
Resource Allocation With Non-Deterministic
Demands and Profits

Nan Hu∗, Diego Pizzocaro†, Matthew P.Johnson‡, Thomas La Porta∗, Alun D.Preece†
∗Department of Computer Science and Engineering, The Pennsylvania State University, US
‡Networked and Embedded Systems Laboratory, University of California at Los Angeles, US

†School of Computer Science and Informatics, Cardiff University, UK

Abstract—Support for intelligent and autonomous re-
source management is one key factor to the success of
modern sensor network systems. The limited resources,
such as exhaustible battery life, moderate processing ability
and finite bandwidth, restrict the system’s ability to serve
multiple users simultaneously. It always happens that only a
subset of tasks is selected with the goal of maximizing total
profit. Besides, because of uncertain factors like unreliable
wireless medium or variable quality of sensor outputs, it is
not practical to assume that both demands and profits of
tasks are deterministic and known a priori, both of which
may be stochastic following certain distributions.

In this paper, we model this resource allocation challenge
as a stochastic knapsack problem. We study a specific
case in which both demands and profits follow normal
distributions, which are then extended to Poisson and
Binomial variables. A couple of tunable parameters are
introduced to configure two probabilities: one limits the
capacity overflow rate with which the combined demand is
allowed to exceed the available supply, and the other sets
the minimum chance at which expected profit is required to
be achieved. We define relative values for random variables
in given conditions, and utilize them to search for the
best resource allocation solutions. We propose heuristics
with different optimality/efficiency tradeoffs, and find that
our algorithms run relatively fast and provide results
considerably close to the optimum.

I. INTRODUCTION

Resource allocation is a fundamental and critical prob-
lem studied in different forms in many communities.
Consider a surveillance sensor network system, in which
resources, like still and video cameras, batteries and
transmission bandwidth, are associated with nodes and
links, and shared among multiple tasks from different
users. The productivity of a task may depend on receiv-
ing exclusive access to certain resources (i.e., a tracking
task may benefit from a specific directional camera while
videos are authorized to be transmitted via a reserved
high-quality channel). In many cases, since resources
are often limited, the system cannot serve every user
simultaneously. A natural objective for such a problem
is to decide which tasks should be admitted under given
conditions so that the greatest profit may be achieved,
consistent with the capacity constraints.

If the demands and profits of tasks are fixed and
known exactly, this problem can be formulated as the
extensively studied knapsack problem [1] [2], where

each type of resource represents one feature of the
knapsack (e.g., length, volume, etc.), and each productive
task requesting resources is like an item of certain
value with specific characteristics to be placed into the
knapsack. In the single-dimensional cases, where only
one type of resource is considered, this problem can
be solved by a Fully Polynomial-Time Approximation
Scheme (FPTAS) based on Dynamic Programming (DP)
[3]; and in the multi-dimensional cases, where multiple
resources are taken into account, the problem is solvable
by a Polynomial-Time Approximation Scheme (PTAS)
[4] and various heuristics and approximation algorithms.

In practice, however, this deterministic model is not
suitable for many realistic applications. It is often hard
to predict how much resource is actually needed or how
much profit a successfully completed task (i.e., the task
that is allocated required resources) will return.

Consider the surveillance system again. More cameras
may be needed when many big trucks block the sight
of the targets. Also, if variable rate coding is used,
the network capacity consumed by the sensors will be
hard to predict exactly. Likewise, the pictures or videos
delivered may be noisy or obscured, leading to difficulty
of predicting the profit achieved precisely.

Therefore, a more conservative assumption assumes
that the demands and profits are random variables,
changing over time depending on different conditions,
and only their distributions are known. Still, the best
decision is sought to yield the greatest profit.

Reasonably replacing random variables with constant
values and solving the transformed problem is feasible,
but such a solution may not only lead to low utilization
of resources, but also fail to guarantee the minimum
probability of achieving the suggested profit.

For instance, given two tasks, whose demands and
profits all independently follow the uniform distribution
U(0, 100), the method we mentioned above fixes each
demand or profit as 75 (i.e., 75th percentile of the
random variable), leading to a new problem in which
we need at least 150 units of the resource to admit both
tasks to get 150 units of profit. However, the probability
that the combined demand actually requires less than 150
units is quite high (i.e., 87.5%), and there is a low chance
of 12.5% for obtaining at least 150 units of profit.

This variant of the knapsack problem is often posed as
the stochastic knapsack problem (SKP) [5]. In particular,
if only the demands are considered as stochastic, it
then becomes a chance-constrained problem, in which
an overflow threshold is set to limit the maximum
probability that the total demands may violate the ca-
pacity constraints. Both sampling-based approximation
methods [6] and equivalent transformation algorithms
[7] have been proposed for this variant. Instead, if only
the profits are stochastic, the solution then depends on a
target value [8] or an acceptable probability [9]. Rather
than maximizing the sum of fixed profits, the objective
now is to optimize the chance of achieving a certain
profit or to maximize the lower bound of profit which is
guaranteed to be obtained with high confidence.

In this paper we focus on the resource allocation
scenarios with both stochastic resource demands and
achievable profits. After formally defining this variant
of SKP, we solve a special case with normal distributed
demands and profits. Unlike the method proposed in
[7] which converts all random variables into constants
by extending the concept of effective bandwidth [10],
we define relative values for random variables in given
conditions in order to search for the most effienct way of
utilizing the resources without making the running time
unreasonable.

To our best knowledge, there is little work on this type
of resource allocation problem in which both demands
and profits are non-deterministic. We develop heuristics
for the case with normal distributed variables, apply them
to the Poisson and Binomial variables as extensions,
and conduct comprehensive numerical experiments to
evaluate their performance. The results show that, in both
single- and multi-dimensional cases, our algorithms not
only match the optimal solutions quite closely, but also
run efficiently.

Our main contributions include:

• Introduction of a novel method based on the relative
values of random variables to efficiently solve the
stochastic resource allocation problem;

• Development of algorithms for both single- and
multi-dimensional cases with normal distributed
variables, which closely matches the optimal solu-
tions in practice with fast running speed;

• Extended algorithms to be adaptable for Poisson
and Binomial scenarios.

The rest of this paper is organized as follows. Section
II presents related work. Section III formally defines the
the stochastic resource allocation problem, and outlines
its mathematical formulation. Section IV describes the
algorithms for both single- and multi-dimensional cases.
Section V presents the results of our numerical experi-
ments. Finally, Section VI concludes the paper.

II. RELATED WORK

Different variants of SKP have been widely discussed
during the past decades. Some works like [5], [11],
[12] have addressed the univariate dynamic version of
SKP (D-SKP), in which both the size and value of
each item may follow some probabilistic distributions,
but items are placed in the knapsack sequentially, and
the act of making an accept/reject decision instantiates
the values of random variables, which do not change
thereafter. The solution is returned as a particular order
of insertions. [5] proposes a linear time on-line algorithm
for which the expected difference between the optimum
and the approximate total value is O(log3/2 n). Dean et
al. [11] consider both nonadaptive policies and adaptive
policies, and devise a polynomial-time adaptive policy
that approximates the optimal adaptive policy to within
a factor of 3 + ε for any constant ε > 0. Goel et al. [12]
then improve this approximation factor to 8

3 + ε.
Dean et al. also study the multi-dimensional version of

D-SKP as a special case of stochastic packing problem
[13], and İlhan et al. [8] formulate it as a DP solv-
able problem for discrete random rewards and present
a heuristic that mixes adaptive and static policies to
overcome the “curse of dimensionality”. Johnson et al.
[14] propose algorithms to solve a version of the multiple
knapsack problem in which tasks arrive over time and
may have different durations. In their settings, tradeoffs
between the profit of a given resource assignment and
the total expected profit are evaluated under different
situations. Again, our problem formulation differs from
these in that the set of tasks are fixed and known, and
the demands and profits are not decided even after being
selected, which is defined as a static stochastic knapsack
problem (S-SKP).

Most prior works on S-SKP focus only on either
random sizes or random rewards. The work of Steinberg
et al. [15] presents a DP-based approximate algorithm
for cases with deterministic sizes and normal distributed
rewards. In the same setting, [9] combines DP with
a search procedure, [16] offers an alternative hybrid
DP/branch-and-bound algorithm, and [17] introduces so-
lutions for cases with normal and more general distribu-
tions. Chen et al. [7] extends the concept of effective
bandwidth to solve the multi-dimensional version of
another kind of S-SKP, in which item sizes follow some
known distributions but profit variables are constants.

III. FORMULATION

In this section, we formally define the stochastic
resource allocation problem and formulate a model for
the special case with normal distributed demands and
profits.

A. Problem Definition

We are given a set R of r resources (i.e., cameras,
bandwidth) and a set T of t tasks (i.e., detection,

tracking). Each resource Ri has an integral capacity ci.
Each task Tj requests Aij of resource Ri and is able to
produce a profit Vj if all its demands are satisfied.

In a general knapsack problem, both Aij and Vj are
deterministic and fixed. In this paper, however, they are
random variables following some known distributions,
and all these random variables of demands and profits
are assumed to be independent with each other.

We use a binary decision variable xj to indicate
whether Tj is accepted or not. xj = 1 means that Tj
is admitted and all its demands are satisfied; otherwise,
xj = 0. To decide which tasks should be chosen, the
frequency that the admitted set may violate the capacity
constraints must be lower than a preset threshold; also,
with a given level of confidence, the lower bound of
achievable profit should be maximized.

For any single resource Ri, the probability that the
total demand of the chosen tasks does not exceed avail-
able capacity ci should be no less than some preset
threshold. We define pid as such a capacity overflow
threshold denoting the lower bound of this acceptable
probability on Ri. Then this set of constraints on each
resource can be formulated as follows:

Pr
(t∑

j=1

Aijxj ≤ ci
)
≥ pid ∀i (1)

In addition, the total profit may vary, and the chance
of achieving the greatest result is always too trivial. Thus
our goal is to search for the solution which is capable to
contribute the highest level of profit with confidence. For
example, if the probability of achieving at least a specific
level of profit is acceptably high, we call this level
meaningful and define the threshold of the acceptable
chance as pv . Given a task set S and pv , we can calculate
the greatest meaningful profit for this set and define it
as λSpv

. Then our objective is to search for the greatest
achievable λSpv

among all potential solutions.
Suppose that S1 and S2 are two task sets, and pv is

set as 75%. S1 either returns 50 units or 200 units of
profit with probability of 75% and 25%, respectively.
S2 always generates 100 units. The greatest meaningful
profit for S1 (λS1

pv
) is 50 because the chance for S1 to

achieve 200 or more is lower than the threshold pv (i.e.
200 is not meaningful). Since λS2

pv
is 100 and greater than

λS1
pv

, although S1 may produce a greater profit twice as
much as S2, we still prefer S2 if only one of them can
be admitted.

We can describe the relationship above as follows:

Pr
(t∑

j=1

Vjxj ≥ λSpv

)
≥ pv ∀S (2)

Note that (2) is equivalent to:

Pr
(t∑

j=1

Vjxj < λSpv

)
< 1− pv (3)

and we define p̂v = 1−pv . Then combining (1) and (3),
we are able to formulate this problem as follows:

max λSpv

s.t. Pr
(t∑

j=1

Aijxj ≤ ci
)
≥ pid ∀i

Pr
(t∑

j=1

Vjxj < λSpv

)
< p̂v

where S = {Tj |xj = 1}

B. A Model for Normal Distributed Variables
For the case of the 0/1 knapsack problem with normal

distributed demands and profits, define Aij∼N(mij , v
2
ij)

and Vj∼N(µj , σ
2
j), where all mij , µj , v2ij , and σ2

j are
integers. It is easy to prove that any linear combination of
Aij’s (i.e.,

∑
j Aijxj) also follows a normal distribution

with mean of
∑

j mijxj and variance of
∑

j v
2
ijxj .

As a feature of normal distributions, (1) is equivalent
to:

t∑
j=1

mijxj +

√√√√ t∑
j=1

v2ijxj · Zpi
d
≤ ci ∀i (4)

where Zpi
d

is the inverse CDF φ−1() of standard normal
distribution at the point of pid, satisfying φ(Zpi

d
) = pid.

Similarly,
∑

j Vjxj ∼ N(
∑

j µjxj ,
∑

j σ
2
jxj). Since

the total profit is a continuous random variable, we can
change the equation (3) to

Pr
(t∑

j=1

Vjxj ≤ λSpv

)
= p̂v

which is equivalent to the following form:

t∑
j=1

µjxj +

√√√√ t∑
j=1

σ2
jxj · Zp̂v

= λSpv
(5)

where Zp̂v
= φ−1(p̂v). It is reasonable to assume that

pv is more than 50%, resulting in Zp̂v
< 0, which

means that we always require the probability to achieve
meaningful profits to be more than 50%.

(5) finds a way of representing our objective for this
special case, which can be reformulated as follows:

max

t∑
j=1

µjxj +

√√√√ t∑
j=1

σ2
jxj · Zp̂v

(6)

while the constraint (4) holds.

IV. ALGORITHMS

In this section, we discuss different algorithms for
both scenarios with single or multiple types (dimensions)
of resources. For the single-dimensional case, an optimal
solution is provided along with two faster heuristics. For
the multi-dimensional case, a polynomial time heuristic
is proposed.

A. Single-dimensional Case

Note that there is only one type of resource in the
single-dimensional case. In this subsection we use C and
PD to denote the corresponding capacity c1 and overflow
threshold p1d defined in the previous section.

1) Optimal Solution (ALG-1)
[17] provides an optimal solution for the unbounded

S-SKP (i.e., the number of instances of each task is
unlimited), in which only profits are normal distributed.
Since our problem focuses on the 0/1 S-SKP in which
the demands are also normal variables, we design the
optimal solution ALG-1 as follows.

For any given value of
∑

j σ
2
jxj , the objective func-

tion (6) is equivalent to maximizing the correspond-
ing

∑
j µjxj . Let Fk(m, v2, σ2) denote the greatest∑

j µjxj among all potential eligible selections, each
of which consists of the first k tasks and satisfies the
following conditions:
• The sum of demands follows N(m, v2);
• The variance of the total profit is exactly σ2.
Furthermore, if any parameter of Fk() is negative,

define Fk() = −∞, which means that we can never
find such a solution.

Given a capacity C, we can simply calculate both
upper and lower bounds for k, m, v2, and σ2. k is the
index of tasks ranging from 1 to t. m ∈ [0, C] because
m+v ·ZPD

≤ C and ZPD
> 0. In addition, there would

be no more than N∗ tasks being admitted, where

N∗ =
⌈ C

minj{mj}+ minj{vj} · ZPD

⌉
Thus, v2 ≤ N∗ ·maxj{v2j } and σ2 ≤ N∗ ·maxj{σ2

j }.
Initialize the value of every Fk() as −∞, and let

F0(0, 0, 0) be 0, which indicates the empty set. Then use
DP to calculate every Fk(I) by the following recurrence
equation:

Fk(I) = max{Fk−1(I), Fk−1(I − Ik) + µk}

where I denotes a 3-tuple input (m, v2, σ2), and Ik
is defined as (mk, v

2
k, σ

2
k) derived from task Tk. Our

objective is to maximize the meaningful profit, which
could be found by

max Fk(m, v2, σ2) + σ · Zp̂v

where m+ v · ZPD
≤ C

ALG-1 tries every combination of all parameters so
that it is able to find the optimal λSpv

and the corre-
sponding set S of admitted tasks. The time complexity of
ALG-1 is O(t·C ·σmax ·vmax), in which σmax and vmax

are N∗ ·maxj{σ2
j } and N∗ ·maxj{v2j }, respectively.

2) Heuristic Solution (ALG-2)
When C, σmax and vmax are bounded by a polyno-

mial in the size of t, ALG-1 is a polynomial time optimal
algorithm for our problem setting. However, when they

are not, we prefer a heuristic to quickly search for an
alternative suboptimal result when processing the large-
scale problem instances.

It is well known that Steinberg’s heuristic [15] solves
the bounded knapsack problem (i.e., each task could have
multiple instances but the number of instances is limited)
with deterministic demands and normal profits.

Here for this more complicated case where demands
are also normal distributed, we first let ALG-2 perform
a transformation on the demands, and then apply Stein-
berg’s algorithm to search for a lower bound of the
heuristic solution.

Since the left side of (4) satisfies∑
j

mjxj +

√∑
j

v2jxj · ZPD

≤
∑
j

mjxj +
∑
j

vjxj · ZPD

=
∑
j

(mj + vj · ZPD
) · xj

=
∑
j

A∗j · xj

where we replace the demand of task Tj , say Aj , by a
transformed A∗j with a fixed value of mj + vj · ZPD

,
we can solve the problem (6) with the following new
capacity constraint (7) by applying Steinberg’s work:∑

j

A∗jxj ≤ C (7)

The solution to the problem above is a vector X =
(x1 · · ·xt), which also meets the constraint (4). That
is, ALG-2 provides a lower bound of solutions to the
question defined by (4) and (6).
Gk(w) is represented by a pair (µ, σ2), which indi-

cates that when choosing tasks from T1 to Tk, if the
total transformed demand

∑
j A
∗
j does not exceed w,

a suboptimal solution can be found, whose total profit
follows N(µ, σ2).

Define |Gk(w)| = µ+σ ·Zp̂v
. Initiate G0(0) as (0, 0),

then every Gk(w) can be calculated recursively by

Gk(w) =

 Gk−1(w) if w < A∗k
Gk−1(w) else if V1 > V2
Gk−1(w∗) + (µk, σ

2
k) otherwise

where

w∗ = bw −A∗kc
V1 = |Gk−1(w)|
V2 = |Gk−1(w∗) + (µk, σ

2
k)|

The value of |Gt(C)| is returned as the maximized
meaningful profit λS

′

pv
of ALG-2, in which the suggested

task set S′ may not be the same as the optimal solution
S calculated by ALG-1. However, the time complexity
of ALG-2 is significantly reduced to O(t · C).

3) Improved Heuristic Solution (ALG-3)
Another heuristic, ALG-3, is shown below, which is

capable of finding better solutions compared to ALG-2
with a relatively quicker speed than ALG-1.

Suppose that we have already admitted some tasks
selected from T1 to Tk, whose combined demand follows
N(m, v2), and now try to make a decision on Tk+1.
If we add Tk+1 to the admitted set, the distribution of
total demand should become N(m+mk+1, v

2 + v2k+1).
According to the constraint (4), by adding Tk+1 as a new
task, we request Ãk+1 more units of resource, where

Ãk+1 = mk+1 +
(√

v2 + v2k+1 − v
)
· ZPD

Note that Ãk+1 drops into the interval

[mk+1, dmk+1 + vk+1 · ZPD
e]

which is decided only by the distribution characteristics
of the demand of Tk+1. We call this interval, Ik+1, the
relative demand interval of task Tk+1.

Instead of considering Tk’s demand as a constant A∗k
as ALG-2 does, without violating the capacity constraint,
our heuristic checks every possible value of Ãk in Ik
to search for a better solution. Since A∗k ∈ Ik, ALG-3
performs at least as well as ALG-2. Actually, in most
cases, ALG-3 successfully achieves much better results,
which is shown by our experiments in Section V.

Algorithm 3 Improved Heuristic Solution

1: initiate each Hk(w) = O
2: OPTv ← 0; OPTk ← 0; OPTw ← 0
3: for all k and w do
4: Hk(w)← Hk−1(w);Pa ← |Pk(w)|
5: for all Ãk ∈ Ik do
6: if w − Ãk ≥ 0 then
7: w̃ ← w − Ãk

8: if |Dk−1(w̃) + (mk, v
2
k)| ≤ w then

9: Pb ← |Pk−1(w̃) + (µk, σ
2
k)|

10: if Pa ≤ Pb then
11: Dk(w)← Dk−1(w̃) + (mk, v

2
k)

12: Pk(w)← Pk−1(w̃) + (µk, σ
2
k)

13: Sk(w)← Sk−1(w̃) ∪ {Tk}
14: Hk(w)← (Sk(w), Dk(w), Pk(w))
15: Pa ← |Pk(w)|
16: end if
17: end if
18: end if
19: end for
20: if OPTv ≤ Pa then
21: OPTv ← Pa;OPTk ← k;OPTw ← w
22: end if
23: end for
24: return OPTv and SOPTk

(OPTw)

Let w denote the resource capacity. Sk(w) is a de-
cision vector denoting the best admitted set when only

choosing tasks from T1 to Tk. The demand and profit
of Sk(w) are represented by Dk(w) and Pk(w) in the
forms of (m, v2) and (µ, σ2). OPTv is the maximized
meaningful profit which can be achieved by Sk(w) when
k and w are OPTk and OPTw, respectively. In addition,
we define 3-tuple Hk(w) as (Sk(w), Dk(w), Pk(w)) and

|Dk(w)| = m+ v · ZPD

|Pk(w)| = µ+ σ · Zp̂v

Unlike the process of getting Gk(w) in ALG-2, to cal-
culate each Hk(w), ALG-3 needs to check through cor-
responding Ik, whose size is bounded by vk ·ZPD

. Thus
the time complexity is changed to O(t · C · max{vj}),
which is worse than ALG-2 but still significantly reduced
compared to ALG-1.

B. Multi-dimensional Cases

ALG-1, ALG-2 and ALG-3 are all DP-based heuris-
tics, which are not suitable for the multi-dimensional
cases due to the limitation known as the “curse of
dimensionality”.

A polynomial-time heuristic was proposed for solving
the deterministic multi-dimensional knapsack problem
[18], in which the preference of each task is sorted
in terms of effective gradient (i.e., profit per unit of
aggregate necessary resource). The multi-dimensional S-
SKP, however, is more complicated.

Given different conditions, one demand variable Aij

may not contribute the same to the left side of (4), while
the same profit variable Vj could increase the level of
λSpv

differently. Thus we redefine the concept of effective
gradient for this type of problem and calculate it in a
modified way by using the relative value of effective
gradient, which is similar to the thinking of relative
demand interval mentioned in ALG-3.

Given a binary decision vector X in the form of
(x1, x2, . . . , xt), we define some notations as follows:

mX : (Σjm1jxj ,Σjm2jxj · · ·Σjmrjxj)

vX : (
√

Σjv21jxj ,
√

Σjv22jxj · · ·
√

Σjv2rjxj)

µX : Σjµjxj

σ2
X : Σjσ

2
jxj

Zpd
: diag(Zp1

d
,Zp2

d
· · ·Zpr

d
)

RsX : mX + vX · Zpd

VX : µX + σX · Zp̂v

OX : (max{(RsX)i − ci, 0})1×r
ŌX : (max{ci − (RsX)i, 0})1×r

where the vector RsX (i.e., Resultant Size) represents
the current value of left side of (4) for each resource,
and OX and ŌX indicate the level of demand overflow
and resource availability, respectively.

Suppose that we have a given decision vector X
and would like to remove an admitted task Tk. Denote

that the new decision vector is X ′, then the removed
profit, ∆V k−

X , would be VX −VX′ . Similarly, the vector
of removed demand, represented as ∆Ak−

X , would be
RsX −RsX′ . Then we can calculate the effective gradi-
ent of deleting Tk, say Gk−

X , by the following equation:

Gk−
X =

∆V k−
X

∆Ak−
X ·OX

where the operation · indicates the dot product of vectors
∆Ak−

X and OX .
We also define notations as follows when adding Tk

to an admitted set, in which the decision vector change
to X ′ from X .

∆V k+
X = VX′ − VX

∆Ak+
X = RsX′ −RsX

Gk+
X =

∆V k+
X

∆Ak+
X · ŌX

Algorithm 4 Heuristic for Multidimensional Case

1: initiate X ← (1 · · · 1); update RsX
2: while any (RsX)i > ci do
3: for all j do
4: calculate Gj−

X

5: end for
6: k ← argminj{G

j−
X } where xj = 1

7: xk ← 0
8: update RsX
9: end while

10: k ← 0
11: while all (RsX)i < ci do
12: for all j do
13: if xj = 0 and adding Tj won’t violate (4) then
14: calculate Gj+

X

15: else
16: Gj+

X = −1
17: end if
18: end for
19: k ← argmaxj{G

j+
X } where Gj+

X ≥ 0
20: if k 6= 0 then
21: xk ← 1
22: update RsX
23: else
24: break
25: end if
26: end while
27: return VX and X

The procedure of ALG-4 follows two steps. First of
all, let X be (1 · · · 1), indicating that all tasks are tem-
porarily selected. Initiate RsX = (ΣjA1j . . .ΣjArj),
and define a feasible zone F = {(d1 . . . dr)|di ∈ [0, ci]}.
Before RsX falls into F , we repeatedly remove one
task from the admitted set in the increasing order of

effective gradient, which is the ratio of the profit shifted
and projected length of demands on the direction from
RsX to F . After RsX enters F , we try to add some
dropped tasks back in the decreasing order of effective
gradient, as long as there are still enough resources left.

ALG-4 has a time complexity of O(t2·r). We compare
the results of ALG-4 with that of the enumeration
method in the experimental section, showing good per-
formance of ALG-4 on both results and running time.

V. NUMERICAL EXPERIMENTS

In this section, we explain our numerical experiments
and present the performance of our algorithms running
under different settings.

A. Experiment Setup

Recall that U(a, b) denotes a uniform distribution
on interval [a, b]. In our experiments, all parameters
are integers and randomly drawn. Every demand Aij

of task Tj on a resource Ri independently follows a
normal distribution N(mij , v

2
ij), and every admitted Tj

independently generates a profit Vj ∼ N(µj , σ
2
j), where

each parameter independently follows U(1, 25).
In each series of experiments, we vary the values of

t, r, pv and pd to check how they affect the results and
computational effectiveness. 100 problem instances are
generated for each particular combination. Each time
we randomly assign an integer value to the capacity
of resource Ri, which is greater than maxj{mij} +
maxj{vij} · Zpi

d
(Ci

min) to guarantee that at least one
task can be admitted. In addition, a capacity greater than
the value of Σjmij +

√
Σjv2ij ·Zpi

d
, say Ci

max, is enough
to meet the combined demands of all tasks. Therefore,
we draw ci from the interval [Ci

min, C
i
max].

Every solution suggests an admitted task set S, the
corresponding λSpv

of which, for a given pv , indicates
that S has a probability pv to achieve a profit greater
than λSpv

. For the same single-dimensional problem, let
the solutions of ALG-1, ALG-2 and ALG-3 be S1, S2

and S3, respectively. We separately compare λS3
pv

to λS1
pv

(the optimum) and λS2
pv

(a lower bound of the suboptimal
solution), to see how well our heuristic works. Similarly,
for any multi-dimensional case, the results of ALG-4
(λS4

pv
) and the enumeration method (eNUM) (λSe

pv
) are

compared as the latter is always maximized.
The computational effectiveness is also tested, by

which we show that although ALG-1 and eNUM can
find the best solutions, ALG-3 and ALG-4 are potentially
better heuristics because of their ability to return very
good suboptimal results in most cases while accelerating
running speed by thousands of times.

B. Single-dimensional Cases

In the experiments for the single-dimensional cases,
the values of pv (the probability to achieve the greatest
meaningful profits), pd (the capacity overflow threshold)

and t (the number of tasks) are changed individually, to
compare the results and running time of ALG-1, ALG-
2 and ALG-3. Theoretically, ALG-1 spends a longer
time to compute the optimal results, ALG-2 returns
suboptimal results with the fastest speed, and ALG-3
is able to find better solutions than ALG-2 and returns
within a shorter time than ALG-1.

1) t = 15, pd = 85% and varied pv:
Here t and pd are fixed, while pv is chosen from 55%

and 95%. 500 problem instances are simulated in this
series of experiments, and the results are illustrated in
Fig. 1, where histograms display the PDF’s of the ratio
of profits achieved by ALG-2/ALG-3 (λS2

pv
/λS3

pv
) versus

the actual optimum λS1
pv

calculated by ALG-1.

Fig. 1: PDF of λSpv
ratio with varied pv (single resource)

The top figure presents the PDF of the ratio between
λS3
pv

and λS1
pv

. It shows that ALG-3 achieves the same
results as ALG-1 about 95% of the time. The bottom
figure compares ALG-2 with ALG-1, in which the for-
mer fails to achieve more than 90% of the corresponding
λS1
pv

more than 50% of the time. As a result, we can see
that ALG-3 closely matches the optimal solutions and
achieves better profits than ALG-2.

2) t = 15, pv = 85% and varied pd:
In this set of experiments, pd is changed from 55% to

95% with constant t and pv , while another 500 problems
are tested.

Likewise, the PDF’s of λS3
pv
/λS1

pv
and λS2

pv
/λS1

pv
are

shown in Fig. 2. The histograms show that ALG-3 works
as well as ALG-1 about 92% of the time and ALG-2
achieves less than 90% of λS1

pv
almost 40% of the time.

Again, ALG-3 outperforms ALG-2.
Fig. 3 shows the ratio between λS3

pv
and λS2

pv
based

on given pd’s, in which we can see a ascending trend of
superiority of ALG-3 over ALG-2 when pd is increasing.
That is, the closer pd approaches 1, which indicates that
the capacity overflow constraint is being tightened, the
better ALG-3 performs compared to ALG-2.

3) pd = 85%, pv = 85% and varied t:
In this set of experiments of 500 instances, t is drawn

from 5 to 25, while pd and pv are both fixed at 85%.

Fig. 2: PDF of λSpv
ratio with varied pd (single resource)

The PDF’s in Fig. 4 illustrate that, compared to ALG-2,
ALG-3 always works well in searching for the optimized
solutions no matter how t changes.

Fig. 3: λS3
pv
/λS2

pv
with varied pd (single resource)

Fig. 4: PDF of λSpv
ratio with varied t (single resource)

Fig. 5 includes some boxplots, indicating that the
average percentage of outperformance of ALG-3 over
ALG-2 is stable around 10%, while the variance of
this increased performance slightly decreases with the
increase of t.

4) Computational Effectiveness:
The running time comparisons of all three series of

experiments are shown in Fig. 6. For the same problem
instance, the ratio of running time between ALG-1 (t1)
and ALG-3 (t3) is represented in the form of log (t1/t3).
We can see that although ALG-1 returns optimized
results, ALG-3 may be a better choice because it is often
able to optimize solutions with an average speed up of
a factor of 103.

Fig. 5: λS3
pv
/λS2

pv
with varied t (single resource)

Fig. 6: Ratio of running time (single resource)

C. Multi-dimensional Cases

For the multi-dimensional cases, all four parameters,
t, r, pd and pv , are individually changed. ALG-4 is
a linear approximate heuristic searching for suboptimal
solutions and compared with eNUM. Note that eNUM
is not scalable but always finds the best solutions, thus
we use it as a basis to show how well ALG-4 performs.

Fig. 7 illustrates the results of three series of experi-
ments with different combinations of parameters. We can
see in each histogram that the returns of ALG-4 (λS4

pv
)

mostly range over 95% of the corresponding optimum
(λSe

pv
) regardless of the combinations of parameters.

The corresponding running time of eNUM (te) and
ALG-4 (t4) for the problem instances shown in Fig. 7
are shown in Fig. 8. The first set of results ranges widely

from about −1 to 4 because when the number of tasks
is small, eNUM can run much faster than ALG-4 but
slows down quickly with the increase of t. For the other
two experiment, a nearly 103 times speedup is achieved
by ALG-4, which shows its computational effectiveness
for our problem setting in the multi-dimensional cases.

Fig. 7: PDF of λSpv
ratio (multiple resources)

Fig. 8: Ratio of running time (multiple resources)

D. Poisson and Binomial Distributed Cases

Previous experiments in this section only focus on
those S-SKP problem instances with normal distributed
demands and profits. Here we consider the Poisson and
Binomial distributed variables as extensions. Since both
of these two distributions have corresponding normal ap-
proximation methods, we try to normalize every random
variable first, and then apply our heuristics (i.e., ALG-3
and ALG-4) to the modified problems to check if they
are still capable of performing well in both single- and
multi-dimensional cases. Again, the optimal solutions
returned by eNUM are set as the basis to be compared
with our algorithms.

According to the Central Limit Theorem, the limit
form of a Poisson distribution P(λ) is a normal distribu-
tion in the form of N(λ, λ), and when λ is sufficiently
large (i.e., λ ≥ 20), the error from approximation would

be relatively small. Similarly, a Binomial distribution
B(n, p) also can be normalized as N(np, np(1 − p)),
which is usually appropriate if the constraints np ≥ 10
and n(1− p) ≥ 10 hold.

In our experiments, each series consists of 500 prob-
lem instances, and all parameters, λ, n and p, are inde-
pendently drawn from U(1, 25), U(1, 25) and U(0, 1),
respectively. Although this setting may lead to some
larger error caused by the normal approximation of a
single random variable, the overall performance shown
in Fig. 9 is still good.

Fig. 9: PDF of λSpv
ratio for normal approximation

When there is only one type of resource, most solu-
tions suggested by the approximation methods are able to
achieve more than 90% of the optimal profits calculated
by eNUM. For the Poisson distribution, the results are
very close to the optimal. The ratio between heuristic
and optimal results ranges wider when multiple resources
are present, but is still distributed tightly around the
area of 100%. Note that due to the error of the normal
approximation, the approximation method may return
a solution that violates the capacity constraints and
produces greater profit than the optimal, as shown in
the two histograms on the right.

VI. CONCLUSION

In this paper, we study the resource allocation problem
with stochastic demands and profits. We model this
problem as a variant of the stochastic knapsack problem
and solve a specific case with a normal distribution. Via
numerical experiments, we found that, with relatively
faster speed, our heuristics always provide satisfactory
solutions compared with the optimal results, and keep
working well as the number of tasks increases, the
capacity constraints become tighter/looser, and the distri-
butions of demands and profits are extended to Poisson
and Binomial.

In the future work, utilizing the concept of relative
values of random variables, we plan to find a more
general solution which is feasible for more extensions
of stochastic knapsack problems with other types of

distributions. In addition, we also plan to study different
ways in which to provide feedback regarding the bot-
tleneck of resources. It would be, for example, useful
to highlight not only which tasks should be selected to
yield the greatest profit, but also which resources are
the bottleneck that prevent some specific tasks being
selected.

REFERENCES

[1] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems.
Springer, 2004.

[2] S. Martello and P. Toth, Knapsack problems: algorithms and
computer implementations. John Wiley & Sons, Inc., 1990.

[3] H. Kellerer and U. Pferschy, “A new fully polynomial time
approximation scheme for the knapsack problem,” Journal of
Combinatorial Optimization, vol. 3, pp. 59–71, 1999.

[4] A. K. Chandra, D. S. Hirschberg, and C. K. Wong, “Approximate
algorithms for some generalized knapsack problems,” Theor.
Comput. Sci., vol. 3, no. 3, pp. 293–304, 1976.

[5] A. Marchetti-Spaccamela and C. Vercellis, “Stochastic on-line
knapsack problems,” Math. Program., vol. 68, no. 1, pp. 73–104,
Jan. 1995.

[6] B. Pagnoncelli, S. Ahmed, and A. Shapiro, “Sample average
approximation method for chance constrained programming:
Theory and applications,” Journal of Optimization Theory and
Applications, vol. 142, pp. 399–416, 2009.

[7] F. Chen, T. La Porta, and M. Srivastava, “Resource allocation
with stochastic demands,” in Distributed Computing in Sensor
Systems (DCOSS), 2012 IEEE 8th International Conference on,
may 2012, pp. 257 –264.

[8] T. İlhan, S. M. R. Iravani, and M. S. Daskin, “The adaptive
knapsack problem with stochastic rewards,” Operations Research,
vol. 59, no. 1, pp. 242–248, Jan. 2011.

[9] M. I. Henig, “Risk criteria in a stochastic knapsack problem,”
Operations Research, vol. 38, no. 5, pp. 820–825, Sep. 1990.

[10] F. Kelly, S. Zachary, and I. Ziedins, “Notes on effective band-
width,” Stochastic networks: theory and applications, vol. 4, pp.
141–168, 1996.

[11] B. C. Dean, M. X. Goemans, and J. Vondrk, “Approximating
the stochastic knapsack problem: The benefit of adaptivity,”
Mathematics of Operations Research, vol. 33, no. 4, pp. 945–
964, 2008.

[12] A. Bhalgat, A. Goel, and S. Khanna, “Improved approximation
results for stochastic knapsack problems,” in Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’11. SIAM, 2011, pp. 1647–1665.

[13] B. C. Dean, M. X. Goemans, and J. Vondrák, “Adaptivity and
approximation for stochastic packing problems,” in Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algo-
rithms. Society for Industrial and Applied Mathematics, 2005,
pp. 395–404.

[14] M. Johnson, H. Rowaihy, D. Pizzocaro, A. Bar-Noy, S. Chalmers,
T. La Porta, and A. Preece, “Sensor-mission assignment in
constrained environments,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, no. 11, pp. 1692 –1705, Nov. 2010.

[15] E. Steinberg and M. S. Parks, “A preference order dynamic
program for a knapsack problem with stochastic rewards,” The
Journal of the Operational Research Society, vol. 30, no. 2, pp.
pp. 141–147, 1979.

[16] R. L. Carraway, R. L. Schmidt, and L. R. Weatherford, “An
algorithm for maximizing target achievement in the stochastic
knapsack problem with normal returns,” Naval Research Logis-
tics (NRL), vol. 40, no. 2, pp. 161–173, 1993.

[17] D. P. Morton and R. K. Wood, “On a stochastic knapsack problem
and generalizations,” Advances in computational and stochastic
optimization, logic programming, and heuristic search, pp. 149–
168, 1998.

[18] Y. Toyoda, “A simplified algorithm for obtaining approximate
solutions to zero-one programming problems,” Management Sci-
ence, vol. 21, no. 12, pp. pp. 1417–1427, 1975.

