerful asset. Since we assume
that these rules come from the open SW, we use SWRL7 for expressing them
as it is currently the dominant representation. This KS works by examining the
contents of the blackboard to determine if any of the rules that it knows about
are required and then attempts to contribute. A rule is required only if any of
the elements in the consequent (head) are present on the blackboard8. The KS
attempts to contribute to the blackboard in the following ways:

7 SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C Mem-
ber submission, http://www.w3.org/Submission/SWRL/

8 The reason why this is “any head element” is because SWRL allows the consequent
to contain a conjunction of atoms.



i) Try to add a “solution” by firing the rule against instances already on the
blackboard and asserting the appropriate triples.

ii) Try to add new sub-goals to the blackboard by looking for:
- Any ontological classes that are antecedents of the rule and that have

not been defined on the blackboard.
- Any ontological properties that are antecedents of the rule and that have

not been defined on the blackboard.
The sub-goals in this case are the ontological class or property definitions.

We need to be careful here, remembering that we want to keep the blackboard
contents relevant to the problem at hand and not introduce superfluous classes
or properties. The following example illustrates one way a Rule Based KS can
comply with this relevancy criteria of the blackboard:

“If a person is known to be an author of a book and that book has a topic
then this implies that the person is an expert on that particular topic.”
In informal SWRL syntax, where ?x denotes a variable, this can be written as:

(1) Person(?p) ∧ Book(?b) ∧ hasTopic(?b,?t) ∧ authorOf(?p,?b)
⇒ PublishedAuthor(?p) ∧ expertOn(?p,?t)

Here Person, Book and PublishedAuthor are predicates denoting ontological
classes and hasTopic, authorOf and expertOn are predicates relating properties
to classes. If a rule has a conjunctive consequent it can be split into separate
rules for each head atom. This means that if a consequent is not needed, that
rule will not be considered avoiding the placement of unnecessary sub-goals
(i.e. class/property definitions) onto the blackboard that could, subsequently,
cause other KSs to add irrelevant information relating to these (either solution
instances or sub-class/property sub-goals). Because of the conjunction in the
consequent, this can be split up and re-written as 2 separate rules:

(2) Person(?p) ∧ Book(?b) ∧ authorOf(?p,?b) ⇒ PublishedAuthor(?p)
(3) Person(?p) ∧ Book(?b) ∧ hasTopic(?b,?t) ∧ authorOf(?p,?b)

⇒ expertOn(?p,?t)

Using rule (1) from the above example, if the blackboard only contains the
property expertOn then we apply the equivalent of rule (3) to the blackboard
and since (2) is not needed, it will not be considered – we only want to add new
expertOn properties and ignore instances of the class PublishedAuthor.

Now if PublishedAuthor does exist on the blackboard and we assume no new
antecedent information has been placed on the blackboard between cycles, the
first cycle would involve adding all values of PublishedAuthor as per rule (2).
In the 2nd cycle, it would see that no new instance data for PublishedAuthor

can be added and, iteratively, move onto the next consequent item (expertOn)
to see if it can contribute as per rule (3) – which it can. Finally, in the 3rd cycle,
the rule would check both (2) and (3) and find that no new data can be added,
so it would respond by saying it cannot contribute.

The current implementation of the AWB+B rewrites each rule into SPARQL
queries, which it places against the blackboard contents to determine if any



new triples can be asserted – essentially this is a brute force, forward chain-
ing approach to deriving new entailments. The query results are then added
to the blackboard. From the previous example, using rule (3) to determine the
expertOn property, we can create the following query, where rdf is the RDF
namespace, and ont is the appropriate ontology namespace:
SELECT ?p, ?t

WHERE { ?p rdf:type ont:Person .

?b rdf:type ont:Book .

?b ont:hasTopic ?t . }

The result set of this query contains value pairs of Person URI and Topic URI
which are asserted onto the blackboard as the new triples of the form:
?p <ont:expertOn> ?t .

We avoid adding duplicate instance values by checking the query results and only
adding new values. Since multiple rules could be applied, with new antecedent
instances added at any time by any of the KSs, this is an iterative process with
the entire sequence repeated until no new entailments are generated.

While this may not be the most efficient implementation, it does reflect the
opportunistic nature of a blackboard system. The current implementation only
has one starting rule per Rule KS (it can be split as per the above example), but
we plan to extend this to allow multiple, different rules within one KS. This also
allows for the interdependency between each of the rules within a KS as well as
rule chaining.

From the Blackboard’s perspective, all the KSs are goal oriented (backward
chaining). When a rule based KS posts a sub-goal it is understood that it (the
KS) has concluded that, by backward chaining, a solution can be posted once
this sub-goal has been achieved. However, internally it could be forward chaining.
Suppose the KS in question is an efficient implementation of a RETE forward
chaining algorithm. The KS works by constantly monitoring the blackboard’s
contents and, within its own Knowledge Base, duplicates all elements it requires
to forward chain using its known rules. Once all the processing has completed,
it then offers those newly derived facts as solutions to goals posted on the black-
board. In this scenario the KS might never post a single sub-goal onto the black-
board, merely offering solutions to blackboard goals.

In our future work we wish to further investigate the trade-off between op-
portunism and relevancy of the blackboard data, specifically by examining the
effect that Rule Chaining, with its inter-dependent antecedents, will have on
the posting of sub-goals onto the blackboard. If a KS encapsulates its rule’s an-
tecedents then these will never be placed upon the blackboard as sub-goals. Our
main concern is how this will effect the reasoning process. Since the other KSs
are not aware of these potential sub-goals (which they may have instances of,
and hence solutions too) they will never make a relevant contribution. There-
fore, the overall potential solving ability of the system decreases, due to this
unnecessary curtailment of the solution space. Conversely, it might be the case
that these intermediate antecedents are not actually required/relevant at all and
so by placing them as sub-goals on the blackboard a whole raft of irrelevant in-



stance data (and consequential sub-goals) would placed upon the blackboard.
This would be detrimental to the solving process as effort could be expended on
non-relevant data.

4.5 CSP Solver KS

This KS allows us to perform constraint-based reasoning and attempts to solve
the CSP goal posted on the blackboard. The constraints for the workgroup(s)
are expressed using CIF/SWRL [13] – our Constraint Interchange Format (CIF),
which is an RDF based extension of SWRL that allows us to express fully quan-
tified constraints. These constraints are placed on the blackboard by the User
KS when the workgroup is first defined. Since the goal of the AWB+B is to form
workgroups that adhere to these specified constraints, this KS has the trigger:

i) Try to add a “solution” by using instance data already on the blackboard
to perform CSP solving and assert the appropriate hasMember triples to the
corresponding instance of the Workgroup class.

The triggering mechanism of this KS requires it to continually monitor the black-
board contents and attempt to provide a solution to the CSP. To improve ef-
ficiency, we decided that rather than attempting full blown CSP solving each
cycle, the solver should perform the faster check of each of the constraints indi-
vidually and only if they can all be satisfied, should it attempt the more difficult
task of solving them combinatorially. If no solution can be found then this KS
will simply not offer a contribution.

In our implementation the CSP solver is unique, in that it is the only KS that
can post a solution to the Workgroup goal, initially posted onto the blackboard
by the User KS. However, there is no restriction on the number of CSP solver
KSs that could be used within the system. In our future work there is also the
possibility of greater user interaction (via the User KS) w.r.t to acceptance or
rejection of a solution. Here the user could ask the CSP Solver KS to contribute
again (provided there are alternate solutions) or accept the current one.

5 The Controller

As the name suggests, the role of the Controller is to oversee the running of the
system as a whole. In the initial blackboard systems, one of the main problems
was the lack of direction or a statement of goals to focus the solving effort.
The BB1 system [10] extended the blackboard architecture by adding a second
blackboard to control the state of the problem, and so better direct the solving.
So far we have talked about the contents of the blackboard as merely containing
the solution. In actual fact, like BB1, the AWB+B blackboard is divided into
two panels. The first panel is the Data Panel which holds the solution related
information. In order to inhibit the actions of the KSs accessing this panel,
there are a couple of safeguards in place. The Controller will not allow the goal
of “instances of <owl:Thing>” to be placed onto the blackboard since this is the



OWL super-class, this would result in all class (and sub-class) instances known
by a KS being added onto the blackboard.

The second panel is the Tasklist Panel and is used, primarily, by the Con-
troller to coordinate the actions of each KS by storing information about what
each knowledge source can contribute, based on the current state of the black-
board. Like the Data Panel, this is visible to all the KSs however, unlike the Data
Panel, the KSs are allowed to add to this panel directly (but not remove items
from it). The KSs add TasklistItems that describe the nature of any contribu-
tion they could offer. The Controller looks at the items on the Tasklist Panel and
determines which KS is allowed to contribute. Once a TasklistItem has been
actioned, the Controller removes it from the panel. This “request for contribu-
tion” and “make your contribution” sequence is applied using a Java interface,
which each registered KS must implement and consists of the two method calls:
canContribute and makeContribution. When a KS’s canContribute method
is called it first determines what it can contribute (as per the steps previously
outlined) and then checks, in the following order, that its “current” proposed
contribution is not on the blackboard already; has not been contributed pre-
viously by itself; and is not already on the Tasklist, i.e. already proposed by
another KS. Only then is a TasklistItem created and added to the Tasklist
Panel.

In our current implementation the Controller is relatively simple. After all the
KSs have been registered, the system “cycles” over each one asking it to populate
the Tasklist Panel. Next, the Controller examines the contents of the Tasklist
and decides which items to action (by calling the appropriate makeContribution
method of a KS). After actioning the appropriate TasklistItems on the Tasklist
Panel, the Controller has the option of retaining tasks that have not been ac-
tioned, or removing any remaining items from the Tasklist completely. This is
purely a housekeeping measure as it prevents redundant or “out of date” items
remaining on the Tasklist Panel. Then the cycle begins again. If nothing new has
been added to the Tasklist Panel after a complete cycle, it is assumed that none
of the KSs can contribute further and so the CSP Solver KS is activated and at-
tempts to find a solution. While this is relatively straightforward to implement,
it is far from optimised. We plan to increase the intelligence of the Controller to
further focus the problem solving, which should improve performance.

6 Future Direction

Currently, the CSP solver adopts a closed world reasoning model. Since the
Semantic Web is open world, it seems logical to investigate the influencing and
enabling factors for performing effective open world reasoning based upon closed
world reasoners as well as the analysis and combination of constraints to solve
the CSP. The importance of negation and negative information is argued by
Analyti and Wagner in [1]. The difficulty here is that negation is only partially
supported in OWL DL (via disjunction) but not at all in OWL Lite. This would
require either the extension of OWL at the language level in much the same way



as the RDF(s) extension suggested in [1]; or through the application of rules to
explicitly state negative information (as described in [14]).

We plan to incorporate the Local Closed World Assumption (LCWA) [7,
4] into the AWB+B, since this can be thought of as a compromise between
both the open and closed world assumptions. The LCWA means that a query
placed against a Knowledge Base (KB) can be answered with true, false or
unknown. For example, if we posed the query “Is Person(x) also a Professor?”
against our KB, what answer would we get? With both assumptions, if the result
Professor(x) or ¬Professor(x) exists in the knowledge base (either explicitly or
via some derived means) then the result would be true or false as appropriate.
However, if there is no explicit statement describing x as a Professor then in
the open world assumption, the result would be unknown since we cannot prove
this definitively either way. In the case of a closed world the result would be
false – the assumption being made that if we do not know a fact for definite,
then it is always regarded as false. Now, suppose we do know that there is only
one Professor in the world – Professor(y) and, therefore it is not Person(x).
How could we guarantee that our query correctly returns false? With the closed
world assumption this would already be the case, however with the open world
assumption we would still have the value unknown. The only way to correct this
error would be to state the fact ¬Professor(?) for the (potentially infinite) set of
everything else in the world. The LCWA overcomes this problem by maintaining
two databases of world information. The first contains the known facts describing
the world. The second one contains metadata indicating what sets of facts in the
first database can be regarded as closed (since it would be impossible to store a
potentially infinite set of non-members). So, using our example above, the first
database would contain the fact Professor(y) and the second one would contain
ClosedWorld(Professor). Using the query mechanism of the LCWA we could
extend how data is contained within each KS and on the blackboard, whereby
the result of a query is either true, false or unknown. This allows the option
of creating a specific goal as an attempt at resolving an unknown that would
otherwise have been regarded as a false.

This process should stop when we believe that the closed world problem is
now complete enough to enable realistic problem solving. A closed collection of
values is crucial since the problem solving we are attempting is that of a Finite
Domain CSP. When a generated workgroup is “released” back onto the open
Semantic Web, the composition will need some explanation as to the assump-
tions used in its creation (i.e. it has been created using negation as failure).
Therefore we require an appropriate representation that would better enable
someone else to reuse the data and to reason against further. For example, if
a published workgroup is constrained to only contain Students but, on closer
examination, one member is actually a Lecturer then this is a contradiction. By
annotating the composition such that it is clear that it was constructed using a
closed world, negation as failure, approach, a consumer may be more forgiving
as their assumption would be the Lecturer was simply misclassified at the time
of construction due to a lack of data.



7 Discussion and Conclusion

In this paper we have explained why we believe the blackboard architecture
aligns itself well with the hybrid reasoning approach necessary for reasoning
with Semantic Web data. An important issue we encountered was the ineffi-
ciency of the two stage “trigger” and “action” approach to KS interaction with
the blackboard. The work involved for a KS to know if it is “triggerable” is
comparable to that of making the actual contribution itself, which it may never
be called upon by the controller to do. However, we believe the benefits of the
blackboard architecture outweigh this shortcoming since the paradigm allows us
to perform a mix of reasoning methods on instance data and we would argue that
performance could be improved by committing more time to the development of
the AWB+B to further optimise the triggering conditions.

There are also complexity issues to be considered with the Blackboard frame-
work giving us a number of options on how to explore these in our future work.
For example, what if a KS starts to perform reasoning that could take hours
or days to complete? The architecture supports the addition or removal of KSs
from the system with the only adverse effect being on quality of the results and
so guards against the inefficiency of KSs – the overall process of controlling the
problem solving remains with the Controller. For example, had we implemented
an asynchronous version of the application, then a time-out mechanism could
be added to the Controller, so if a KS takes an inordinate amount of time to
respond it could just be ignored, allowing the rest of the system to continue.

We have also highlighted the importance of ensuring only relevant items are
placed on the blackboard and how this effects the opportunism of the system.
Since the blackboard system is attempting to centralise distributed SW data it
does not want all the data available from each of the KSs; it is only interested
in as small a subset of this as is possible in order to solve the CSP problem.
It is the job of the Controller to ensure that this is the case, otherwise it may
become intractable. Since we place a great deal of importance upon relevancy,
the high level strategy of the controller is that of a goal driven (backward chain-
ing) approach – in our case, the initial goal placed on the blackboard is to
find a solution to a specified workgroup problem. In our future work there is
the possibility of adopting a forward chaining approach, overseen by a suitable
controlling strategy. We also believe there is scope for further investigation of
complexity and scalability trade-offs (e.g. using multiple ontologies that require
mapping, increasing the size of the dataset, etc) as well as the modification of
the Controller strategy to enhance performance.
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