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Abstract—We consider the problem of sensor-mission assign-
ment as that of allocating a collection of intelligence, surveillance
and reconnaisance (ISR) assets (including sensors and sensor
platforms) to a set of mission tasks in an attempt to satisfy the
ISR requirements of those tasks. This problem is exacerbated in a
coalition context because the full range of possible ISR solutions
is not easy to obtain at-a-glance. Moreover, the operational
environment is highly dynamic, with frequent changes in ISR
requirements and availability of assets. In this paper we describe
a solution for the sensor-mission assignment problem that aims to
maximize agility in sensor-mission assignment, while preserving
robustness. The search space of potential solutions is reduced
by employing a semantic reasoner to work out the types of
sensor and platform bundles suitable for a given set of ISR
tasks. Then, an efficient resource allocation algorithm is used
to assign bundles of sensor/platform instances to satisfy each
task, within the search space determined by the reasoner. The
availability of instances takes into account access rights on those
instances across the coalition’s inventory. We describe a proof-
of-concept implementation of this approach, in the form of a
decision support tool for ISR planning. We illustrate the approach
in the context of a coalition peace support operation scenario.

I. SENSOR-MISSION ASSIGNMENT

Dynamic, mission-focussed intelligence, surveillance
and reconnaisance (ISR) requires agile management of
information-provisioning capabilities. This includes rapid
assembly of sensing systems, highly efficient resource
management, and an ability to configure and reconfigure, task
and retask, ISR systems in a robust way [1]. We consider the
problem of sensor-mission assignment as that of allocating
a collection of ISR assets (including sensors and sensor
platforms) to a set of tasks comprising a mission, in an
attempt to satisfy the ISR requirements of those tasks. We
assume that tasks originate from ad hoc communities of
interest (CoIs) within the coalition [1], and that coalition
members share ISR assets to some extent. The sensor-mission
assignment problem is hard for several reasons. First, the
information requirements of the full set of tasks typically
exceeds what the inventory of assets can provide, necessitating
complex resource allocation choices [2]. Second, the full
inventory of ISR assets potentially available is not easy to
obtain at-a-glance, and so CoIs engaged in ISR planning
will not have ready access to the full range of options [3].
Third, the operational environment is highly dynamic: ISR
requirements change in response to the emerging situation,
and the availability of assets needs constant updating due
to factors such as technical failures, changing weather and
provision of new assets.

In this context, the goal of our work is: to maximize agility
in sensor-mission assignment, while preserving robustness.
In terms of maximising agility, we aim to provide as much
automation as possible in the assignment of sensing assets
to tasks. This involves attempting to capture the information
requirements of CoIs in a manner that is as independent as
possible of the capabilities of specific types of sensor or
platform, to allow multiple degrees of freedom in allocation
and reallocation of assets. Note that we deal with heteroge-
neous task and sensor types, and there is a many-to-many
relationship between these: the same kind of task can be
accomplished in several different ways; the same type of asset
can serve many different kinds of tasks. This enables flexibility
at mission planning time, but also at run-time, if it is possible
to (re)configure and (re)task packages of assets in synch with
mission tempo. Emerging service-oriented sensor architectures
(e.g. [4]) are a key enabler here, supporting late-binding of
sensors to tasks at mission run-time. We preserve robustness
in a variety of ways, by ensuring that the association of task
to asset types is sound, transparent, and explainable, and that
the allocation mechanisms are fair, efficient, and effective.
Rights of access to assets are incorporated; for example, the
full capabilities of ISR assets may not be revealed to all parties
in the coalition, or tasking rights may be limited. Moreover,
various other kinds of policy can be incorporated into the
approach, in line with the respective rules of engagement for
coalition operations.

Figure 1 shows our approach to the sensor-mission assign-
ment problem, as described in this paper. We assume that the
information requirements of mission tasks can be captured
in a machine-processable way and that these can be “fitted”
to available types of assets, to yield a set of fit-for-purpose
types of ISR solutions. We envisage this normally happening
at mission-planning time. Then, individual instances of the
assets are allocated to the tasks: this can happen at planning
time, but for maximal agility should be done at run-time. Most
importantly, the approach supports run-time reallocation of
assets, to cope with the emerging situation, guided by the range
of feasible alternative solutions determined at planning time.
This process requires a highly reconfigurable sensor network
environment, which also delivers the collected information,
and feeds back monitoring data on the status of the assets.
Changes in the task and asset sets may result from this received
information and data: new information requirements may be
generated, or monitoring may reveal that a particular sensor
has become defunct.
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Fig. 1. An approach to sensor-mission assignment

The remainder of this paper is organized as follows:
Section II introduces our formulation of the sensor-mission
assignment problem in terms of three elements: (1) tasks, (2)
bundles of ISR assets of particular kinds, and (3) the individual
assets (sensors and platforms). The following three sections
detail each element of this model: Section III describes our
formalisation of information requirements and sensing tasks;
Section IV covers the generation of bundle types to meet task
requirements; then Section V shows how assets are allocated
to bundles. Section VI describes the status of our proof-of-
concept implementation, for a small-scale UK/US coalition.
Finally, Section VII provides a concluding discussion.

This paper builds on our earlier work: in [5] and [6] we
introduced the reasoning approach to sensor-mission fitting;
Section IV now develops this further by showing how this
mechanism yields bundle types. Asset allocation using task-
related utility models was first presented in [7], but without
showing explicitly how this related to the sensor-mission fitting
mechanism. Sections IV and V now make this linkage explicit.
Finally, [8] introduced the specification of tasks in terms
of information requirements, but without fully detailing the
subsequent fitting and allocation steps. Thus, this paper gives
the first full account of the whole sensor-mission assignment
process, from tasks, to bundle types, to allocation of assets.

II. PROBLEM FORMULATION: TASKS-BUNDLES-ASSETS

We formulate the sensor-mission assignment problem as a
graph; an example is shown in Figure 2. Tasks are repre-
sentations of the information requirements needed by some
CoI within the coalition, and assets represent the individual
sensor and platform resources. Satisfying a task may involve
the allocation of multiple assets, so we introduce the notion
of bundles. Each bundle is composed of several assets and,

depending on its type, may be suitable for several tasks.
Assets may be suitable for assignment to several bundles,
again depending on the bundle type. A solution to the sensor-
mission assignment problem is an assignment of bundles to
tasks, subject to the constraints: each task can have at most
one bundle assigned to it, a bundle may be assigned to at most
one task, each asset may be assigned to at most one bundle.
Note that the thin arcs in Figure 2 show possible assignments,
while the bold arcs show one actual assignment.
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Fig. 2. Example sensor-mission assignment problem as a graph

A concrete example will illustrate this. In a peace support
operation [1], UK and US bases have been established to
detect/deter insurgent activity on a border. The bases rely on
a main supply route (MSR) which must be surveilled and
protected. Surveilling the border will likely involve, among
other things, detection of suspicious vehicle activity near
it: vehicle detection can be formalized as an information
requirement task T1. This may be accomplished by a variety of
means, depending on the kinds of assets available. We assume
these include flying a UAV over the border to gather IMINT, or
using acoustic sensing to identify types of vehicles likely to be
used by insurgents. Further, we assume that a single UAV can
cover the area of interest (AoI), but that at least two acoustic
arrays will be needed. Each of these options is represented
as a type of bundle: BT1 = 〈{UAV, IMINT-sensor}〉, BT2 =
〈{AcousticArray}, {AcousticArray}〉. Assume there are multiple
UAV assets available (A1 and A3) but only one functioning
IMINT payload (A2) that can be mounted on either A1 or A3.
Assuming there are three acoustic arrays deployed in the area
(A4, A5, A6), then we can meet the requirements of T1 by
assigning UAV-IMINT bundles {A1, A2} or {A2, A3} or pairs
of acoustic arrays (e.g. {A4, A5}, {A4, A6}, {A5, A6}).

However, it is likely that there will be other tasks, potentially
in competition for these assets; for example, a requirement
to detect vehicles posing a potential threat to the MSR (T2)
may be accomplished by the same types of bundle as T1

but, because the areas of interest (MSR and border) do not
intersect, it will not be possible to share assets between these
tasks. So, for example, if we assign the UAV to T2 then we will
have to satisfy T1 by means of acoustic intelligence (ACINT).



III. SPECIFIYING TASKS

As we introduced in [8], high-level information require-
ments (IREQs) are defined informally, using natural language.
For example: “Is there suspicious activity on the MSR road?”
Each high-level IREQ must be broken down into a set of
scenario-specific information requirements (SSIRs), again de-
scribed informally using natural language, for example:

• “Are there suspicious vehicles on the road?”
• “Is there suspicious pedestrian activity along the roadside?”
• “Are there suspicious objects located near the road?”

Defining SSIRs is a key step in providing highly mission-
focussed information and hence handling information over-
load. In [8] we consider the relationship between this step
and the filtering and dissemination of information; for space
reasons we do not consider this issue further here. The SSIRs
need to be broken down further before they can be matched
to types of ISR asset, in order to identify the interpretation
tasks within each: what kinds of things does the CoI need to
detect, identify, distinguish, etc. In our example, the SSIRs
require detection of physical things (vehicles, people, objects)
and also some characterisation of intent (“suspicious”). The
results of this breakdown resembles a set of database queries:

• “detect vehicles where vehicle type or behaviour is suspicious”
• “detect people where person type or behaviour is suspicious”
• “detect object where object type is suspicious”

Once we have identified the interpretation tasks within each
SSIR, we need to know the kinds of data that are interpretable
to answer these: for example, visible imaging, radar, acoustic,
etc. An established way to do this in Collection Co-ordination
and Intelligence Requirements Management (CCIRM) is to
use the National Imagery Interpretability Rating Scale (NIIRS)
for various kinds of imagery intelligence[9]. For example,
detection of vehicles of particular types is achievable by
Visible NIIRS 4 and Radar NIIRS 6. As part of our sensor-
mission fitting approach, we have built a proof-of-concept
knowledge base (KB) for part of NIIRS, allowing a user
to select interpretation tasks in terms of three task types
(detect, identify, distinguish) and a range of “detectables” (e.g.
ground, air and maritime vehicles, buildings). The KB infers
which NIIRS ratings are appropriate for each interpretation
task. (In practice, the need to detect “suspicious” activity
at a border could involve establishing “normal” activity by
gathering lower-resolution data over a period of time, then
cueing higher-resolution assets to identify and track potential
targets. We return to the issue of supporting sensor cueing in
Section VII.)

Note that we have now moved from a set of “soft” (human-
interpretable) information requirements to a set of “hard”
(machine-processable) requirements, to enable the subsequent
reasoning, allocation, and deployment processes. It is also
necessary to identify “non-functional” requirements at this
stage, which will have bearing upon the choice of assets, for
example those concerned with the expected weather conditions
(e.g. fog penetration), the operational environment [10] (e.g.
foliage penetration), and any policies on asset deployment
such as airspace control (which could rule-out use of UAVs,

for example) [1]. Note that we envisage that this process be
carried out on a per-CoI basis, rather than being centralized
for the coalition as a whole. The CoI that “owns” each task
will determine the resources that can be assigned to meet the
requirements of the task, as we show later in Section VI.

IV. GENERATING BUNDLE TYPES

Our approach to sensor-mission fitting is founded on the use
of ontologies to represent the capabilities required by tasks and
provided by assets, and reasoning to determine logically-sound
matches [6]. Ontologies define formally the semantics of a set
of terms, allowing automatic reasoning to be performed using
the terms, in a manner consistent with their real-world interpre-
tation [11]. There is already a sizeable amount of work done
in providing descriptive schemas and ontologies for sensors,
sensor platforms, and their properties (e.g. [4], [12], [13]).
There are also several well-known structured descriptions of
tasks in the military missions context, e.g. the US Universal
Joint Task List (UJTL)[14] and the UK JETL/METL task lists.
Moreover, ontologies allow the results of the fitting process to
be explainable in meaningful terms [15].

An ontology is typically structured as a set of definitions
of classes (denoting “concepts”) and properties (denoting
“relationships”). The subclass relation denotes that one class
is a specialisation of another. For example, the class UAV is
a subclass of Aircraft, which in turn is a subclass of Vehicle.
Ontologies are expressed using a meta-ontology language, the
most commonly-used of which is now the Web Ontology
Language (OWL) [15]. OWL provides ontology developers
with the means to define new concepts and properties based
on existing ones; OWL-supporting tools allow ontologies to be
checked for consistency, and a number of reasoning engines
exist to process OWL ontologies to draw inferences and
answer queries. OWL is a suite of interrelated languages,
with various levels of expressive power; in our work we use
OWL DL (description logic), which offers a trade-off between
expressivity and tractable reasoning [16].

The following is an example fragment of an ontology for
sensor platforms:

Aircraft ≡ (Platform u ∃hasRealm.Atmosphere)
UnmannedVehicle ≡ (Platform u ∃hasQuality.WithoutCrew)
UAV ≡ (Aircraft u UnmannedVehicle)
CombatUAV ≡ (UAV u ∃providesCapability.Firepower)
MALE ≡ (UAV u ∃providesCapability.MediumAltitude u
∃providesCapability.LongEndurance)
Predator v (MALE u CombatUAV)

The example uses DL notation which can be read informally
as follows: ≡ “is equivalent to”, u “and”, t “or”, ¬ “not”,
v “subset of”. The semantics of description logics is defined
by interpreting classes as sets of individuals and properties as
sets of pairs of individuals; ∃p.C denotes an (unnamed) class
of individuals that are related by property p to at least one
individual of class C. So, for example, the class CombatUAV is
defined as being a UAV that is related by the providesCapability
property to a Firepower capability.



The ontology definitions allow a reasoner to per-
form classification by subsumption [15]. For example,
we could ask a reasoner to determine which kinds
of platform provide long-endurance and firepower capa-
bilities: Platform u ∃providesCapability.LongEndurance u
∃providesCapability.Firepower. From the above definitons a
reasoner can conclude that Predator satisfies these criteria.

Based largely on pre-existing ontologies, we have identified
a collection of concept hierarchies relevant to the ISR domain.
A sample of these is shown in Figure 3, including definitions
of (a) platforms and (b) sensors. Note that the set of concept
hierarchies is extensible: since creating the original version
described in [6], we have added concepts representing NIIRS
rating capabilities (e.g. Visible-4, Radar-6).

Fig. 3. Sample concept taxonomies relevant to the ISR domain

A bundle type is an intensional definition of a set of bundles
of assets that can satisfy a task. The essential part of a bundle
type is the specification of required sensor and platform types
needed to provide the capabilities to satisfy the task. For
this, we define a platform configuration π = 〈P,S〉, where
P is a type of platform, and S = {S1, . . . , Sm} is a set
of sensor types that can be mounted in P simultaneously.
Given a task T with a set of required ISR capabilities
CT = {C1, ..., Cn}, a single platform configuration is a valid
match for T if the combined capabilities of P and S satisfy
CT . Formally, V(T ) = {π1, ..., πn} is the set of valid matches
for task T iff 〈P,S〉 ∈ V(T ) ⇐⇒ ∀Ci ∈ CT where (P v
∃providesCapability.Ci) t (Si ∈ S v ∃providesCapability.Ci).

More commonly, the requirements of a task will not be
satisfied by a single platform configuration. We define a pack-
age configuration Π = {π1, ..., πn}, where πi is a platform
configuration. Π is a valid match for T if collectively the
platforms and sensors in {π1, ..., πn} satisfy the capabilities
in CT , and Π is minimal with respect to CT (there does not
exist any subset of Π that is a valid match for T ).

Bundle types are created by post-processing the package
configurations, to add cardinality constraints, using pre-defined
configuration knowledge, for example:
• at least 1 UAV with at least 1 Camera
• at least 2 AcousticArrays with exactly 2 ACINTSensors

V. ALLOCATING ASSET INSTANCES

The aim here is to find an optimal allocation of individual
asset instances to tasks while ensuring that they are correctly
grouped into bundle instances (or simply bundles). A bundle

instance is an instantiation of a bundle type, i.e. a set of real
assets available in the field that are compatible with the bundle
type defined in the previous step. We are thus moving from a
“type level” fitting to an “instance level” allocation, that allows
us to factor in logistical information (such as location, cost,
readiness, etc) related in particular to asset instances available
in the theatre. As previously noted in Section II, tasks might
compete for the exclusive usage of the same asset instance.
Our goal is to allocate specific assets to the tasks in order to
maximize the utility of the sensor network.

In general for each single task we can choose among
many different bundle instances. Therefore we need a way
to compute the joint utility of a particular bundle instance
to choose the best bundle to allocate to the task. Each task
can be classified as belonging to a particular task type. The
task/bundle types associated to a task localized in a particular
AoI are used to decide the joint utility model (JUM) with
which to compute the joint utility that a particular bundle of
asset instances will bring to a task.

For example, in our scenario from Section II we have two
tasks: T1 event detection along the border, and T2 event detec-
tion along the MSR. Both tasks belong to the same task type,
event detection. For this particular task type we identified in [7]
a joint utility model called Cumulative Detection Probability
(CDP), which is able to compute the joint utility of a bundle
regardless of the bundle type from which it was instanti-
ated. In the scenario, we can choose between two bundle
types for each task: BT1 = 〈{UAV, IMINT-sensor}〉, BT2 =
〈{AcousticArray}, {AcousticArray}〉. In CDP, the joint utility
of a bundle is equal to a non-additive but submodular combi-
nation of the detection probability of each asset in the bundle.
Every sensor asset can be associated with a detection proba-
bility and therefore taken into consideration when computing
the cumulative detection probability.

This implies that in a scenario in which there are only event
detection tasks, we can formally define the CDP maximization
problem (MAXCDP) [7], where to globally maximize the
utility we have to maximize the CDP. The utility of a sensor
asset to a task is the probability that it will successfully detect
the event if it occurs (we assume there are no false positives),
which might be based on distance. Let Ai → Tj indicate that
asset i is assigned to task j. The objective function is then
to maximize the sum of detection probabilities (weighted by
the task “profit” pj , representing the “value” of achieving that
task), given the probability uij that a single (sensor) asset Ai

detects an event for Tj :∑
j

pj(1−
∏

Ai→Tj

(1− uij)) (1)

As we showed in [7], MAXCDP is NP-hard even for
geometric instances, even if sensors and tasks lie on a line.

To solve this problem, we propose a distributed approach
which consists of a bidding protocol where sensor assets bid
for tasks, described in Figure 4. A distributed approach is
preferable because it does not require any central node to make



the allocation decisions. This allows the protocol to leverage
run-time status information about assets which are operational
and which may currently be assigned to other tasks. Such
a protocol is also scalable and more efficient in terms of
communication cost compared to centralized approaches. The
approach also assumes a dynamic system, in which the tasks
may arrive and depart over time.

initialize each eij as the detection probability of Ai for Ti

initialize each task cumulative detection probability uj ← 0
initialize number of assigned assets to Tj , nj ← 0
initialize N to maximum number of assets a task is allowed to have
initialize R to number of rounds

Protocol for Task Leader (Tj ):
announce presence of Tj to each neighboring asset Ai

for round = 0 to R do
if nj < N then

among responding assets G, choose i← arg maxi{eij : Ai ∈ G}
update uj ← uj + eij

send accept messages and announce new uj

else done

Protocol for Asset (Ai):
wait for task requests
among requesting tasks Q, choose j ← arg maxj{eijpj : Tj ∈ Q}
send offer to Tj including location
if accepted then

Ai is assigned to Tj

done
else

listen to current uj values for requesting tasks
update detection probability based on new uj ’s
eij ← 1− (1− uj)(1− eij)− uj

repeat

Fig. 4. Protocol for event detection (from [7])

In this protocol, an asset called the task leader is chosen
for each task. Currently, the closest asset to the task’s location
in chosen for this, to minimise communication cost. The task
leaders are informed about their tasks’ types, locations and
priorities by a base station. Each task leader runs the protocol
locally to match nearby assets to the requirements of the task.
Since the utility a sensor can provide to a task is limited by
a finite sensing range, only nearby assets are considered. The
leader advertises its task information to nearby assets; assets
hearing this advertisement will offer their services to the task
with their locations. To minimize interruption of other ongoing
tasks, the leader of the arriving task always tries to satisfy the
requirements of the task using only assets that are not currently
assigned. If the task still requires more assets after trying all
available assets, the task leader selects the best match among
assigned assets. An asset that is assigned to a task that is not
sensitive to preemption may be reassigned to another task if
doing so will increase the total utility.

When a task ends, the leader sends out a message to
announce that the task has ended and all its allocated assets
are released. Because the system is dynamic, tasks that are
not satisfied after the first allocation process will try to obtain
more sensors once they learn there may be more available.

This information can be obtained either from the base station
or by overhearing the message announcing the end of a task.

Fig. 5. Effect on performance of varying the number of assets in detection
tasks

As described in [7], we implemented a simulator to test
our event detection protocol on randomly-generated problem
instances. Considering a network where only event detection
tasks are present, we studied the effects of changing the maxi-
mum number of sensors that can be assigned to a detection task
on the detection quality (“profit”). In Figure 5, the performance
of the detection schemes is measured as N (the maximum
number of assets a task is allowed to have) increases from 1
to 10. Note that a higher value of N means that more assets
can be assigned to each detection task, which will increase
the cumulative detection probability. The increase is rapid in
the beginning but slows down due to the submodular nature
of our cumulative detection function (1). The upper bound on
the optimal solution is found by selecting the best N assets.

VI. IMPLEMENTATION AND DEPLOYMENT

We have implemented a pilot application called SAM (Sen-
sor Assignment to Missions) as a proof-of-concept to test
and refine our approach: see Figure 6. A user logs-in as a
member of a particular CoI. In our simplified example, there
are two, corresponding to the “UK” and “US” members of
a two-country coalition. The user is able to select one or
more AoIs on a map (left panel) and, for each, to select
multiple ISR requirements (top-right panel) from the capability
ontologies. SAM is implemented as a Web application in
Java and uses the Pellet reasoner [17] to infer a set of
package configurations, each of which can satisfy all the
requirements (bottom-right). Before performing reasoning, the
SAM application queries inventory catalogues to determine
what types of platforms and sensors are actually available, so
it can recommend package configurations including the most
specific types that are potentially deployable. In doing this, it
takes into account access policies on these resources, including
ownership (note that the figure shows UK/US ownership of
assets in the bottom-right panel) and whether the user has
sufficient privileges to task those assets (shown by the “lock”
icon next to the asset types). While simple, this mechanism
is intended as an expansion point to allow the incorporation
of more sophisticated access policies in future, such as those
described in [1]. Figure 7 shows how the SAM application



Fig. 6. Screenshot of the Sensor Assignment to Missions (SAM) application

works in a distributed fashion in a multiple-CoI context, with
separate UK and US users, each having access to a private
catalogue of ISR assets (CatUK and CatUS respectively) and also
a coalition-wide catalogue of shared assets (CatCo).

SAMUK SAMUS

CatUK CatUS

CatCo

TasksUK TasksUS

        Sensor Network      

ConfigUK ConfigUS

UserUK UserUS

I2UK I2US

Fig. 7. A simple coalition use of the SAM application

The reasoning procedure is an exponential-time algo-
rithm [16] and so the time required to compute package
configurations increases rapidly with the number of classes
in the ontology. However, in practice many optimisations
and heuristics are possible to speed this up1 and we expect
that there will normally be far fewer asset classes than asset
instances (as there will be many instances of each class). Also,
the fitting step is simpler in the sense that it operates on a per-
task basis, rather than considering many simultaneous tasks.
In general, however, the exponential-time fitting algorithm
will perform worse than the polynomial-time algorithms used
in instance allocation, which is why we envisage that the
fitting step will typically be carried out at planning-time, while
allocation can be done dynamically at run-time.

Dynamic allocation (and potentially reallocation) of asset
instances at run-time depends on having a dynamic sensor de-
ployment environment. A sizeable amount of work is currently
being put into developing such environments, generally follow-

1The current prototype takes only a few seconds for an ontology of 180
types.

ing the principles of service-oriented architectures, allowing
sensors to be described, discovered, configured, subscribed-
to, and queried (e.g. [4], [18], [19]). Our prototype implemen-
tation uses the ITA Sensor Fabric [18], allowing the SAM
application to dynamically configure a set of selected sensors
on the network, and allowing the user to subscribe to these in
order to receive the required information and intelligence (I2).
This is shown in the lower part of Figure 7.

VII. DISCUSSION AND CONCLUSION

The SAM tool has been demonstrated to stakeholders in the
UK MoD and US ARL, with positive feedback. The ability
of the tool to generate explanations and support “what-if”
explorations of potentially-available ISR solutions has been
highlighted as particularly desirable, as has the incorporation
of various kinds of policy. The use of ontologies offers poten-
tial for restricted “advertising” of assets within the coalition.
As highlighted in [1], it is conceivable that a coalition member
may not want to expose the full capabilities of its sensors. So,
for example, a partner could share with the coalition that they
have IMINT-capable UAVs, but withhold specific features of
the IMINT package (perhaps advertising it at a lower NIIRS
rating than it actually has).

The task-bundle-asset model provides two main degrees-
of-freedom in allocating and reallocating assets to tasks. At
planning time, a range of options is identified for each task
by the fitting algorithm, based on potentially-available types
of assets. Assets are dynamically and efficiently allocated into
bundles (as specified by the bundle types) at run-time, and can
be reallocated as the need arises. However, it is also feasible to
choose an alternative task-bundle pairing at run-time without
incurring the cost of re-running the fitting reasoning. This is
trivial when the set of available assets is unchanged; it is also
straightforward to prune the sets of recommended bundle types
if assets become unavailable (e.g. destroyed). The potential
also exists to explore incremental updates of the recommended
bundle type sets when new asset types become available.

Our work so far takes a deliberately simple approach to
resource scheduling: tasks are associated with a particular
AoI, and the allocation algorithms use locality as part of their
decision-making process. We envisage the allocation algo-



rithms being run dynamically at discrete timesteps throughout
operations, in synch with mission tempo, allowing late-binding
of sensors to tasks, and hence increasing agilty. We accept,
however, that resource scheduling approaches may be bene-
ficial, and indeed have developed constraint-based techniques
for this in the past [20]. These allow a resource-manager to
maintain a schedule of resource commitments over time, and
to decide, in a transparent and explainable way, if and when
to break existing commitments in order to adopt new ones.

The approach described above assumes that an asset is
assigned exclusively to one bundle, and a bundle is assigned
exclusively to one task. We intend to relax this restriction in
future work, to allow sharing of bundles among tasks, and
assets among bundles. This reflects the reality that the same
sensed data can contribute to the satisfaction of more than one
task. Possibilities under consideration here include the pre-
processing of task descriptions to identify sets of tasks where
information can be shared among them, and richer modelling
of sensor and platforms to allow timesharing of assets where
a single asset instance to contribute part of its “capacity” to
multiple tasks.

Finally, we observe that use of the bundle formalism allows
us potentially to cope with three additional important aspects
of CCIRM: assignment of complementary sensing types to
the same task, assignment of assets other than sensors and
platforms, and sensor cueing. It is straightforward to extend the
NIIRS knowledge base described in Section III to assert that
complementary sensing types are required to confirm findings.
So, for example, in the vehicle identification case we might
require: Visible-4 u Radar-6 instead of Visible-4 t Radar-6. In
a similar way, we can add types of asset other than sensors
and platforms (for example, kinds of HUMINT or OSINT) to
a bundle, and can require the provision of assets in a bundle
that support sensor cueing, capable for example of allowing
scan-cue-focus networked operation [21].
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Appendix - Glossary of Acronyms
ACINT Acoustic Intelligence
AoI Area of Interest
CCIRM Collection Co-ordination and Intelligence

Requirements Management
CoI Community of Interest
CDP Cumulative Detection Probability
HUMINT Human Intelligence
I2 Information and Intelligence
IREQ Information Requirement
ISR Intelligence, Surveillance and Reconnaissance
IMINT Imagery Intelligence
JETL/METL Joint/Military Essential Task List
MALE Medium Altitude Long Endurance (UAV)
MSR Main Supply Route
NIIRS National Imagery Interpretability Rating Scale
OSINT Open Source Intelligence
SSIR Scenario-Specific Information Requirement
UAV Unmanned Aerial Vehicle
UJTL Universal Joint Task List


