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Abstract: Verification and validation (V&V) techniques have always been an essential part 
of the knowledge engineering process, because they offer the only way to judge the success 
(or otherwise) of a knowledge base development project. This remains true in the context of 
knowledge management: V&V techniques provide ways to measure the quality of 
knowledge in a knowledge base, and to indicate where work needs to be done to rectify 
anomalous knowledge. This paper provides a critical assessment of the state of the practice 
in knowledge base V&V, including a survey of available evidence as to the effectiveness of 
various V&V techniques in real-world knowledge base development projects. For the 
knowledge management practitioner, this paper offers guidance and recommendations for 
the use of V&V techniques; for researchers in knowledge management, the paper offers 
pointers to areas where further work needs to be done on developing more effective V&V 
techniques. 

 
 
1. The Art of Knowledge Engineering 
 
Knowledge-based systems (KBS) have proven to be an effective technology for 
solving many kinds of problem in business and industry. KBS succeed in solving 
problems where solutions are derived from the application of a substantial body of 
knowledge, rather than by the application of an imperative algorithm. In the 1980s, 
KBS technology was widely applied to solve stand-alone problems. Classic 
examples of the successful use of the technology were in diagnostic problem-
solving (for example, in medicine or engineering), provision of advice (for 
example, in "help-desk" applications), and construction/configuration (for example, 
product manufacturing and transportation loading).  

In the 1990s, many organisations identified their collective knowledge as their 
most important resource, and are applying KBS technology in knowledge 
management: to capture and exploit these "knowledge assets" in a systematic 
manner [1]. The primary advantage of using KBS technology in this context is that 
the knowledge is then queryable in a rich way, so that users can pose complex 



questions to the organisation’s knowledge bases, and directly use the knowledge in 
decision support and problem-solving.   

The characteristic feature of problem domains where KBS technology is suitable 
is that the problems are ill-defined: they are not amenable to solution by algorithmic 
means; instead, the knowledge in the knowledge base of the KBS is used in some 
way to search for a solution. Often, the domain is such that there can be no 
guarantee that a solution will be found, or that found solutions will be optimal. 
Many KBS offer a "best effort" solution, which is good enough when the 
application requirements permit this (that is, the system is not safety or mission-
critical). This is true of knowledge management applications: the knowledge is only 
as good as the human experts that supplied it, but this is typically considered good 
enough. 

The literature on knowledge engineering recommends that the requirements for a 
KBS be divided into minimum and desired functionality [2]: minimum requirements 
will often dictate what a system must never do (for example, a vehicle loading 
application must never produce a configuration that is unbalanced to the point of 
being dangerous to vehicle operators), while desired requirements will attempt to 
specify the quality of solutions (for example, that at least 90% of the configurations 
produced by the vehicle loading application should be within 15% of optimal). In 
practice, desired requirements will be difficult to specify, due to the ill-defined 
nature of the problem to be solved (for example, in the vehicle loading application, 
it may be very difficult to determine what constitutes an "optimal solution" for the 
desired requirements) [3]. This is unsurprising; from a software engineering point-
of-view, given the fact that the problem is ill-defined, it follows that the user 
requirements will be ill-defined also. 

Knowledge engineering can be viewed as a special instance of software 
engineering, where the overall development strategy typically must employ 
exploratory prototyping: the requirements will typically be ill-defined at the outset, 
and it will take some effort in acquiring knowledge, and building prototype models, 
before the requirements can become more clearly defined. The knowledge engineer 
will have the hardest task when the domain knowledge itself is not well-understood; 
for example, when the knowledge is locked up in the heads of human experts who 
are not able to articulate it clearly. It is not unusual for a knowledge engineer to 
face a situation in which the users will be unable to say what they really want, 
experts will be unable to say what they really know, and somehow a KBS must be 
built! Building KBS is something of an art. 
 
 
2. The Importance of Validation and Verification 
 
Validation and verification (V&V) comprise a set of techniques used in software 
engineering (and, therefore, in knowledge engineering) to evaluate the quality of 
software systems (including KBS). There is often confusion about the distinction 
between validation and verification, but the conventional view is that verification is 
the process of checking whether the software system meets the specified 
requirements of the users, while validation is the process of checking whether the 



software system meets the actual requirements of the users. Boehm memorably 
characterised the difference as follows [4]: 
 

Ver ification is building the system right. 
 

Validation is building the right system. 
 

Verification can be viewed as a part of validation: it is unlikely that a system that is 
not "built right" to be the "right system". However, verification is unlikely to be the 
whole of validation, due to the difficulty of capturing specifying user requirements. 
As noted above, this is a particularly important distinction in knowledge 
engineering. Of course, the goal in software/knowledge engineering is to try to 
ensure that the system is both "built right" and the "right system"; that is, the goal is 
to build "the right system, right". 

This is no less important where KBS technology is used in knowledge 
management: V&V techniques provide ways to measure the quality of knowledge in 
a knowledge base, and to indicate where work needs to be done to rectify 
anomalous knowledge. In this context, verification tells us whether or not the 
knowledge bases are flawed as software artifacts, while validation tells us whether 
or not the content of the knowledge base accurately represents the knowledge of the 
human experts that supplied it. Both are clearly important. It is worth noting in this 
context that verification is essentially an objective test: there are absolute measures 
of the correctness of a piece of software. However, validation is typically subjective 
to a certain extent, where we must compare formally-represented knowledge to 
informal statements. 

In software engineering, efforts have been made to formalise the development 
process so that user requirements may be stated as a fully-formal specification, from 
which it can be proven that the implemented software system meets the 
requirements. While formal methods are desirable - even essential - in some cases 
(notably safety and mission-critical systems), these methods are unsuitable in large 
classes of software applications: 
• Where requirements are amenable to formal specification, it may be too difficult 

to create the specification within project time and budgetary constraints. 
• There are many kinds of requirement that are not amenable to formal 

specification (for example, the "usability" of a graphical user interface). 
 
The extent to which formal methods can be applied in knowledge engineering is 
debatable [5], but it is certainly unrealistic to expect formal verification to serve as 
the only V&V technique in a KBS development project, because it will rarely be 
possible to ensure that the formal specification is a complete and correct statement 
of the users' requirements. Therefore, KBS V&V will typically need to involve 
multiple techniques, including formal verification against formal specifications 
(where possible), and empirical validation (including running test cases and 
evaluating the system in the operational environment) [6]. This is especially 
important in the context of knowledge management, where a large part of validation 
will be fundamentally subjective: checking that the represented knowledge 
accurately captures what’s going on in an expert’s head. 

Given that knowledge engineering is an inexact art, the most fundamental 
measures of the success of a KBS project would seem to be: 



 
Did we get it r ight? That is, does it meet the users' actual requirements. 
 
Can we keep it r ight? That is, is it sufficiently maintainable for anticipated future 
changes. 
 
Can we do it again? That is, is the process repeatable to ensure success with future 
projects. 
 
The final point refers to the capability of the knowledge engineers, and reflects the 
modern view of software quality being determined primarily by the quality of the 
development process [7]. 

While verification and validation are only part of the overall development 
process, they are extremely important because they are the only way to produce an 
answer to the first of the three questions above ("Did we get it right?"), and provide 
partial answers to the other two questions: V&V techniques assist in measuring 
maintainability, and a repeatable V&V capability is a prerequisite for success in 
knowledge engineering. Maintainability is also of enormous importance in 
knowledge management, where an organisation’s knowledge bases will typically 
evolve over the organisation’s lifetime. 

Consideration of the importance of V&V to successful knowledge engineering 
and knowledge management raises another question: how effective are the KBS 
V&V techniques in current use? Obviously, if the techniques are incomplete or 
unsound, then they cannot be trusted to provide measurement of software quality 
and project success. The goal of this paper is to reflect upon studies which have 
been done to assess the effectiveness of current KBS V&V techniques, and to: 
• summarise what the studies tell us about the current state-of-the-practice in KBS 

V&V; 
• identify ways to improve the state of knowledge engineers' own knowledge about 

available KBS V&V techniques. 
 
In doing this, the objective is not to propose new V&V techniques, but to determine 
what can be done with the existing techniques, and propose further ways of 
measuring the effectiveness of current (and future) V&V techniques. 
 
 
3. Knowledge Engineering = Method + Measurement 
 
The previous section emphasised the importance of V&V as measurement 
techniques for the knowledge engineering process. Knowledge engineering (and 
software engineering) can be seen as a combination of methods and measurement: 
the methods used in requirements specification, knowledge acquisition, system 
design, and system implementation result in the production of a series of artifacts 
[7] (Preece, 1995), each of which is amenable to some form of measurement (either 
individually or in combination). V&V techniques provide the means of obtaining 
the measurements. The following artifacts are of particular importance in the KBS 
development process: 



 
Requirements Specification The requirements specification document states the 
minimum and desired user requirements (as described in Section 1), typically in 
natural language (or, less usually, in some restricted or semi-structured natural 
language subset). A framework for KBS requirements specification is given by 
Batarekh et al [3]. As a natural language document, the requirements specification 
is not amenable to analysis by V&V techniques - instead, it is used to establish the 
needs for V&V. 
 
Conceptual M odel The conceptual model describes the knowledge content of the 
KBS in terms of real-world entities and relations. This description is entirely 
independent of the ways in which the KBS may be designed or implemented: the 
idea is to allow the knowledge engineer to perform a knowledge-level 
(epistemological) analysis of the required system before making any design or 
implementation choices. The best-known framework for defining KBS conceptual 
models is KADS [8] (Wielinga, Schreiber and Breuker, 1992), in which models 
may be initially defined using a semi-formal, largely diagrammatic representation, 
from which a refined, formal model can be derived. The conceptual model forms 
the basis of the design model. 
 
Design M odel The design model serves to "operationalise" the conceptual model 
into an executable KBS; it describes the required system in terms of computational 
entities: data structures, processes, and so forth. For example, the design model may 
specify that a particular conceptual task is to be performed by a backward-chaining 
search, or that a concept taxonomy is to be represented using a frame hierarchy. The 
KBS specification language DESIRE is particularly well-suited to the 
representation of design models [9]. The design model dictates the form of the 
implemented system. 
 
Implemented System This is the final product of the development process: the 
KBS itself. Once the design issues have been explored in the design model, the 
system may be implemented in any programming language, although typically a 
special-purpose KBS language is used. 
 
In the context of knowledge management, it is worth noting that all of these stages 
are still necessary if a knowledge base is to be created that can be processed by an 
inference engine in response to users’  queries, for example in decision support or 
problem-solving. Alternatively, if the knowledge is only to be captured for 
interpretation by humans, for example using a browser, then it may be sufficient to 
develop only a conceptual model, as described in [10]. 

There are many V&V techniques that have been developed for use on KBS - 
Gupta [11] and Ayel and Laurent [12] provide good entry-points to the KBS V&V 
literature. Five of the most common approaches are listed below. 
 
Inspection According to a survey of developers of KBS in business applications, 
inspection is the most commonly-employed V&V technique [13]. Arguably, it is 
also the least reliable, as it essentially involves nothing more than human proof-
reading the text of the various artifacts. Typically, a domain expert is asked to 



check the statements in the knowledge base; since the formal languages used in the 
design model and implemented system will be unfamiliar to domain experts, this 
technique is better-suited to use with the semi-formal conceptual model (which will 
typically use a more "reader-friendly" graphical representation).  
 
Inspection is a highly-relevant technique to use in the context of knowledge 
management, where human experts need to review (“proofread”) knowledge 
aquired from them. It is also the minimal form of validation that should always be 
applied in any knowledge management project. 
 
Static Ver ification Static verification consists of checking the knowledge base of 
the KBS for logical anomalies. Frameworks for anomalies in rule-based KBS have 
been well-explored, and software tools exist to detect them [14]. The most 
commonly-identified anomalies - and the ones detected by most of the available 
tools - are redundancy and conflict. Redundancy occurs when a knowledge base 
contains logical statements that play no purpose in the problem-solving behaviour 
of the system; this typically indicates that the system is incomplete in some way. 
Conflict occurs when there are logical statements that are mutually inconsistent, and 
would therefore cause the system to exhibit erroneous behaviour. Anomalies may 
exist in any of the formal artifacts: the implemented system, the design model, and - 
if it is defined formally - the conceptual model.  
 
One novel application of this kind of checking in the context of knowledge 
management lies in checking for conflicts between statements made by different 
experts. While it may not be necessary or even desirable to remove such conflicts 
(different opinions may be tolerable and often are useful) it is likely that they will 
reveal insights to the way an organisation applies its knowledge [15]. 
 
Formal Proof Formal proof is a more thorough form of logical analysis of the 
(formal) artifacts in the development process than that provided by static 
verification. As described in Section 1, where requirements are amenable to formal 
specification, proof techniques can be employed to verify that the formal artifact 
meets the specified requirements. A review of opportunities to use formal methods 
in knowledge engineering is provided by Meseguer and Preece [5]. In practice, 
however, while there are many formal specification languages for KBS, there are 
few documented examples of the use of proof techniques to very user requirements.  
 
Formal proof is only likely to be applicable in knowledge management applications 
where organisational knowledge will be applied in safety-critical or costly mission-
critical situations for decision-making or decision support. 
 
Cross-Reference Ver ification When there exists descriptions of the KBS at 
different "levels", it is desirable to perform cross-checking between these, to ensure 
consistency and completeness. For example, we would expect the concepts that are 
specified as being required at the conceptual level to be realised in terms of 
concrete entities at the design level, and in terms of concrete data structures in the 
implemented system. Therefore, the most appropriate uses of cross-reference 
verification are to check correspondence between: 



• conceptual model and design model; 
• design model and implemented system. 
 
A useful product of cross-reference verification in knowledge management lies in 
the linking of knowledge described at different levels of formality. Once a 
correspondence has been established between, for example, semi-formal statements 
in the conceptual model and formal statements in the implemented system, then 
users can use hyperlinking tools to move from one to the other. In one direction, 
users can move from formal to semi-formal in order to obtain a more 
understandable statement of the same knowledge; in the other direction, users can 
move from semi-formal to formal in order to apply some knowledge in automated 
decision support. 
 
Empir ical Testing All software testing involves running the system with test cases, 
and analysing the results. The software testing literature distinguishes between 
function-based testing and structure-based testing. Function-based testing bases the 
selection of test cases upon the functional requirements of the system, without 
regard for how the system is implemented. The success of function-based testing is 
dependent upon the existence of a "representative" set of test cases. In structure-
based testing, test cases are selected on the basis of which structural components of 
the system they are expected to exercise; the objective is to show that the system 
produces acceptable results for a set of test cases that exercise all structural 
components of the system. Testing can be applied only to the executable artifacts: 
typically only the implemented system. 
 
In knowledge management, testing often takes the form of systematically asking 
questions of an implemented KBS, the goal being to assess the acceptability of the 
responses in terms of both completeness and correctness. 
 
 
Table 1 summarises the applicability of the various types of V&V technique to the 
KBS development artifacts. The table shows only potential applicability of 
techniques to artifacts. The really important questions go beyond this, to ask: 
• How effective is each of the techniques listed in Table 1, to provide some 

measurement of the quality of the appropriate artifact(s)? 
• What combination of V&V techniques work best to provide the most cost-

effective assurance of high quality for each artifact? 
• What V&V techniques work best with which method for creating the artifacts? 
 
The last question acknowledges the fact that not all V&V techniques can be used 
with all methods. For example, static verification to detect logical anomalies can be 
applied to the implemented system only if the implementation is created using a 
suitable programming language (one for which logical anomalies can be defined). 
Similarly, formal proofs can be applied to the design model only if an appropriate 
proof theory exists for the modelling language. 

The following section examines the available data to discover to what extent the 
above questions can be answered now. 
 



 
4. KBS V&V: How Well Are We Doing? 
 
Surprisingly few studies are known to have been performed to evaluate the 
effectiveness of KBS V&V techniques. This section examines the results of five 
studies: 
1. A comparative evaluation of several KBS verification and testing techniques, 

conducted at the University of Minnesota, USA (referred to here as "the 
Minnesota study"). 

2. A study comparing the effectiveness of an automatic rule base verification tool 
with manual testing techniques, conducted at SRI, USA ("the SRI study"). 

3. An examination of the utility of an anomaly detection tool, conducted at 
Concordia University, Canada ("the Concordia study"). 

4. A comparative evaluation of several KBS verification tools/techniques, 
conducted by SAIC, USA ("the SAIC study"). 

5. A comparative evaluation of KBS verification and testing techniques, conducted 
at the University of Savoie, France ("the Savoie study"). 

 
 
Table 1: Applicability of V&V techniques to KBS development artifacts.  

 
Artifact V&V techniques 
Conceptual model Inspection, Static verification (if formalised), Cross-ref 

verification (against Design model) 
Design model Inspection, Static verification, Formal proof, Cross-ref 

verification (against Conceptual model, Implemented 
system) 

Implemented system Inspection, Static verification, Testing, Cross-ref 
verification (against Design model) 

 

 
 
 
4.1  The Minnesota study 
 
Kirani, Zualkernan and Tsai [16] at the University of Minnesota, USA, report on 
the application of several V&V techniques to a sample KBS in the domain of VLSI 
manufacturing. With the exception of a simple static verification (anomaly 
detection) tool, all of the methods used were manual testing techniques. The KBS 
itself was a 41-rule production system based upon well-understood physical 
properties of semiconductors, into which a variety of plausible faults were seeded. 
Interestingly, efforts were made to introduce faults at several different phases in the 
development process: at specification time, at design time, and at implementation 
time. A summary of the results is presented in Table 2. 

The results of the study showed that the manual testing techniques, though 
labour-intensive, were highly effective, while the static verification tool performed 
poorly in detecting the seeded faults. Unfortunately, the success of the manual 



testing techniques could be attributed to the fact that this KBS application was 
exhaustively testable - which is rarely the case for industrial-scale KBS 
applications. Furthermore, given that the anomaly detection tool employed was of 
only the most basic type (able to compare pairs of rules only for conflict and 
redundancy), it is unsurprising that it performed poorly. Therefore, this study does 
not provide clear evidence - positive or negative - for the utility of modern KBS 
verification tools. Moreover, the study did not consider the complementary effects 
of the tools: no data was provided on which faults were detected by more than one 
V&V technique. 
 
 
Table 2: Summary of results of the Minnesota study: percentage of faults found for each 
phase by each V&V method.  

 
 
V&V method 

Development phase 

 Specification Design Implementation 
Static 
verification 

38% 27% 19% 

Structure-
based testing 

54% 68% 74% 

Function-based 
testing 

75% 92% 62% 

 
 
 
4.2  The SRI study 
 
Rushby and Crow [17] at SRI, USA, like the Minnesota study, compared manual 
testing techniques with a simple static verification tool. The application used was a 
100-rule forward-chaining production system in an aerospace domain, but the 
structure of the system was largely "flat" and very simple. Faults were not seeded in 
this study - instead, actual faults were discovered in the real application! - so there 
was no way to control the results. While interesting, this study does not yield 
reliable evidence as to the effectiveness of the V&V techniques employed. 
 
 
4.3  The Concordia study 
 
Preece and Shinghal [18] at Concordia University, Canada, examined the use of a 
particular static verification tool, COVER, on a variety of KBS in different 
domains. The anomalies detected by COVER are as follows: 
 
Redundancy Redundancy occurs when a KBS contains components which can be 
removed without effecting any of the behaviour of the system. This includes 
logically subsumed rules (i f  p and q t hen r , i f  p t hen r ) rules which cannot 
be fired in any real situation, and rules which do not infer any usable conclusion. 



 
Conflict Conflict occurs when it is possible to derive incompatible information 
from valid input. Conflicting rules (i f  p t hen q, i f  p t hen not  q) are the most 
typical case of conflict. 
 
Circular ity Circularity occurs when a chain of inference in a KB forms a cycle (i f  

p t hen q, i f  q t hen p).  
 
Deficiency Deficiency occurs when there are valid inputs to the KB for which no 
rules apply (p is a valid input but there is no rule with p in the antecedent).  
 
COVER was applied to the following KBS (all of these were independently-
developed, real KBS applications, not "toy" systems): 
• MMU FDIR: a fault diagnosis/repair KBS developed by NASA/Lockheed); 
• TAPES: a "help desk" product recommendation system developed by an 

adhesive tape manufacturer; 
• DISPLAN: a health care planning system developed by the UK Health Service; 
• DMS1: a fault diagnosis/repair KBS developed by Bell Canada). 
 
A summary of the anomalies found by COVER appears in Table 3; the table also 
gives a measure of the complexity of each application, in terms of the number of 
objects in each knowledge base (rules, frames, or the equivalent, depending on the 
actual implementation language employed). 

COVER was shown to detect genuine and potentially-serious faults in each 
system to which it was applied (in contradiction to the negative results on the use of 
this technique in the Minnesota study). Unfortunately, the Concordia study did not 
compare the effectiveness of COVER with other kinds of V&V technique. 
 
 
Table 3: Summary of results of the Concordia study: number of anomalies of each type 
found in each KBS.  

 
 
Anomaly type 

KBS 

 MMU TAPES DISPLAN DMS1 
Redundancy 10 5 5 7 
Conflict - 4 40 10 
Circularity - - 4 - 
Deficiency - 16 17 - 
KB size (objects) 170 230 405 1060 

 

 
 
 
4.4  The SAIC study 
 
Miller, Hayes and Mirsky [19] at SAIC, USA, performed a controlled experiment 
on two KBS built in the nuclear power domain. Faults were seeded in each system, 



and groups of KBS developers and domain experts attempted to locate the faults 
using three different V&V techniques: manual inspection, static verification using 
the VERITE tool (an enhanced version of COVER [18], and static verification 
using MetaCheck, a simulated tool based on a conceptual enhancement of VERITE. 
The VERITE tool and the MetaCheck pseudo-tool were shown to provide 
significant assistance to both the groups of KBS developers and domain experts in 
locating faults: 
• Groups using a tool (either VERITE or MetaCheck) found almost twice as many 

faults as the groups who did not have a tool, in 18% less time, with half as many 
falsely-identified faults. 

• Groups using VERITE found 59% of seeded faults correctly. 
• Groups using MetaCheck found 69% of seeded faults correctly. 
 
While providing good evidence for the utility of static verification tools, and 
confirming the unreliability of manual inspection, the SAIC study did not compare 
static verification with empirical testing techniques. 
 
 
4.5  The Savoie study 
 
Preece, Talbot and Vignollet [20] at the University of Savoie, France, performed a 
comparative study of three V&V tools: 
• SACCO: a static verification tool performing redundancy and conflict detection; 
• COCTO: a static verification tool performing deficiency detection; 
• SYCOJET: a structure-based testing tool capable of generating test cases to 

provide a specified level of knowledge base test coverage. 
 
SACCO and SYCOJET are described in detail by Ayel and Vignollet [21]. 

Independently-created sets of plausible faults were seeded into three different 
"mutated" versions of a real (207 rule) KBS application in an aerospace fault 
diagnosis domain. Each of the three tools was run on each of the three mutated 
KBS, and the results were aggregated; in summary: 
• In each mutated system, at least 61% of faults were found by the combined effect 

of the three tools. 
• SACCO always found at least 35% of the seeded faults. 
• COCTO always found at least 27% of the seeded faults. 
• SYCOJET always lead to the discovery of at least 27% of the seeded faults (with 

a test coverage of up to 46% of the rules - a level chosen for reasons of 
computational efficiency). 

• The three tools were shown to be complementary in effect: less than 29% of 
faults detected were found by more than one tool. 

 
Arguably, this study provides the best evidence yet that a combination of V&V 
techniques should be employed in any KBS development project. It also provides 
some useful evidence on the sensitivity of the different KBS techniques to different 
sets of seeded faults; however, three mutated KBS is not sufficient to provide any 
statistical confidence. 
 



 
4.6  Conclusions from the studies 
 
The overall conclusion from the studies is that the collective knowledge on the 
effectiveness of KBS V&V techniques is very limited. There is some evidence that 
different techniques have complementary effectiveness, and no technique has been 
shown to be so weak as to be not worth employing. However, the data that is 
available is sparse, being limited to a few instances of KBS and specific 
applications of tools or techniques. It is almost impossible to combine the results of 
the different studies, because they were run with different types of KBS (for 
example, the Minnesota study used a "toy" KBS that was exhaustively testable, 
while the Savoie study used a genuine KBS application that was computationally 
too costly to attempt exhaustive testing), different instances of V&V techniques (the 
static verifiers used in each of the five studies all have different capabilities!), and 
different assumptions (for example, while the types of errors seeded in the 
Minnesota, SAIC and Savoie studies are similar, there are subtle differences which 
make cross-comparison hard). 

The sparse nature of the available data is also evidenced by the fact that there is 
no known data for the effectiveness of formal proofs or cross-reference verification. 
Moreover, none of the studies apply V&V techniques directly to any artifact except 
the implemented system, and the implemented systems are almost exclusively rule-
based. 

The following section considers what can be done to improve this situation. 
 
 
5. KBS V&V: What Do We Need To Do? 
 
Clearly, in order to improve the collective state of knowledge on the effectiveness 
of KBS V&V techniques, it is necessary to perform a considerably larger set of 
studies. In order to gather a sufficiently complete data set, the following process 
would need to be followed: 
1. Create a sufficiently complete enumeration of the types of KBS requiring V&V. 

For each type of KBS, create instance artifacts at each stage of development 
(conceptual model, design model, and implementation), and for each 
development method. For example, instances of KBS with various distinct 
problem-solving methods would be required, and artifact instances would need 
to be created using different methods (and representation languages). 

2. Define reference implementations for each V&V technique, either in the form of 
well-defined manual procedures, software tool specifications/implementations, 
or a combination of the two. Where necessary, variations on the V&V techniques 
will need to be defined for different representations used in the reference KBS 
artifacts produced in Step 1. 

3. Define good fault models, based on observed error phenomena from actual 
experience in KBS projects. 

4. Mutate the KBS artifacts from Step 1 using the fault models from Step 3 (ideally, 
this would be done automatically); then apply each of the V&V techniques 



defined in Step 2 to each mutated artifact; repeat for a statistically-significant set 
of mutated artifacts. 

 
Such a study would be very ambitious but extremely valuable: it would provide 
conclusive evidence as to the effectiveness of each V&V technique for each type of 
KBS and development method, individually and in combination. Furthermore, it 
would support further research and development of KBS V&V techniques. Of 
course, such a study would be very difficult: Step 1 and Step 3 in particular are 
made hard by the fact that KBS technology is moving constantly forward: new 
kinds of KBS are always emerging - for example, witness the current interest in 
multiple-agent KBS [22] - and reliable information on actual error phenomena is 
had to come by (partly because knowledge engineers do not wish to advertise 
failures). It is worth noting, however, that the artifacts created in Step 1 would be of 
wider use that merely in a study of V&V techniques - they could facilitate 
complementary studies on the effectiveness of knowledge acquisition and design 
methods. 
 
 
6. Conclusion and Perspective 
 
This paper has argued that V&V techniques are an essential part of the knowledge 
engineering process, because they offer the only way to judge the success (or 
otherwise) of a KBS development project. This is equally true in the context of 
knowledge management, where V&V techniques tell us whether or not the KBS can 
be relied upon to accurately embody the knowledge of the human experts that 
supplied it. 

However, examination of known studies on the effectiveness of existing KBS 
V&V techniques has shown, that the state of knowledge in this area is sparse. The 
way to improve this situation would be by systematically gathering data from a 
representative set of KBS projects and V&V techniques. Without such a study, 
knowledge engineering will remain very much an art and, by extension, so will the 
use of KBS technology in knowledge management. 

In conclusion, however, it should be noted that the state of knowledge in 
software engineering is hardly much better! In particular, little is known about the 
relative effectiveness of V&V techniques in object-oriented software development. 
Despite this lack of knowledge, a huge number of successful, robust software 
systems have been created; similarly, a huge number of successful, robust KBS 
have been developed without perfect knowledge of the effectiveness of the methods 
employed. Clearly, software engineers, knowledge engineers, and knowledge 
managers have considerable artistic ability. 
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