COVERAGE: Verifying Multiple-Agent Knowledge-Based
Systems*

Alun Preece

University of Aberdeen, Computing Science Department
Aberdeen AB9 2UFE, Scotland

Phone: +44 1224 272296; FAX: +44 1224 273422
Email: apreece@csd.abdn.ac.uk

Abstract

The increasing development of distributed knowledge-based systems based upon the multiple-
agent paradigm demands techniques for the verification of these systems. As a minimum require-
ment, it is necessary to verify that the individual agents are capable of fulfilling their advertised
capabilities, and that the whole group of agents forms a complete and coherent team. Anomaly
detection, as performed by the COVER tool, has proven to be a useful method for verifying logical
properties of stand-alone knowledge-based systems. This paper describes the COVERAGE tool
— an extension of COVER designed to perform anomaly detection on multiple-agent systems.
COVERAGE checks a multiple-agent system at serveral levels to verify that the system is forms a
coherent and complete team. The paper includes a running example of a multiple-agent system
verified using COVERAGE.

INTRODUCTION AND MOTIVATION

Knowledge-based systems (KBS) are a relatively mature aspect of artificial intelligence technology.
These systems solve problems in complex application domains by using a large body of explicitly-
represented domain knowledge to search for solutions. This approach enables them to solve problems
in ill-structured domains which defeat more conventional algorithmic programming. Unfortunately,
this approach makes KBS harder to validate and verify because there is not always a definite “cor-
rect” solution. However, in recent years considerable progress has been made in developing effective
validation and verification (V&V) techniques for such systems [1]. One verification tool in particular,
COVER, has been demonstrated as an effective means of revealing flaws in complex KBS [2]. COVER
operates by checking the knowledge base of a KBS for logical anomalies which are symptoms of
probable faults in the system.

Recently it has been realised that in order to solve certain kinds of complex problem it is nec-
essary to create a system in which a number of KBS cooperate and combine their problem-solving
capabilities. Sometimes this occurs because the problem-solving activity covers a large geographic
region (such as in telecommunications networks or military applications), where different KBS have
responsibility for different geographical areas; sometimes it occurs because different KBS have differ-
ent “specialities” to bring to the problem-solving process, similar to the co-operation among human
team members. The Multiple-Agent System (MAS) paradigm has proven a popular and effective
method for building a co-operating team of KBS: each KBS in the team is constructed as a software
agent, conferring abilities of autonomy, self-knowledge, and acquaintance knowledge on the KBS —
abilities useful for team-forming and co-operative problem-solving. However, the problem of assess-
ing the reliability of MAS through V&V has received scant attention, which is a matter of some
concern because these systems are considerably more complex than individual KBS [3].

*This paper is an extended version of the paper “Verifying Multi-Agent Knowledge-Based Systems using COVER-
AGE”, presented at the AAAI-97 Workshop on Verification and Validation of Knowledge-Based Systems, chaired by
Grigoris Antoniou (Griffith University, Australia) and Robert Plant (University of Miami, USA). The author gratefully
acknowledges the contributions of Neil Lamb (Ericsson Telecommunications, UK) to the COVERAGE project.



The objective of the work described in this paper is to build upon successful techniques in
verification of KBS, to develop methods for verifying multiple-agent KBS. Specifically, we extend the
COVER t00l to create COVERAGE: COVER for AGEnts (an earlier description of COVERAGE appeared
in [4]). Section 2 examines the architecture of MAS that we assume, Section 3 defines the properties
which we need to verify; Section 4 describes how we model an MAS for verification; Section 5 defines
the properties which COVERAGE is designed to detect; Section 6 describes the COVERAGE tool, and
Section 7 provides a discussion and conclusion. A running example illustrates the use of COVERAGE.

MAS ARCHITECTURE

Our intention is to provide a general approach to verifying MAS. The architecture of conventional
KBS is reasonably well-understood, and the approach taken by the COVER tool is to check KBS
represented in a generic modelling language, into which many representations can be translated
without too much difficulty [5]. Using a modelling language rather than the implementation language
has three important benefits:

e the verification approach is not tied to a specific target representation;

e by abstracting away detail not required for verification, it is computationally easier to work
with the modelling language;

e verification can be performed prior to implementation (for example, on a conceptual model of
the KBS [6]).

These advantages far outweigh the disadvantage, which is that inaccuracies may arise because the
modelling language may not exactly match the semantics of the target implementation language
— this is fully discussed in [2], where it is shown that such inaccuracies can be dealt with in the
verification process.

Figure 1: Structure of an ARCHON Agent --- Insert here

We would like to take a similar approach to MAS, but their architecture is not as well understood
at this time [7]. After careful consideration, the ARCHON! architecture [8] was adopted as a starting
point for developing a generic representation for COVERAGE, for two main reasons:

e it offers a layered architecture, in which problem-solving KBS domain knowledge is cleanly
separated from co-operation and communication mechanisms;

e industrial application MAS have been developed within it [8].

The ARCHON approach helps designers correctly decompose and package components of a MAS.
The individual components of an ARCHON system are agents, which are autonomous and have
their own problem solving abilities. Each agent is divided into two separate layers: the ARCHON
Layer (AL) supports interaction and communication, while the Intelligent System layer (IS) provides
domain level problem solving — the IS can be a KBS or some other type of information system.
This is illustrated in Figure 1.

The agent initiates problem-solving using control rules in the PCM. The PCM rules will typically
either invoke co-operation messages to other team members (whose capabilities are defined in the
acquaintance models) or by passing a goal to its own IS to solve. The monitoring layer between AL
and IS acts as a translator between IS and ARCHON terms, and allows the AL to control the IS by
invoking goals. For the purposes of this paper we will refer to the knowledge base of the IS layer
as domain knowledge (DK) and the knowledge base of the AL as the co-operation knowledge (CK).
Links between CK and DK structures are defined by monitoring units (MU).

Figure 2: Example MAS Interaction —--- Insert here

L ARchitecture for Co-operating Heterogeneous ON-line systems.



Example MAS Application

For illustrative purposes, we introduce a MAS in the domain of providing university course advice.?
Three agents are involved:

User Agent serves only as the user’s front-end to the MAS. It has an empty IS layer. Its AL has
a user interface which allows the user to enter their identity, year of study, and the name of
a course they wish to take. It then locates and contacts an agent who can provide advice on
whether a student can take a given course, and relays the agent’s response to the user.

Advisor Agent provides advice on whether a student can take a given course. Its IS layer is a
course advice expert system; its AL offers the facility for its peers to ask queries of the expert
system and obtain answers. To answer queries, the expert system needs information on the
academic history of the student (to see if course prerequisites are satisfied); the advisor agent’s
AL obtains this information by locating and contacting an agent who can provide it.

History Agent provides information on the academic history of students. Its IS layer is a database
of student records; its AL offers the facility for its peers to ask queries of the database.

The interaction between the three agents is summarised in Figure 2.

VERIFICATION REQUIREMENTS FOR KBS AND MAS

For a stand-alone KBS, we typically seek to verify properties of correctness and completeness. The
usual approach is to employ a combination of techniques, including logical analysis and empirical
testing [9], because techniques have been shown to be complementary and their combination is
therefore more effective than the individual techniques alone. The aforementioned COVER tool
performs logical analysis of a knowledge base, and is intended to be used as one component of a
combined verification-and-testing strategy.

COVER has been demonstrated as an effective means of revealing flaws in complex, real-world
KBS [2]. The tool checks the knowledge base of a KBS for logical anomalies which are symptoms of
probable faults in the system. Four classes of anomaly are detected by COVER: redundancy, conflict,
circularity and deficiency. These are summarised below, and are discussed in detail in [5].

Redundancy Redundancy occurs when a KBS contains components which can be removed without
effecting any of the behaviour of the system. This includes logically subsumed rules (if p and
q then r, if p then r) rules which cannot be fired in any real situation, and rules which do
not infer any usable conclusion.

Conflict Conflict occurs when it is possible to derive incompatible information from valid input.
Conflicting rules (if p then g, if p then not q) are the most typical case of conflict.

Circularity Circularity occurs when a chain of inference in a KB forms a cycle (if p then q, if
q then p).

Deficiency Deficiency occurs when there are valid inputs to the KB for which no rules apply (p is
a valid input but there is no rule with p in the antecedent).

These anomalies are now well-understood for stand-alone KBS. It is generally agreed that check-
ing a knowledge base for these anomalies is an important aspect of verification: generally, we do not
want knowledge bases to harbour redundancy, conflict, circularity or deficiency.

The properties for which MAS should be checked are less clear, because these systems are less
well understood. However, there is some emerging consensus (for example, see [10, 11, 12]) that
the most important properties of MAS to verify are related to the fitness of the group of agents
to act as a team. A minimum property which we need to verify is that there should be no task in
the distributed problem-solving activity that is not within the capabilities of one of the agents in the
group. For an ARCHON MAS, this means:

2This is a simplified version of a prototype MAS which advises on the options available to students who wish to
transfer between universities in the UK.




e any task which an agent may be called upon to perform by an acquaintance must be achievable
by the agent’s own IS, or be capable of being delegated to another acquaintance (such that
circularity does not occur);

e any task which an agent may request an acquaintance to perform must be available in the
agent’s acquaintance models;

e the tasks defined in an agent’s acquaintance models must be consistent with the self models
of the respective acquaintances.

From a static viewpoint, all of the above can be defined in terms of anomalies between:
e cach individual agent’s CK and DK;

e the CK of pairs of agents.

MODELLING MAS FOR VERIFICATION

In order to define logical anomalies for an MAS, in such a way that they can be applied to MAS
implemented in a variety of different (possibly heterogeneous) languages, we first define generic
modelling languages for the agent’s DK and CK. The reasons for taking this approach are the same
as those presented at the start of Section 2 for the approach taken by COVER.

Modelling Language for DK

We are interested in MAS where each agent’s DK is a KBS. Therefore, we adopt a slight variant of
the COVER KBS modelling language for capturing the DK of an agent. A fuller description of this
language, which is built on top of Prolog, appears in [5]; here we will summarise the main structures:
rules, goals, constraints and data items.

Rules Rules make up most of the DK, defining the flow of problem-solving in either a backward
or forward-chaining manner. The following are example COVER rules from the Advisor Agent’s IS:

rule r42 ::
canTake (software_eng) if
knowsC hasValue yes.

rule r43 ::
knowsC hasValue yes if
passedCourses includes ’C’ or
passedCourses includes ’C++’.

These rules conclude that a student can take the software engineering course if they know the C
programming language; they are deemed to know C if they have passed courses on C or C++.
Rule consequents conclude a value for some data item, called the rule subject (knowsC in rule r43).
Data items may be boolean facts (canTake(software_eng) in rule r42) or single or multi-valued
parameters (knowsC and passedCourses in rule r43).

Goals Goals may be intermediate states in the DK or final conclusions represented within an MU.
There will be at least one goal specified for each task required by the ARCHON layer and the MUs
will represent one goal each. An example goal declaration is goal canTake(software_eng), where
canTake (software eng) is a data item.

Constraints Constraint declarations permit us to verify the rules. An example declaration from
the Advisor Agent’s expert system:

rule cb4 ::
impermissible if
canTake (software_eng) and
canTake(intro_unix).



Each declaration states that a combination of data items and their values is semantically invalid:
that is, it is not permissible in the real world. The example constraint says that students are not
allowed to take both software engineering and introductory UNIX.

Data Declarations Data declarations are used to determine which data items are expected to
be supplied as input to the KBS. In a standalone KB this input will be supplied by the user. For
an agent the idea is actually the same, except that the “user” is the ARCHON layer, and data
declarations now define which data the ARCHON layer has to give the IS in order to achieve a task.
An example declaration:®

data passedCourses / set /
[°C’, ’C++’, intro_unix,
software_eng, ...].

The data declarations are used in verification to establish the types of data items, to determine
possible legal values that data items can take, and to check that certain values for data items can be
established. This example lists possible values for the multi-valued data item passedCourses (not
all values are shown).

Modelling Language for CK

The following language is derived from the description of components in the ARCHON layer [8],
consisting of PCM rules to govern the behaviour of the agent, and a set of declarations that define
internal data for the agent (beliefs, goals, domain facts) and capabilities available internally (MUs,
self model) and externally (aquaintance models).

PCM Rules The PCM rule declarations define the behaviour of the agent. For our purposes here,
PCM rules represent only the communication of information and the completion of requested tasks.
The following rule is used by the Advisor Agent to determine if a student can take a given course
in a given year.

pcm_rule p3 ::
canTakeCourse hasValue yes if
student hasValue S and
year hasValue Y and
course hasValue C and
agentModel (HistAgent, getHistory,
[student, year], [history]) and
request (HistAgent, getHistory,
[student, year]) and
activate(checkPrereqs,
[course, history]) and
hasPrereqs(C) hasValue yes.

This rule uses the request operator to find information from an acquaintance;* the activate
operator is used to invoke a task within an agent’s own IS. The student S can take the course C if
there is an agent HistAgent that can deliver S’s history, and the task checkPrereqs performed by
the Advisor Agent’s IS yields the fact that hasPrereqs(C) hasValue yes.

Agent and Self Declarations FEach acquaintance known to an agent has one or more entries in
the agent’s acquaintance model table of the form:

agentModel (Name, Task, Inputs, Outputs).

3In COVER, input data are defined askable; here we use the more general keyword data.

4The request operator waits for a response as in a conventional remote procedure call; it could be implemented
using an agent communication language such as KQML [13], but in this case the agent would have to wait explicitly
for an appropriate reply from its peer.



In the previous example PCM rule p3, the Advisor Agent refers to an entry in its acquaintance
model, agentModel to find the identity of another agent (HistAgent, a Prolog variable) which can
perform task getHistory using data student and year to produce a value for history.

Self models are very similar: they are a self-reference model for the agent’s own capabilities, and
refer to MU items.

Monitoring Units The MUs provide a bridge between AL task terms and IS goal terms, allowing
for different naming in each (this is necessary to allow existing KBS to be “wrapped” as agents).
An example MU for the Advisor Agent’s checkPrereqs task:

mu (checkPrereqgs,
[mapping(course, module),
mapping(history, passedCourses)],
[mapping(hasPrereqs, canTake)]).

Here, the AL operates in terms of input data course and history, while the equivalent terms at
the IS layer are module and passedCourses. The IS output term canTake (seen in IS rules r42
and r43) corresponds to the AL term hasPrereqs (seen in rule p3).

Example Agent Interaction

The User Agent’s AL contains the following rule fragment:

% read values for student, year, course

agentModel (AdvisorAgent, courseAdvice,
[student, year, course],
[canTakeCourse]) and

request (AdvisorAgent, courseAdvice,
[student, year]) and

% print value of canTakeCourse

The User Agent locates a peer who can perform the courseAdvice task, given input values for
[student, year, coursel, and returning a value for canTakeCourse; in this way, it will find the
Advisor Agent, and invoke the Advisor Agent’s task involving PCM rule p3 shown earlier. Rule p3
interacts with History Agent as shown in steps 2 and 3 in Figure 2, before activating its own IS
task checkPreregs to obtain a value for hasPrereqs(C). Once the term mappings defined in the
MU for checkPrereqs have been applied, the expert system will attempt to establish a value for
hasPrereqs(C) (using IS rules such as r42 and r43). If the value is yes, rule p3 succeeds and Advisor
Agent can return a positive response to User Agent.

MAS ANOMALIES

In defining the anomalies that can exist in a MAS, modelled using the DK and CK languages
described above, we identify four distinct types:

DK anomalies Anomalies confined to an agent’s DK.
CK anomalies Anomalies confined to an agent’s CK.

CK-DK anomalies Anomalies in the interaction between an agent’s CK and DK (that is, between
the modelled AL and IS).

CK-CK anomalies Anomalies in the interaction between acquaintance agents (this is, between
different agents’ ALSs).

The first three types are also known as intra-agent anomalies; CK-CK anomalies are also known as
inter-agent anomalies.



DK Anomalies

Essentially, the DK is a KBS; therefore, the COVER anomalies are applicable to the DK. COVER
defines four types of anomaly [5]; these, and their effects in MAS are as follows:

Redundancy Redundancy occurs when an agent’s DK contains components which can be removed
without effecting any of the behaviour of the agent. Simply redundant DK components will
not affect an agent’s ability to achieve goals, but it can lead to inefficient problem-solving
and maintenance difficulties (where one rule is updated and its duplicate is left untouched).
However, redundancy is usually a symptom of a genuine fault, such as where an unfirable rule
or an unusable consequent indicates that some task is not fully implemented. For example,
rule r43 in the earlier example would not be firable if the data declaration for passedCourses
did not contain either of the values ’C’ or ’C++’.

Conflict Conflict occurs when it is possible for the agent’s IS to derive incompatible information
from valid input. Conflicting DK is as harmful for an agent as conflicting knowledge in a
standalone KBS: the agent can derive incompatible goals from a valid set of input to a task.
In human terms, it is untrustworthy. This would be the case in the example if Advisor Agent’s
IS contained the following rule:

rule r44 ::
canTake (intro_unix) if
knowsC hasValue yes.

The combination of rules r42 and r44 firing would violate constraint c54.

Circularity Circularity occurs when a chain of inference in an agent’s DK forms a cycle. It may
then not be possible for the KBS or agent’s DK to solve some goals.

Deficiency Deficiency occurs when there are valid inputs to the agent’s IS layer for which no DK
rules apply. If an agent’s DK is deficient, then it may be promising a capability that it cannot
supply: if some agentModel in an agent’s AL indicates that the agent can solve some goal
using some input, and the DK is deficient for some combination of that input, it is effectively
in “breach of contract”. We expand on this theme below.

CK Anomalies

Anomalies confined to an agent’s CK fall into two types:

e faulty integrity between components, checkable by cross-referencing PCM rules, agent models,
and MUs;

e anomalies in PCM rules: as in DK, PCM rules may be redundant, conflicting, circular and
deficient.

CK-DK Anomalies

Anomalies indicating faulty integrity between an agent’s CK and DK will typically result in a “breach
of contract”: the agent’s AL is effectively promising that the agent has certain capabilities, and the
agent’s IS is meant to provide those cababilities. If there is a mis-match between CK and DK, then
a promise made by the AL will not be honoured by the IS. If an agent A has a CK-DK anomaly,
this may cause a problem for A itself, if it relies on being able to fulfill a task in its self-model; or it
may cause a problem for an acquaintance of A, say B, even where B’s agentModel of A is consistent
with A’s self-model.?

CK-DK anomalies may be simple cases of malformed MUs, where the MU does not properly map
to DK terms, or they may be much more subtle cases of unachievable tasks, where the information
defined in the MU does not permit the required goal(s) to be achieved by the IS under any possible
chain of reasoning. For example, if the MU for task checkPrereqs failed to map history into
passedCourses, then the task would be unachievable because pre-requisite checking rules such
as r43 could not fire.

5If B’s agentModel of A is not consistent with A’s self-model, then this is a CK-CK anomaly, discussed later.



CK-CK Anomalies

Again, these anomalies result in “breach of contract” between agents: typically, the agentModel
held by agent A of agent B is is in conflict with B’s self-model. Special cases include:

o Over/under-informed task: the task input of the self-model declaration is a subset/superset
of its counterpart in the agent model declaration; for example, the User Agent’s model of the
Advisor Agent’s task courseAdvice would be under-informed if it neglected to include year
in its input.

o Insufficient output: the task output of the self-model declaration is a subset of its counterpart
in the agent model declaration; for example, if the User Agent’s model of the Advisor Agent
included the additional output prereqs from the courseAdvice task (to indicate which pre-
requisites are needed to take the course), then the Advisor Agent’s actual capability to perform
courseAdvice would be insufficient to meet the User Agent’s need.

e Unobtainable item: an item in an input list to a task in agent A does not appear in any output
lists for acquaintance models held by A. This would be the case if the Advisor Agent did not
know any peers who could supply a value for history.

In comparing the CK rules of different agents, we are assuming that they share a common terminology
— they commit to a common ontology. Verifying an agent’s commitment to an ontology is outwith
the scope of this paper; it is the subject of a companion work [14].

COVERAGE

The COVERAGE tool has been implemented to detect the anomalies described above in MAS modelled
by our DK and CK languages. COVERAGE includes and extends COVER. Each agent in the MAS
is presented to COVERAGE in two files, for example advisor.dk and advisor.ck. The procedure
followed by COVERAGE is as follows:

1. COVERAGE invokes COVER to check the .dk file in its normal manner, producing a set of
reference tables and reporting instances of its four types of anomaly (redundancy, conflict,
circularity and deficiency). This covers all DK anomalies.

2. COVERAGE checks the .ck file to detect all CK anomalies and build CK reference tables.

3. COVERAGE then takes the reference tables produced by COVER, and cross-references these
with the CK reference tables for the agent, reporting CK-DK anomalies.

4. Once the above procedure has been applied for every agent in the MAS, COVERAGE cross-checks
all CK reference tables for CK-CK anomalies.

COVERAGE is implemented mostly in Prolog (except for part of COVER which was implemented
in C). Indexing of the reference tables makes the above checking operations reasonably efficient for
a moderately-sized MAS (complexity of the CK-CK checks is obviously proportional to the sizes
of the agentModel tables held by the acquaintances). The most expensive check is the CK-DK
check that ensures that tasks defined in MUs can be carried out by the IS: this involves checking
the environment table created by COVER, containing in effect every inference chain in the IS [5].
Arguments in support of COVER’s tractability apply here: IS in practice tend not to have very deep
reasoning, leading to short inference chains which are exhaustively computable.5

DISCUSSION AND CONCLUSION

The following points summarise the current status of our work:
e generic modelling languages have been defined for agent domain and co-operation knowledge;

e 3 four-layer framework of anomalies has been defined for MAS;

6Where this is not the case, heuristics as in SACCO can be used to constrain the search for anomalies [15].



® COVER has been applied successfully to verify agent domain knowledge;
e a new tool, COVERAGE has been built to detect all four layers of MAS anomaly.

COVERAGE is merely a first step — albeit a necessary one — towards the verification of MAS.
One difficulty at the outset was defining a stable architecture for MAS, given the current immatu-
rity of the technology. We elected to base our CK and DK languages on the ARCHON framework
since ARCHON has been proven to be “industrial-strength”, and the notion of agents-as-KBS is
well-supported by ARCHON. Moreover, the ARCHON framework introduced the important issue
of separating the agent’s components into distinct layers, allowing COVER to be used without mod-
ification to verify the KBS at the heart of each agent.

However, it appears that our approach is broadly applicable to a wider class of MAS architectures
than ARCHON. There is emerging stability in the kinds of architectures employed by distributed
knowledge-based problem-solving systems; outside of Europe, this is largely driven by the results
of the US Knowledge Sharing Effort (KSE) [16]. In this architecture, external resources (such as
knowledge bases and databases) are turned into agents by the construction of wrapper software. The
wrappers provide a common communication and coordination interface, similar to that provided by
ARCHON’s AL. The KSE communication protocol, KQML [13], allows agents to advertise their
capabilities to acquaintances, and request acquaintances to perform tasks. We believe it is feasible
to adapt our approach to work with KQML-speaking KSE-compliant agents.

Future work in the COVERAGE project includes the following areas.

Implementation of further CK-DK anomalies The anomalies defined for CK-DK “breaches
of contract” are largely sub-anomalies of a broader “unachievable task” anomaly. There are other
broader anomalies that we have identified but not implemented in COVERAGE, including:

e Redundancy, where an agents’ capabilities are subsumed by those of other agents: in the
extreme case, an agent can be removed from a team without affective the team’s abilities as a
whole (the agent is literally “made redundant”); less extreme is the issue of redundant tasks
performed by an agent.

e (lircularity, where two or more tasks may become deadlocked.

e Deficiency, where agents fail in general to deal with their environment; this is probably the
most difficult general anomaly to verify for MAS.

Dynamic anomalies In addition to the verification of statically-detectable anomalies, it is nec-
essary to verify dynamic MAS behaviour. For example, an agent’s mechanism for planning and
re-planning task achievement, coupled with communication and interaction, is extremely complex
to test. It is difficult to envision a dynamic MAS verification system that is omniscient, because the
space of all possible interactions will usually be vast or infinite. A possible method of circumventing
the problem would be to make the verification system an agent in itself, and to let it verify the
process as it is happening.

Real world systems The work carried out so far has demonstrated the use of COVERAGE on
a simple prototype MAS, showning that the anomalies discussed are important. Future work is
planned which will evaluate the COVERAGE approach on real world MAS applications.

References

[1] Uma G. Gupta. Validating and Verifying Knowledge-based Systems. IEEE Press, Los Alamitos,
CA, 1990.

[2] Alun D. Preece and Rajjan Shingal. Foundation and application of knowledge base verification.
International Journal of Intelligent Systems, 9:603-701, 1994.

[3] C. Grossner. Models and Tools for Co-Operating Rule-Based Systems. PhD thesis, Concordia
University, 1995.



[4] Neil Lamb and Alun Preece. Verification of multi-agent knowledge-based systems. In ECAI’96

Workshop on Validation, Verification and Refinement of Knowledge-Based Systems, pages 114—
119, Budapest, Hungary, 1996. ECCAI/NJSZT.

[6] Alun D. Preece, Rajjan Shinghal, and Aida Batarekh. Principles and practice in verifying
rule-based systems. Knowledge Engineering Review, 7(2):115-141, 1992.

[6] B. J. Wielinga, A. Th. Schreiber, and J. A. Breuker. KADS: a modelling approach to knowledge
engineering. Knowledge Acquisition, 4(1):5-54, 1992.

[7] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice. Knowl-
edge Engineering Review, 10(2), 1995.

[8] D. Cockburn and N.R. Jennings. ARCHON: A distributed artficial intelligence system for
industrial applications. In Foundations of Distributed Artificial Intelligence, New York, 1995.
John Wiley & Sons.

[9] Alun Preece, Stephane Talbot, and Laurence Vignollet. Evaluation of verification tools for
knowledge-based systems. International Journal of Human-Computer Studies, 1997. to appear.

[10] Nick Jennings Jan Treur Frances Brazier, Barbara Dunin Keplics. Desire: Modelling multi-agent
systems in a compositional formal framework. International Journal of Cooperative Information
Systems, 6(1):67-94, 1997.

[11] M. Fisher and M. Wooldridge. Specifying and verifying distributed artificial intelligent sys-
tems. In Progress in Artificial Intelligence—Sixzth Portugese Conference on Artificial Intelli-
gence (LNAI Volume 727), pages 13-28, Heidelberg, Germany, 1993. Springer-Verlag,.

[12] D.E. O’Leary. Verification of multiple-agent knowledge-based systems. In Verification and
Validation of Knowledge-Based Systems: Papers from the 1997 AAAI Workshop (Technical
Report WS-97-01), Menlo Park, CA, 1997. AAAT Press.

[13] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Communication
Language. In Proceedings of Third International Conference on Informatio n and Knowledge
Management (CIKM’94). ACM Press, 1994.

[14] A. Waterson and A. Preece. Knowledge reuse and knowledge validation. In Verification and
Validation of Knowledge-Based Systems: Papers from the 1997 AAAI Workshop (Technical
Report WS-97-01), Menlo Park, CA, 1997. AAAT Press.

[15] Marc Ayel and Laurence Vignollet. SYCOJET and SACCO, two tools for verifying expert
systems. International Journal of Expert Systems: Research and Applications, 6(2):357-382,
1993.

[16] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senatir, and W.R. Swartout. Enabling
Technology for Knowledge Sharing. AI Magazine, 12(3):36-56, Fall 1991.

10



to/from
acquaintances

Communication module

ARCHON layer

Acquaintance H

Planning & models
coordination |q—p>
module (PCM) Self
model

Monitoring layer

Intelligent
System
e &

Figure 1: Structure of an ARCHON Agent.

11



User
Agent

1. asks if student S
can take course

Advisor
Agent

4. tells whether or
not S can take C

3.tells S's

history

—

History
Agent

Figure 2: Example MAS Interaction.

12

2. asks for S’s
history



