Veritying Ontological Commitment in Knowledge-Based
Systems*

Andrew Waterson and Alun Preece

University of Aberdeen, Computing Science Department
Aberdeen AB24 3UE, Scotland
Phone: +44 1224 272296; FAX: +44 1224 273422
Email: {awaterso, apreece}@csd.abdn.ac.uk

Abstract

An ontology defines the terminology of a domain of knowledge: the concepts that constitute
the domain, and the relationships between those concepts. In order for two or more knowledge-
based systems to interoperate — for example, by exchanging knowledge, or collaborating as
agents in a co-operative problem-solving process — they must commit to the definitions in a
common ontology. Verifying such commitment is therefore a prerequisite for reliable knowledge-
based system interoperability. This paper shows how existing knowledge base verification tech-
niques can be applied to verify the commitment of a knowledge-based system to a given ontology.
The method takes account of the fact that an ontology will typically be expressed using a differ-
ent knowledge representation language to the knowledge base, by incorporating translation into
the verification procedure. While the representation languages used are specific to a particular
project, their features are general and the method has broad applicability.

KNOWLEDGE REUSE AND ONTOLOGIES

The reuse and sharing of knowledge bases is a central theme of knowledge engineering in the 1990s [1].
Whereas, in the 1980s, organisations focused upon the construction of stand-alone knowledge-based
systems, a significant amount of current interest lies in integrating existing knowledge bases together
into enterprise-wide resources. Such resources play a vital role in modern organisations, relating to
the ideas of enterprise modelling and business process reengineering [2].

There are two primary ways in which organisations seek to reuse and integrate existing knowledge
bases:

e Knowledge fusion: Incorporation of existing knowledge into a new knowledge base, or merging
of existing knowledge bases into a combined resource. Data warehousing is an example of this
kind of approach [3].

o Distributed knowledge-based systems: Interoperation of existing knowledge-based systems (or
“agents”), distributed as nodes on a network. An example of this approach is the European
ARCHON architecture [4].

Early work on enabling technology for knowledge sharing established that three components are
needed to allow knowledge to be shared between two knowledge bases [1]:

e 3 common protocol in which to communicate knowledge;

e a common language in which to express knowledge;

*This work was supported by the University of Aberdeen Research Committee. This paper is an extended version
of the paper “Knowledge Reuse and Knowledge Validation”, presented at the AAAI-97 Workshop on Verification
and Validation of Knowledge-Based Systems, chaired by Grigoris Antoniou (Griffith University, Australia) and Robert
Plant (University of Miami, USA).

e a common set of definitions of terminology — an ontology.

A great deal of work has been done to define common protocols and languages for the commu-
nication and expression of knowledge, the best-known being the KQML protocol [5] and the KIF
language [6] produced by the Knowledge Sharing Effort (KSE) project [1]. In many ways, the defi-
nition of ontologies is a more difficult problem, because there are many different domains in which
terminology must be defined. These include:

e domain terminology for the application domain(s) that the knowledge refers to, for example,
medicine, aerospace, or commerce;

e task terminology for the operational aspects of the knowledge-based systems, for example,
diagnosis, scheduling, or design;

o physical terminology describing the nature of reality underpinning the knowledge, including
time, space, and part-whole relations.

Approaches to building ontologies range from large-scale work in defining highly-reusable ontolo-
gies of “commonsense” knowledge [7] to more modest efforts in defining terminology in a specific
application area [8].

Ontologies and Ontological Commitment

Although precise definitions of an ontology differ, the most widely held view in the artificial intelli-
gence community is that an ontology is an explicit specification of a conceptualisation: “the objects,
concepts and entities that are assumed to exist in some area of interest, and the relationships that
hold among them” [9]. Ontologies may be expressed using informal or semi-formal specification lan-
guages, but for our purposes we are interested only in ontologies defined formally in an appropriate
knowledge representation language (to permit their manipulation within knowledge-based systems).

As a minimum, an ontology will define taxonomic relationships (informal example: “a student is
a person”); more generally, any constraints may be put on terms (informal example: “all students
must take at least one course”). It is worth noting that, although the purpose of an ontology is to
define terminology, the form of an ontology can be that of a knowledge base or database conceptual
schema; any suitably expressive knowledge representation language or database schema definition
language may be used to define an ontology.

The word ontology is borrowed from philosophy where ontology is the study of existence, or a
description of what does exist [10]. Any logical theory has its own implicit ontology, this ontology
consists of all the things that the theory assumes to exist. A logical theory is said to be ontologically
committed to the existence of all the entities in its ontology.

While there is a considerable volume of literature about ontologies the subject of ontological
commitment has received little attention. Ontological commitment was first discussed from a logical
and philosophical point of view by Quine [11]. The work that has been done is generally highly
philosophical [11, 12, 13, 14]. Nicola Guarino states that ontological commitment can be seen as
“a mapping between a language and something which can be called an ontology” [14]. Quine’s
ontological commitment [11] required each term in a logical theory to be in that theory’s ontology.
A sentence dealing with an entity that doesn’t exist is meaningless. From Quine’s perspective,
each logical theory has its own explicit or implicit ontology. However, from the point of view
of knowledge engineering, interest lies in ontologies which many knowledge-bases can commit to:
portable ontologies [9]. It would clearly be impractical to limit a knowledge base to terms which
exist in external ontologies, therefore the knowledge engineers’ definition of ontological commitment
must differ from the philosophers’. The following definition is proposed for ontological commitment:
“A formalised mapping between terms in a knowledge-base and identical or equivalent terms in an
ontology”

Knowledge Reuse Using Ontologies

There are two requirements to share knowledge between two knowledge bases:

e it must be possible to translate their knowledge representations into a common language;

e it must be possible to map their terminologies into a common ontology.

The first requirement may be accomplished using a set of translation rules; the second may be
accomplished using a set of mapping rules. Note that there does not have to be a single common
language and a single common ontology; however, if multiple common languages and ontologies
exist, there will need to be multiple sets of translation and mapping rules. The translation problem
is not hard if knowledge bases use a syntactically-sugared version of first-order predicate calculus,
which is the approach taken by the KSE project [9], and is assumed for the purposes of this paper.

A set of mapping rules between a knowledge base and an ontology defines an ontological commit-
ment of the knowledge base. It is highly desirable that this ontological commitment be consistent:
no constraint in the ontology should be in conflict with inferences derivable from the knowledge base,
and vice versa. Checking that an ontological commitment is consistent is a verification issue. It
is worth noting that there is no completeness requirement on ontological commitment: it is not
necessary for every term in the knowledge base to have an equivalent term in the ontology, but in
that case there will be some statements that cannot be shared. Similarly, there is no need to have
an equivalent knowledge base term for every term in the ontology.

VERIFYING ONTOLOGICAL COMMITMENT

The previous section highlights the fact that, in order for two or more knowledge-based systems to
interoperate — for example, by exchanging knowledge, or collaborating as agents in a co-operative
problem-solving process — they must commit to the definitions in a common ontology. Verifying
such commitment is therefore a prerequisite for reliable knowledge-based system interoperability.
The objective of the work described in this paper is to provide a method for accomplishing such a
verification task. In doing so, since there already exist effective verification tools for knowledge-based
systems, it is desirable to reuse and adapt such tools rather than “reinvent the wheel”. Moreover,
any realistic verification procedure must take account of the fact that an ontology will typically be
expressed using a different knowledge representation language to the knowledge base.
The solution proposed in this paper has the following features:

e The input to the verification process consists of a given knowledge-based system, an ontology,
and a set of translation and mapping rules.

e The goal of the verification process is to identify any ways in which the concepts and relations in
the knowledge base of the knowledge-based system conflict with the definitions in the ontology,
taking into account the equivalences specified by the mapping rules.

e The verification process incorporates an “off the shelf” knowledge base verification tool —
COVER [15] — which has been extended to incorporate the translation and mapping oper-
ations into the verification process. The extended tool is called DISCOVER (COVER for
DIStributed knowledge bases).

e To use the DISCOVER tool, ontologies must be expressed in the MOVES language (Meta-
Ontology for the Verification of Expert Systems). The features of MOVES are very common

in ontology representation languages, so it would not be difficult to extend the applicability of
DISCOVER.

e As DISCOVER incorporates COVER, it requires knowledge bases to be expressed in CRL
(COVER Rule Language); again, this uses generic representation features, to allow broad
applicability.

The COVER tool is an anomaly checker: it analyses a knowledge base for undesirable properties
including conflicting knowledge, redundant knowledge, and deficient knowledge. Many of its features
are also provided by other anomaly checking tools — see [16] for a comparative survey of such
tools. DISCOVER does not change any of COVER’s original functionality; it employs COVER’s
“verification engine” to check for logical anomalies that occur between three kinds of statement:

e rules in the knowledge base of a knowledge-based system;

e rules in an ontology;

e mapping rules between the knowledge base and ontology.

The logical anomalies that indicate incorrect ontological commitment are similar to those that
indicate a faulty knowledge base. However, the location of each rule (knowledge-base, ontology, or
mapping) must be taken into account in identifying an anomaly. As in the verification of stand-alone
knowledge-based systems, not every anomaly signifies an error (see [17] for a full discussion of this
issue), but in the cases where DISCOVER does reveal an error, there are several possible sources:

o faulty statements in the knowledge base;
e faulty definitions in the ontology;
e faulty mapping rules between the knowledge base and ontology.

A special case of this third source is where the knowledge base is not actually intended to commit to
the ontology in the particular way defined by the faulty mapping rules. Nevertheless, it is important
to identify this problem, to avoid an attempt to “reuse” erroneously-mapped knowledge.

DISCOVER is applicable for use in a variety of software development processes. It may be used
in the case where there are several existing knowledge sources for which an organisation needs to
develop a common ontology; in this case, DISCOVER is likely to identify errors in the ontology as
it is developed to be compatible with each knowledge source (or it may identify errors in specific
mapping rules between the ontology and a particular knowledge source) . Alternatively, it may be
used in the case where a new knowledge source is being constructed within an existing enterprise
knowledge framework; in this case, DISCOVER is likely to identify errors in the knowledge base (or
the mapping rules), where it conflicts with the common ontology for the enterprise.

It is worth noting that DISCOVER is intended as a tool for a more general purpose than just
verifying ontological commitment: it is really intended as a general-purpose tools for checking the
compatibility of distributed knowledge sources (hence the name). Another specific uses of DIS-
COVER in this context are:

e to use an ontology as a body of background knowledge against which a knowledge base can be
validated;

¢ to employ knowledge from other sources to validate a knowledge base; for example, extracting
items in a database for use as test cases, provided that the database commits to a common
ontology with the knowledge base.

The remainder of this paper is organised as follows:

e description of the MOVES ontology representation language;
e description of the translation procedure and mapping rules;
e description of the DISCOVER verification process;

e examination of what the various kinds of anomalies (conflict, redundancy, and deficiency) mean
when they involve ontological commitments.

As a running example, the paper describes how an ontology containing university terms, the “Uni-
versity Ontology” can be used to verify a knowledge base, the “University Knowledge Base”, that
commits to it. These examples are inspired by the knowledge base from [18].

REPRESENTATION LANGUAGES

Knowledge bases are developed in many different languages. For an automatic verification tool to
be useful to a wide community of knowledge engineers it must be able to verify knowledge bases
implemented in as many languages as possible. Ontologies are also represented in a number of
different languages, for example, KIF [6] and CycL [7]. Knowledge base representation languages
provide features designed to support problem-solving methods, the most fundamental being inference
rules for use in forward or backward chaining. Ontology representation languages provide features
designed to support the definition of terminology: concepts in the form of frames (in the AT sense) or

classes (in the object-oriented sense), simple relationships in the form of slots on frames or attributes
on classes, and complex relationships in the form of general constraint expressions.

DISCOVER takes account of this necessary heterogeneity of representation languages by ac-
cepting knowledge base and ontology statements in different languages. Because DISCOVER in-
corporates COVER, the COVER Rule Language (CRL) is used to represent knowledge base rules
and facts [15]. CRL was designed to be a generic knowledge base representation language based
on first-order logic, and translators exist between CRL and several commercially-used knowledge
representation languages (including CLIPS and Expertech). DISCOVER, accepts ontological state-
ments (terminology and constraints) expressed in the MOVES language, which has been designed
to incorporate the most common features of languages used to represent ontologies. It would not be
difficult to translate definitions from ontologies represented in other languages into MOVES, for use
by DISCOVER (alternatively, it would be possible to extend DISCOVER to accept other ontology
languages).

Internally, DISCOVER translates MOVES statements into CRL “on the fly”, in order to exploit
the core COVER verification mechanisms. In our running example, the University Ontology is
implemented in MOVES, as described below. Later, it is shown how MOVES is translated into CRL
for use by DISCOVER. The University Knowledge Base is expressed in CRL, described later in this
section.

MOVES

MOVES includes a sub-language for expressing terminology and simple relationships using a frame-
based notation, and a sub-language for expressing constraints on the terminology.

The terminological sub-language is essentially a hierarchical frame-based system with multiple
inheritance for knowledge representation. The language is loosely based on CycL [7], and also
incorporates elements of the P/FDM object database schema definition language employed in the
KRAFT knowledge sharing project [19]. Thus, its features are rather general and conservative.

Concepts in the ontology are represented by frames, and specific examples of these concepts are
represented by instances. Frames have slots assigned to them. A slot can hold any simple type
(integer, real, string or boolean) or can contain an instance of another frame. All frames except
the root frame are subtypes of other frames. The root frame is declared to be a subtype of itself.
A frame inherits all slots of its parent frames. Frames are declared using the frame statement as
shown below in an example from the University Ontology:

frame thing of thing.

frame university of thing.

frame department of thing.

frame person of thing.

frame facultyMember of person.
frame student of facultyMember.
frame staff of facultyMember.
frame researchStudent of student.

Figure 1: The University Ontology Frame Hierarchy --- Insert here

These MOVES declarations create the hierarchy of frames shown in Figure 1. To assign slots to
these frames the hasSlot function is used.

person hasSlot name of boolean.
person hasSlot age of integer.
person hasSlot hasDegree of boolean.
person hasSlot enrolled of boolean.

facultyMember hasSlot uni of university.
facultyMember hasSlot dep of department.

staff hasSlot tenured of boolean.

researchStudent hasSlot supervisor of staff.

In the above example from the University Ontology the slots name, age, hasDegree, and enrolled
are assigned to the frame person, and are therefore inherited by the frames facultyMember, staff,
student and researchStudent. The frame facultyMember has the slots uni and dep assigned to
it; these slots are inherited by the frames staff, student, and researchStudent. The frame staff
has the slot tenured assigned to it, and researchStudent has the slot supervisor assigned to it;
neither of these slots are inherited by other frames since neither staff nor researchStudent have
sub-frames.
Once frames and their slots have been declared, instances of these frames can be declared.

instance alun of staff.
instance andrew of researchStudent.

The declarations above create one instance of staff — alun; and the instance of researchStudent
— andrew. (The appearance of instances in an ontology may seem surprising, but often it is useful
to incorporate ezamples of instantiated concepts in an ontology [20].)

Once instances have been created values can be assigned to their slots using the hasValue function,
which operates on an object-attribute-value triple.

hasValue(alun, hasDegree, yes).
hasValue(andrew, supervisor, alun).

The first of these statements assigns the value yes to slot hasDegree of staff — alun. The second
statement assigns the instance of staff — alun to the slot supervisor of student — andrew.

Statements in the MOVES constraint sub-language are based upon the CoLan constrain language
used in the KRAFT project [19], and take the following form:

constraint <frame_selector>
[where <instance_selector>]
tohave <condition>.

MOVES constraints have either two or three parts: the frame selector, the optional instance
selector, and the condition. The frame selector binds frames to variables. The instance selector
selects instances to which the constraint is relevant. The condition is a predicate which must be
true for all possible combinations of relevant instances. An example constraint from the University
Ontology:

constraint
x isa researchStudent and
y isa staff
where
slotValue(x, supervisor, y)
tohave
slotValue(y, uni, var u) and
slotValue(x, uni, u).

The keyword where is used to separate the frame selector from the instance selector, and tohave is
used to separate the instance selector from the condition. Also note that var is used to declare u as
a variable. A constraint is unsatisfied if an instantiation of variables causes the instance selector to
evaluate to true, and the condition to evaluate to false.

The slotValue function takes three arguments: an instance, a slot associated with that instance,
and a simple expression. If the value contained in the slot matches the simple expression, the
slotValue function evaluates to true. If var is used in a simple expression, a variable is created
and the value associated with the selected slot is assigned to the variable (see appendix A for further
details of syntax).

The example constraint from the University Ontology says that, for the ontology to be consistent,
all research students must be a member of the same university as their supervisors. The frame
selector binds the variables x and y to the researchStudent and staff frames respectively; the
instance selector states that the condition applies only to instances of x and y such that y is the
supervisor of x; finally, the condition states that where instance y of staff is a member of university
u, instance x of researchStudent must also be a member of university u.

It is also possible to declare frames as being disjoint with each other as follows:

<frame> disjoint_with <frame>.

Two frames are said to be disjoint if there is no frame which is a direct or indirect subclass of both
frames. For example:

staff disjoint_with student.

As will become clear in the next section, constraints in the ontology are of particular importance
in the verification process, as they place strong restrictions on the ways a commiting knowledge base
can use the equivalent terminology defined in the ontology.

COVER Rule Language

The COVER Rule language (CRL) is fully described in [15]; this section will merely summarise its
features to demonstrate that they are common to most knowledge-based system implementation
languages. CRL statements take four forms.

Rules CRL rules take the form:

rule <id> ::
<consequent> if
<antecedent>.

For example:

rule 120 ::
researchStudent hasValue yes if
student hasValue yes and
takesCourses hasValue no.

Rule consequents assign values to data items. These data items may be single or multiple-
valued, or boolean.

Goal declarations CRL goal declarations take the form:
goal <data_item>.
For example:
goal getDegree.

These declarations specify which data items the knowledge base is attempting to infer.

Constraint declarations CRL constraints take the form:

constraint <id> ::
impermissible if
<antecedent>.

For example:

constraint 42 ::
impermissible if
professor hasValue yes and
tenured hasValue no.

Constraint declarations specify invalid states of affairs; that is, combinations of data items
that should not occur in the domain being modelled.

Askable declarations CRL askable declarations take the form:

askable <askable_item> /

<type> /
<possible values>.

For example:
askable tenured / category / [yes, no].

Askable declarations specify which data items can be used as inputs to the knowledge base
and what values these data items can take.

MAPPING ONTOLOGIES TO KNOWLEDGE BASES

DISCOVER incorporates a syntactic translation program to convert ontologies represented in MOVES
into CRL. Once this conversion has taken place, a set of mapping rules is required, to define how to
map between the terminologies in the ontology and the knowledge base. The mappings involved can
be simple, requiring a single rule to map an ontology term to a knowledge base term, or much more
complicated requiring several rules to translate a single term. The translation rules formalise the
extent to which the knowledge base commits to the ontology. The translation rules are a statement
of ontological commitment. (It would be possible to check a knowledge base against an ontology
that the knowledge base does not commit to, but merely shares a conceptualisation with. In these
circumstances the mapping rules would translate between the two different specifications of the same
conceptualisation.)
As an example, the University Ontology contains the following statement:

frame researchStudent of student.
The translation program converts this to the following CRL rule:

rule 130 ::
uni__student (uni) if

uni__researchStudent (uni) .

To avoid clashes in name-space, the translator prepends an identifier for the University Ontology
(uni — short for university) prepended to the names of the ontology terms. Also, the translator
introduces the MOVES variable uni to make explicit the first-order definitions from MOVES.

To allow comparison of the translated ontology rules with the knowledge base, DISCOVER
requires mapping rules. The mapping rules used to map the example rule are given below:

rule 100 ::
researchStudent hasValue yes if
uni__researchStudent (uni) .

rule 101 ::
uni__researchStudent(uni) if
researchStudent hasValue yes.

rule 110 ::
student hasValue yes if
uni__student (uni).

rule 111 ::
uni__student (uni) if
student hasValue yes.

The constant uni is a term introduced to represent a person to whom all the knowledge base rules
apply. These mapping rules provide us with a chain of inference from the knowledge base terms
to the ontology terms using rules 101 and 111 and from the ontology terms to the knowledge base
terms using rules 100 and 110.

DISCOVER VERIFICATION PROCEDURE

As stated earlier, the goal of the DISCOVER verification process is to identify any ways in which
the concepts and relations in the knowledge base of the knowledge-based system conflict with the
definitions in the ontology, taking into account the equivalences specified by the mapping rules.
Given the framework described in the previous sections, the COVER verification mechanism can
perform this task. As described fully in [15], COVER incorporates three subsystems: the integrity
checker; the rule checker; and the environment checker; we briefly summarise their capabilities here,
and how these are exploited by DISCOVER.

Integrity Checker

The COVER integrity checker checks the “connectivity” of the knowledge base; that is, it makes
sure that data items in the antecedents of all rules are either askable, or are in the consequents of
other rules; and that the data items in the consequents of all rules are either in the antecedents of
other rules, or are goal items. It also detects circular dependencies among data items in rules. As
part of DISCOVER, the integrity checker treats the mapping rules just like any other rule, with the
exception that no anomaly can occur as a result of firing two mapping rules in a row that convert
in different directions.

In terms of “connectivity” in verifying ontological commitment, there is actually no requirement
to map completely between ontology and knowledge base terms. However, where a mapping is
defined, COVER ensures the basic integrity of the mapping — that is, that the terms used in the
mapping do in fact exist in the ontology/knowledge base.

The circularity issue is more important for verifying ontological commitment. Circularity occurs
when the original premise of a rule can be inferred from the consequent of the same rule. The
mapping rules typically contain circularity by their very nature (for example, rules 100 and 101 in
the previous section, which are merely inverse mappings); therefore, DISCOVER. does not detect
rule cycles that involve only mapping rules, since these rule-cycles are not deemed to be anomalous.
On the other hand, the following cycle is anomalous:

rule 120 ::
researchStudent hasValue yes if
student hasValue yes.

rule 104 ::
student hasValue yes if
uni__student (uni).
rule 1020 ::
uni__student (uni) if

uni__researchStudent (uni) .

rule 101 ::
uni__researchStudent(uni) if
researchStudent hasValue yes.

The definition of researchStudent is actually circular here (chaining rules 120, 104, 1020, 101, 120),
between the ontology and knowledge base. The error here is that rule 120 is too general: not every
student is a researchStudent. Stated more generally, the knowledge base does not mean the same
thing by the term student as the ontology means by the mapped-equivalent term uni__student.
The problem can be fixed by modifying rule 120 to be more specific, for example:

rule 120 ::
researchStudent hasValue yes if
student hasValue yes and
takesCourses hasValue no.

Rule Checker

The COVER rule checker examines the knowledge base for anomalies which can be detected by
comparing pairs of rules, looking for duplicate rules, subsumed rules, and conflicting rules. A rule
is said to be subsumed if it is merely a specific case of another more general rule. Rules are in
conflict with each other if they are able to imply different mutually exclusive inferences from any
set of inputs.

Since the ontology and the knowledge base manipulate different terms, prior to invoking the
COVER rule check, DISCOVER statically converts the ontology rules to the knowledge base ter-
minology. The mapping rules are used for this conversion, of course. For example, rule 1020 above
becomes:

rule 1020 ::
student hasValue yes if
researchStudent hasValue yes.

The three types of rule pair anomalies that DISCOVER can detect are explained below.

Conflict Conflict occurs when two rules are capable of deriving incompatible conclusions from a
set of given premises. For example, in the University Knowledge Base the rule

rule 25 ::
staff hasValue yes if
student hasValue yes and
tutor hasValue yes.

is in conflict with the ontology constraint
staff disjoint_with student
which is converted to the following, prior to the rule check:

rule 125 ::
staff hasValue no if
student hasValue yes.

rule 126 ::
student hasValue no if
staff hasValue yes.

COVER reports the conflict between rules 25 and 125. The error here is that the ontology and
knowledge base conceptualise “staff” in different ways. The ontology insists that staff cannot
also be student, while the knowledge base allows students performing tutoring work to be
considered staff. This is the kind of conceptual mismatching that can cause serious problems
in knowledge sharing unless it is detected and eliminated. In this case, there are several ways
to eliminate the problem, such as simply not mapping the two different “staff” concepts, or
modifying the ontology to allow tutoring staff.

Subsumption A subsumption anomaly is detected if one rule is a more general form of another
rule. For example in the University Knowledge Base the rule:

rule 14 ::
facultyMember hasValue yes if
student hasValue yes and
studiesHere hasValue yes.

is subsumed by the ontology rule

frame student of facultyMember.

10

which is converted to the following, prior to the rule check:

rule 114 ::
facultyMember hasValue yes if
student hasValue yes.

When a subsumption anomaly involves two knowledge base rules it is normally a sign of re-
dundancy. When it occurs between an ontology rule and a knowledge base rule, it typically
indicates a problem with ontological commitment, either due to faulty mapping rules or a
pathological case where the knowledge base and the ontology are based on different incompat-
ible conceptualisations. In the latter case, the correct course of action would be to lower the
level of ontological commitment — that is, to map fewer terms — providing of course that
greater commitment to the ontology is not required for knowledge sharing. In the example
above it is clear that the mismatch between knowledge base and ontology is due to the ontology
defining facultyMember as someone who is a member of a faculty at a university somewhere,
and the knowledge base definition that requires the person to be a member of a particular
university. The anomaly can be remedied by adding the line

uni ignores studiesHere.

to the mapping rules. This statement tells DISCOVER that studiesHere is meaningless to the
University Ontology, and enables DISCOVER to discount the anomaly as simply the product
of the differing granularity of knowledge base and ontology.

Environment Checker

The COVER environment checker performs the most computationally expensive checks on the knowl-
edge base. Firstly, the environment checker generates all combinations of askable items and their
values which will infer each goal. These sets of askable items are known as environments. The en-
vironment checker then checks each environment to see if it violates a constraint or if a state which
would violate a constraint can be inferred from it.

The algorithm of the DISCOVER environment checker consists of the following three steps:

1. Standard COVER environment check: The DISCOVER environment checker first checks the
knowledge-based system alone without using the mapping rules or the ontology.

2. Generate selected ontology environments: Generate environments for those ontology terms
that map to KB terms.

3. Check conflicts: Check for ambivalence between the environments for ontology terms and their
equivalent knowledge base terms.

If an environment can assign different values to a KB term and the equivalent ontology term,
conflict is correctly deduced and reported as an anomaly. Suppose the ontology contains the term
t, that maps to the knowledge base term t; ¢, can be inferred from the knowledge base term p; and
ty can be inferred from the knowledge base term —p. This state of affairs is anomalous since, ¢, and
ty can be inferred from conflicting environments — that is, p and —p.

In the following example based on the university knowledge base and the university ontology
uni_teachingAssistant is derivable only from staff hasValue yes and student hasValue yes
which is an impermissible environment according to knowledge base constraint 2304; therefore an
anomaly is reported.

rule 130 ::
uni__teachingAssistant (uni) if
uni__student(uni) and
uni__staff(uni).

rule 1324 ::
uni__student (uni)

11

if student hasValue yes.

rule 1325 ::
uni__staff(uni)

if staff hasValue yes.

constraint 2304 ::
impermissible if
staff hasValue yes and
student hasValue yes.

The error here is the reverse of the earlier example of rule-check conflict: here, the knowledge base
(rather than the ontology) contains a constraint stating that staff and student cannot both have
the value yes in a legal knowledge base state. This forbids the concept of teachingAssistant in
the ontology. Now, this may not be a problem, because it indicates the ontology is actually more
general than the knowledge base in this particular case. All it really means in practice is that this
knowledge base doesn’t allow the existence of “teaching assistants”. A problem would only arise if
the knowledge base tried to share the constraint 2304, which would then contradict the common
ontology.

CONCLUSION

This paper has demonstrated how existing verification technology (the COVER tool) can be adapted
to check the commitment of a knowledge base to an ontology. The DISCOVER tool can detect
anomalies between the ontology and knowledge base, such as conflicting, subsumed and circular
definitions. Based on the reports produced by DISCOVER, knowledge engineers can modify the
knowledge base to ensure that it commits to the ontology in a satisfactory way. Ontological com-
mitment is a prerequisite for knowledge sharing and reuse.

DISCOVER has extended the integrity and rule checks performed by the COVER tool. DIS-
COVER has been demonstrated on an example knowledge base and ontology in an academic domain.
We intend in the future to apply it to check more complex and realistic examples. We also plan to
use DISCOVER to verify the ontological commitment of a database conceptual schema.

This effort is part of a larger research undertaking to address a range of problems associated
with knowledge sharing and knowledge verification and validation:

e The general problem of “fusing” knowledge from disparate sources; this is the central objective
of the KRAFT project [19].

e The provision of an agent-oriented architecture to provide assistance to knowledge engineers in
identifying appropriate tools and sources of meta-knowledge for validation of knowledge-based
systems. This is a future goal of the DISCOVER project.

e The need for validation of distributed knowledge-based systems; this is the objective of the
COVERAGE project [21].

12

References

[1] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senatir, and W.R. Swartout. Enabling
Technology for Knowledge Sharing. AI Magazine, 12(3):36-56, Fall 1991.

[2] N. R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O’Brien, and M. E. Wiegand.
Agent-based Business Process Management. International Journal of Cooperative Information
Systems, 5(2):105-130, 1996.

[3] G. Wiederhold. Mediators in the Architecture of Future Information Systems. IEEE Computer,
25(3):38-49, 1992.

[4] D. Cockburn and N.R. Jennings. ARCHON: A Distributed Artificial Intelligence System for
Industrial Applications. In Foundations of Distributed Artificial Intelligence, New York, 1995.
John Wiley & Sons.

[5] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Communication
Language. In Proceedings of Third International Conference on Information and Knowledge
Management (CIKM’94). ACM Press, 1994.

[6] M.R. Genesereth and R.E. Fikes. Knowledge Interchange Format, Version 3.0, Reference Man-
ual. Technical Report Report Logic-92-1, Logic Group, Computer Science Department, Stanford
University, June 1992.

[7] D. B. Lenat and R. V. Guha. Building Large Knowledge-based Systems. Addison-Wesley,
Reading MA, 1990.

[8] M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications. Knowledge
Engineering Review, 11(2), 1996.

[9] T.R. Gruber. Towards Principles for The Design of Ontologies Used for Knowledge Sharing.
In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual Analysis and Knowledge
Representation, Kluwer Academic Publishers, 1995.

[10] Antony Flew. A Dictionary of Philosophy, page 238. St Martin’s Press, 175 Fifth Avenue, New
York, New York 10010, first edition, 1979.

[11] W.V. Quine. From a Logical Point of View: Nine Logico-Philosophical Essays. Harvard Uni-
versity Press, Cambridge, MA, 1961.

[12] A. Church. Ontological commitment. The Journal of Philosophy, 55:1008-14, 1958.

[13] W.V. Quine. Word and Object. The Technology Press of The Massachusetts Institute of
Technology and John Wiley & Sons, Inc, 1960.

[14] Nicola Guarino, Massimiliano Carrara, and Pierdaniele Giaretta. Formalizing ontological com-
mitments. In Proceedings of AAAI 9/, volume 1, pages 560-567, 1994.

[15] A. D. Preece, R. Shinghal, and A. Batarekh. Verifying Expert Systems: a Logical Framework
and a Practical Tool. Expert Systems with Applications, 5:421-436, 1992.

[16] Alun D. Preece, Rajjan Shinghal, and Aida Batarekh. Principles and practice in verifying
rule-based systems. Knowledge Engineering Review, 7(2):115-141, 1992.

[17] Alun D. Preece and Rajjan Shingal. Foundation and application of knowledge base verification.
International Journal of Intelligent Systems, 9:603-701, 1994.

[18] N. Zlatareva and A. D. Preece. An Effective Logical Framework for Knowledge-Based Systems
Verification. International Journal of Expert Systems: Research and Applications, 7(3):239-260,
1994.

[19] P. Gray, A. Preece, N Fiddian, W.A. Gray, T. Bench-Capon, M. Shave, N. Azarmi, and M. Wie-
gand. KRAFT: Knowledge Fusion from Distributed Databases and Knowledge Bases. In Eighth
International Workshop on Database and Ezpert System Applications (DEXA-97), pages 682—
691. IEEE Press, 1997.

13

[20] N. F. Roy and C. D. Hafner. State of the Art in Ontology Design. AI Magazine, 18(3):53-74,
Fall 1997.

[21] N. Lamb and A. Preece. Verification of Multi-Agent Knowledge-Based Systems. In Marie-
Christine Rousset, editor, ECAI-96 Workshop on Validation of Knowledge Based Systems, 1996.

14

APPENDIX: MOVES SYNTAX

<ontology>::== <expressions>
<expressions>::== <expression> | <expressions> <expression>
<expression>::== <constraint> | <declaration> | <instantiation>
<constraint>::== <short_constraint> | <long_constraint> | <disjoint>
<disjoint>::== <frame> disjoint_with <frame>
<long_constraint>::== constraint <frame_selector> <instance_selector>
tohave <condition>
<short_constraint>::== constraint <frame_selector> tohave <condition>
<frame_selector>::== <assignment> | <assignment> and <quantifier>
<assignment>::== [not] <variable> isa <frame>
<filter>::== <filter> <filter> | where <selector>
<selector>::== <assignment> | <specialiser>
<instance_selector>::== slotValue(<variable>,<slot>,<comparison>)
<comparison>::== <value> | <simple_expr> <value> |
<simple_expr> <variable>
<condition>::== <disjunction>
<disjunction>::== <conjunction> | <conjunction> or <disjunction>
<conjunction>::== <slot_test>|<slot_test> and <slot_test>
<slot_test>::== slotValue(<variable>,<slot>,<comp_comparison >)
<comp_comparison>::== <value> | <simple_expr> <value> |
<comp_exp> <variable>
<comp_exp>: :== <simple_expr> | var
<declaration>::== <frame_decl> | <slot_decl>
<frame_decl>::== frame <frame> of <frame_list>
<frame_list>::== <frame> | <frame> <frame_list>
<slot_decl>::== <frame> hasSlot <slot> of <type>
<type>::== integer | real | boolean | <frame>
<instantiation>::== <frame_inst> | <slot_inst>
<frame_inst>::== instance <variable> of <frame>
<slot_inst>::== hasValue(<variable,<slot>,<value>)
<value>::== <integer> | <real> | <boolean> | <string>| <frame>
<simple_expr>::== not | 1t | gt
<integer>::== <atom>
<real>::== <atom>
<boolean>: :== true | false
<string>::== <atom>
<frame>::== <atom>
<slot>::== <atom>
<variable>::== <atom>

15

Thing

[University] [Person j [Department j
[FacultyMember]
[Student] [Staff]

| X
+ Denotes:
ResearchStudent Y is subtype of X
Y

Figure 1: The University Ontology Frame Hierarchy.

