Implementing a Semantic Web Blackboard System
using Jena

Craig McKenzie, Alun Preece & Peter Gray
{cntkenzi e, apr eece, pgray}@sd. abdn. ac. uk
Department of Computer Science, University of Aberdeen, Aberd@&241/BUE, UK

Abstract

In this paper, we discuss the need for a hybrid reasoning approaemdiing Seman-
tic Web data and explain why we believe that the Blackboard Architecturetisydarly
suitable. We describe how we have utilised it for combining ontological intererules
and constraint based reasoning within a Semantic Web context.

After describing the metaphor on which the Blackboard Architecture ishaseéntro-
duce the key components of the architecture: the blackboard Panelsmoanthe solution
space facts and problem related goals and sub-goals; the differiagibets of the asso-
ciated Knowledge Sources and how they interact with the blackboard;fimadly, the
Controller and how it manages and focuses the problem solving effort.

To help clarify, we use our test-bed system, the AKTive Workgroup Budde Black-
board (AWB+B) to explain some of the issues and problems encounteedimiplement-
ing a Semantic Web Blackboard System in Java, using Jena. We also disicusgasons
why we elected to use the Jena toolkit and explain its usage within severat dkth
components of our system.

1 Introduction & Motivation

Our research interest lies in exploring the suitability &lackboard System to utilise incom-
plete, Semantic Web information in a closed world, problemarded context, i.e. using SW
data to create a (finite domain) Constraint Satisfaction IBml{CSP) before attempting to
solve it. An interesting starting domain was within the @itof the CS AKTive Spacg10],
namely the Computing Science (CS) community in the UK. Our depmdication, the AKTive
Workgroup Builder and Blackboard (AWB+B), is a SW applicationt thtlempts to construct
one or more working groups of people from a pool of known imdinals. Workgroup composi-
tion must adhere to a set of user defined constraints, e gwitilkgroup must contain between
5 and 10 individuals” or “at least half the members of the wgodkip must have an interest of
Agents. Having successfully used Jena in past developments,asailifirity with the toolkit
meant that we knew it was capable of handling our initial requents and, as we discuss later,
does not appear to restrict us in our future work plan either.

Since our problem combines ontological inference, rules @nstraint based reasoning,
we believe that a combination of reasoning methods are sagesThe “one size fits all” rea-
soning theory was questioned in [11] when a DL based reasmecompared to a First-Order

lhttp://cs. akti vespace. org

prover. The final conclusion was that when dealing with a wqyressive OWL DL ontology
a combination of both is necessary because there was no ksiogie reasoning algorithm
able to adequately cope with the full expressivity possitith the OWL DL language. They
also flagged slow performance speed as a potential hurdexefidre, for this to be efficient, a
hybrid reasoning [1] approach is required.

Once this necessity for hybrid reasoning was identified, eedised that there is nothing in
the architecture of the Semantic Web for coordinating tfisre We believe the Blackboard
architecture is appropriate as it meets our requiremenigppasting the use of distributed
Knowledge Sources (KSs) responding to a central, sharedlkdge base via a control mech-
anism [9, 2].

The structure of this paper is as follows. In section 2 wepithiice our test-bed application,
the AWB+B, and explain the process of building workgroups. Thesection 3, we describe
the blackboard analogy before comparing the traditionpt@gch to our Semantic Web based
approach. In section 4 we describe the role of the KSs withénarchitecture and discuss
their individual attributes using the AWB+B to help illusteathe concepts. Next, section 5
describes the controlling mechanism of the blackboardalfyinn section 6 we conclude with
a discussion of our findings and comment on the direction ofuture work.

2 Building Workgroups

The AKTive Workgroup Builder and Blackboard (AWB+B) is a new intation of our earlier
version of the system (AWB [8]) that also used Jena but did setie blackboard architecture.
Like its predecessor, the AWB+B is a web-based applicatiort#ic&les the problem of assem-
bling a workshop containing one or more workgroups from d pb&nown people. Since the
user is not expected to have knowledge about the lower I@paradions of the blackboard, we
assume that all the necessary RDF information resourcesitwleled are known to the user
(via URIs). This allows the blackboard to be initialised ahd KSs to be dynamically created
and registered with the blackboard “behind the scenes”.

The RDF data processed by the AWB+B contains information abexeh endividual's re-
search interests, publications and projects they haveibeelved in. The detail of this infor-
mation will vary depending upon what is published by a patéic data source. Ideally, this
information will need to be reasoned against in order toriaflgitional facts that may not have
been explicitly stated — for example projects that a persmvorked on or papers that they
have published can imply additional research interests.

3 TheBlackboard Analogy

The concept of a Blackboard System is based upon a metaphoehbyha group of people,
each with differing expertise and knowledge, are all stag@round a blackboard deliberating
over a problem that has been written up on it. Everyone utal®is that the ultimate goal is
to solve the problem and that they will know the solution whieey see it but, at this point
in time, no single individual can work it out on their own. Theocess begins when one
person looks at the problem description on the board ansesahat he/she can make a small,
relevant contribution. They write their finding onto thedkhoard for the others to see. This
inspires another person to a further idea, which they alge wn the blackboard. This scenario
continues until eventually a solution is reached via theseemental, cooperative steps (for a

> >
y 47 e , Blackboard
>

Rl s>

| — e
|
= KS Trigger ~ - - KS Trigger Controller |«
<—— KS Contribution <——KS Contribution <
Figure 1. Each Knowledge Source (KS) Figure 2. The core architectural compo-
can view the Abstraction Levels within a nents of a Blackboard System. Each KS
Blackboard Panel. A KS can ligggered can view the contents of the Blackboard
by any of the items on blackboard, allow- Panels, but it is the Controller that decides
ing it to contributesomething at any of the which KS(s) are allowed to contribute to
abstraction levels. the Blackboard.

fuller description see [9]). No-one is allowed to commuieadirectly, everything must be done
through the blackboard which becomes a shared “thinkingesdar all the participants.

In computing terms, the architecture of a Blackboard Systeamthe “blackboard” as a
shared knowledge base, and the “people” as various KSs —sgagdi KSs in more detail in
section 4.

3.1 Traditional Approach

The pioneering blackboard systems (e.g. Hearsay-1l [4]SR/SIAP [5], CRYSALIS [3] and
OPM [7]) maintained the blackboard as a shared data reppsgpresenting a communal
work area or “solution space” of potential solution compuise The associated KSs were able
to view the contents of the blackboard and react by indigatihat they could contribute. They
were only allowed to modify the contents of the blackboahdhien requested to do so by the
Controller.

For this to work efficiently, the data held on the blackboamakstbe structured hierarchi-
cally into Abstraction Levels (see Figure 1); multiple dist hierarchies were referred to as
Panels. This organisation served two purposes. Firstgidid each KS to check if it can
contribute (i.e. the KS was activated, toiggered by the propagation of information onto an
abstraction level that it was monitoring). Secondly, itdesl focus the search for the solution.
As the name suggests, each layer is an abstraction usingmsnhat hide the detail of the
layer below it. For example, using the domain of speech wgtdeding, the lowest abstraction
level could be the phonetic sounds accepted by the systentewbl above could be potential
combinations of these sounds into letter groups; the nexl leeing single words; the next
level could be phrases; with, finally, the topmost level ¢cstingy of potential whole sentences.
A word-dictionary KS would examine the phonetic letter gyewand combine these to form
words, which (controller permitting) it would then post orthe level above.

The nature of each abstraction level and the actual entitbgwveach level can vary from
implementation to implementation depending upon the eabdfithe problem attempted. In-
stead of the bottom-up approach used in the example, a wwp-dpproach may be required,
so the first abstraction level is vague with later ones besgmiore refined. Likewise a KS’s

trigger could span multiple layers with a contribution atdftecting one or more layers see
Figure 2).

As mentioned already, the decision of what is (or is not) @daon the blackboard is made
by the controller, and the complexity of the solving strgtagopted can vary from a simplistic
“just action everything” approach to a more complex goaletrialgorithm. The key point is
that it directs the solving process via goals and sub-gbalsdach of the KSs can be triggered
by. This helps to ensure that onmiglevantinformation is added. Since the triggering action can
be dependent upon information added by a different KS, #sslts in an opportunistic solving
paradigm. A blackboard system is fundamentally backwasainihg — it is goal driven. In our
case, the initial goal placed on the blackboard is to find atswl to a specified workgroup
problem.

3.2 Semantic Web Approach

Our Semantic Web Blackboardaintains all the principles of thigaditional blackboards but
improves upon them by incorporating some of the conceptseoBSemantic Web. The notion

of Abstraction Levels aligns itself well to the hierarcHicgtructured nature of an ontology. In
the AWB+B it is a Jendnt Model that is used to store the data. Our decision to use Jena
was influenced by our familiarity with the toolkit but, primig, rather than just being aiple
cachefor RDF data, Jena uses a graph representation, with anwetaitd convenient API for
accessing content. This also has the advantage that thent®of the blackboard can be easily
serialised into textual form — either for debugging purosepropagation of the contents —
and represented in a well known and understood format (e.§, RB).

Until now, the blackboard has been passive, with any reagdminction placed firmly on
the shoulders of the KSs. While not wishing to stray too fanfrihe original concepts of
the blackboard architecture, we have introduced an eleofantelligence to the blackboard
itself. Unfortunately, enabling the Blackboard to make iafees about itself must be treated
with caution. Since reasoning is both difficult and time aonsg, it would be undesirable if
the actual blackboard became a bottleneck while it attednjatéully reason about itself and
denied all KSs from contributing. Unfortunately, this diddeme an issue when we attached
an OWL Lite reasoner. Therefore, we elected to only inferditare sub-class/property rela-
tions on classes and instances. Because this is such a conpeation, having it done by
the blackboard eliminates the need for frequent call outs3ahat would perform the same
function. In implementation terms, we simply attache@eamer i cRul eReasoner and the
following set of 4 forward chaining rules to ti@@t Model :

(?a rdfs:subPropertydf ?b),(?b rdfs:subPropertyd ?c) -> (?a rdfs:subProperty> ?c)

(?a ?p ?b), (?p rdfs:subProperty™ ?q) -> (?a ?q ?b)

(?a rdfs:subCd assOf ?b), (?b rdfs:subdassO ?c) -> (?a rdfs:subC assOf ?c)

(?x rdfs:subd assOf ?y), (?a rdf:type ?x) -> (?a rdf:type ?y)
Jena is quite flexible in that there are a choice of their owa based reasoners that can be
attached but also because Jena’s architecture providestanisem for attaching external rea-
soners to Jena models (by implementing the DIG descriptigit Ireasoner interface). This
means that, down the line, our research will not be resttiakewe can incorporate reasoners
such as FaCT Racet or Pellef.

2http: // www. cs. man. ac. uk/ ~hor r ocks/ FaCT/
Shttp://ww. sts.tu-harburg.de/ ~r.f.noeller/racer/
“htt p: // ww. m ndswap. or g/ 2003/ pel | et/ i ndex. shtm

4 Behaviours of Knowledge Sources

The KSs represent the problem solving knowledge of the sysEach KS can be regarded as
being anndependentomain expert with informatiorelevantto the problem at hand. The key
point is that no assumptions should be made about the cajsbdf a KS — conceptually it
should be regarded black box. Due to the tightly coupledreaitithe KSs and the Blackboard,
all KSs must be “registered” so that they can view the blaekbaontents and inform the
Controller of any potential contributions.

KSs access the blackboard and continually check to seeyitdmecontribute. Each one has
a precondition (or event trigger) and an actiarnétit can add to the blackboard). The black-
board is monotonic, facts are only ever added by the KSsrmetracted. This mechanism is
governed by a controller which monitors changes to the laakd and delegates actions ac-
cordingly. The whole process is driven by the posting of gedlich a KS either offers a direct
solution to, or breaks down further into sub-goals, indigathat more knowledge is required.

The following sub-sections describe the main types of KSenily implemented within
the AWB+B system based on their behaviours w.r.t. the blaakbo@his is by no means an
exhaustive list of all the possible types of KS and it shoutdnioted that future KSs could
combine some of these behaviours, but we have not exploiegdh

4.1 Human (User Interface) KS

While this may not be immediately obvious, the user of theesystan be regarded as a type
of KS. This represents “human” knowledge which is enteredaviveb-based user interface.
In AWB+B terms this is the user specifying the problem paransegg. the number of work-
groups to be built, the size of each workgroup, any assatied@straints, etc. Once all the
necessary information for the CSP has been entered, the KSdrans it into the starting goals
for the system which are then posted onto the blackboard,Kkick-starting the process.

In the current AWB+B implementation this interaction is mimlmerely the problem def-
inition. However, there is nothing to prevent a more “int¢nge” human KS. Another variation
of a Human KS could, for example, continually check the bitazkd for inconsistencies and
when one is found present the user with pop-up windows agkimg to offer a possible reso-
lution, i.e. it gives the user a “view” of inconsistenciesifial on the blackboard.

4.2 Instancebased KS

This type of KS only contains instance data correspondingntentology but not the actual
schema itself. This could either be from a simple RDF file oréld in an RDF datastore. This
KS contributes in the following way:

i) Try to add a “solution” to a posted (sub-)goal by addingamee data for classes and/or
properties defined on the blackboard.

i) Try to add a “solution” to classify any propertydirect subject and/or object which the
blackboard does not have a class definition for.

For example, if the ontological claBs of essor is defined on the blackboard and this KS has
instances of that class then, as per (i), the offered saligiall thePr of essor instances that
it knows about. Property definitions work in the same way,avatslightly more complex. As
per (i), when this KS responds to the property based goaksFor the KS would offer the

5

statement:
<ex:j ohn> <ont : wor ksFor> <ex: abdnUni >
However, this gives no information about the subject or thiea of that triple. This is not an
issue if they are already instantiated on the blackboardif blaey are not (and assuming the
object is not a literal) then subsequently, as per (ii), ti&edéuld also offer the following:
<ex:j ohn> <rdf:type> <ont: Lecturer>
<ex: abdnUni > <tdf:type> <ont: Uni versity>
Since this KS does not know the underlying schema, it canmatribute class defintion infor-
mation about théect ur er orUni ver si ty classes.

If this KS is a repository of RDF triples (for example, 3Stoé¢) jwe require a wrapper for
this KS, allowing us to communicate with the datastore \WaAiPI. In the case of the 3Store, it
uses éht t p interface that accepts SPAR®gueries. We transform any blackboard goal into
a query, the result of which can be transformed into tripleg @asserted onto the blackboard.

4.3 Schemabased KS

This represents a KS that only contains information at anlogical schema level. Since the
blackboard initially contains no ontological structureisithe job of this KS to help facilitate
the construction of the relevant ontological parts on tleekiboard. This type of KS attempts
to contribute in the following ways:

i) Try to add new sub-goals to the blackboard by looking for:
- Ontological sub-classes of a class defined on the blackboar
- Ontological sub-properties of property defined on the kitaard.

i) Try to improve the (limited) reasoning ability of the loleboard by adding:
- subClassOf statements connecting classes already defirted blackboard.
- subPropertyOf statements connecting properties alrdefilyed on the blackboard.
Note: Statements are only added €imect sub-class or sub-property relations.

iii) Try to add new sub-goals for any property’s subject amabject on the blackboard that
does not have a class definition. The sub-goals, in this gasdd be the missing class
definitions.

In (i) and (ii) super-classes/properties are never add#tetblackboard as these are deemed ir-
relevant and would widen the scope of the blackboard comtentmuch. Likewise, we need to
be careful in (iii). Continuing our previous example fromts&t 4.3, let us suppose that when
the ontology was first authored, ti@r ksFor property was assigned a domainRer son

and a range okow : Thi ng>. This was because the author believed that orffeason is
capable of working, but what it is they actually work for co@ither be anothdPersonor an
Organisation Therefore, for simplicity, they just widened the domairetecompass as many
classes as possible. If we were to use these domain and rahgesywe would introduce a
sub-goal asking for all instances<odw : Thi ng> which would end up with each KS offering
every instance it has. Therefore, in an attempt to narrovedlaech space as much as possible,
only the class definitions of instances with ther ksFor property are added as sub-goals (in
this casd_ect ur er andUni ver si t y respectively).

SSPARQL (SPARQL Protocol And RDF Query Language) is a quemngl@age for getting informa-
tion from RDF graphs. The W3C working drafSPARQL Query Language for RDRks available at:
http://ww. w3. or g/ TR/ rdf - spar gl - query/

6

44 RuleEngineKS

A Rule KS, like all the other KS types, can be viewed as a black bacapsulating its rules
and keeping them private. The ability to derive new infoliorathrough rules is an extremely
important and powerful asset. We achieve this by expregsiagn using SWRE This KS
works by examining the contents of the blackboard to detegnifiany of the rules that it knows
about are required and then attempts to contribute. A rukmgigiredonlyif any of the elements
in the consequent (head) are present on the blackho@ihd KS attempts to contribute to the
blackboard in the following ways:

i) Try to add a “solution” by firing the rule against instan@seady on the blackboard and
asserting the appropriate statement(s).

i) Try to add new sub-goals to the blackboard by looking for:
- Any ontological classes that are antecedents of the ruletlaat have not been
defined on the blackboard.
- Any ontological properties that are antecedents of the amd that have not been
defined on the blackboard.
The sub-goals in this case are the ontological class or progefinitions.

We need to be careful here, remembering that we want to kedgadbkboard contents relevant
to the problem at hand and not introduce superfluous clasglergoroperties. If a rule has
a conjunctive consequent, it can be split into separates fioleeach head atom. This means
that if a consequent is not needed, that rule will not be aw@sd avoiding the placement of
unnecessary sub-goals (i.e. class/property definitibag)could, subsequently, cause other KSs
to add irrelevant information relating to these (eithewsioh instances or sub-class/property
sub-goals).

The current AWB+B implementation has only one starting rulepele KS. The rule is
rewritten into a SPARQL query, which is placed against thekdaard contents to determine
if any new triples can be asserted. The results of the quergsserted onto the blackboard as
the new triples. This is, essentially, a brute force, fodvetnaining approach to deriving new
entailments (and goes against the grain of the backwaraiciggapproach of the blackboard).

In our future work we plan to further investigate the effeatdfkule Chaining and plan to
take advantage of Jena’s rule engine by converting the SWHis iiato the Jena format and
applying these directly to the blackboard. This tighteegration, coupled with a backward
chaining approach would greatly improve efficiency. SinteKSs access the blackboard via
an API, we have the alternative option of using an exterrlal @ngine too (e.g. Prolog, J&ss
SweetRuley.

45 CSP Solver KS

This KS allows us to perform constraint-based reasoningadi@pts to solve the CSP goal
posted on the blackboard. The constraints for the workgg)@we expressed using CIF/SWRL
[8] — our Constraint Interchange Format (CIF), which is an RD$eloiextension of SWRL that

6SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W@Ember submission,
http://ww. wW3. or g/ Submi ssi on/ SWRL/

"The reason why this is “any head element” is because SWRL slilberconsequent to contain a conjunction
of atoms.

8htt p: / / her zber g. ca. sandi a. gov/ j ess/
°http://sweetrul es. proj ects. semaebcentral . org/

7

allows us to express fully quantified constraints. Sincegbal of the AWB+B is to form
workgroups that adhere to the specified constraints, thiskfegral to the system and causes
the termination of the goal, i.e. once a solution to the gobhas been found, then there is
little point in continuing!

There are essentially two ways for this KS to operate. Theé ethod is the easiest to
implement. It involves the Controller waiting until all théher KSs have finished contributing
and the contents of the blackboard are as complete as thelgeca®nly then is a solution
checked for. The second method involves the KS continudlcking if a solution can be
found. Rather than attempting full blown CSP solving contumlyg, the solver checks each
of the constraints individually and only if they can all beisi@ed, does it attempt the more
difficult task of solving them combinatorially. It is the firgspproach which we have adopted in
the AWB+B.

If a solution is found the workgroups are posted onto thelilaard. For convenience,
the user is also presented with a web page listing the proposenbers of the workgroup(s).
Otherwise, they are informed that no solution can be foundthé latter case, the user must
decide which constraint(s) must be relaxed before the proldan be attempted again. The
system aids this decision by also including unsatisfiablestraint combinations.

5 TheController

As the name suggests, the role of the Controller is to ovetseunning of the system as a
whole. So far we have talked about the contents of the blaarkbas merely containing the
solution. In actual fact, the AWB+B blackboard is divided itte panels. The first panel is
the Data Panel which holds the solution related informatiarorder to inhibit the actions of
the KSs accessing this panel, there are a couple of safegiraplace. The Controller will
not allow the goal of “instances afowl : Thi ng>" to be placed onto the blackboard. Since
this isthe OWL super-class and would resultafl class (and sub-class) instances known by
a KS being added onto the blackboard. KS access to the blagkl® via a restrictive API
that allows only thosént Model method calls that view the underlying graph but not modify
it. This is in place to prevent a KS from modifying the blackba without the Controller’s
knowledge.

The second panel is the Tasklist Panel, and is used by thedllentio coordinate the
actions of each KS by storing information abautat each KS can contribute, based on the
current state of the blackboard. Like the Data Panel, thissible to all the KSs however,
unlike the Data Panel, the KSs are allowed to add to this pdiregdtly (but not remove items
from it). The KSs addraskl i st |t ens that describe the nature of any contribution they
could offer. The Controller looks at the items on the Taskbahel and determines which KS
is allowed to contribute. OnceBaskl i st |t emhas been actioned, the Controller removes
it from the panel. This “request for contribution” and “mageur contribution” sequence is
applied using a Java interface, which each registered K$ myéement and consists of the
two method callscanCont ri but e andnakeCont ri buti on.

When a KS’'scanCont r i but e method is called it first determin@ghatit can contribute
(as per the steps previously outlined in the KS descripjiand then checks, in the following
order, if its “current” proposed contribution is not on thiadkboard already; has not been
contributed previously by itself; and is not already on tleasKiist, i.e. already proposed by
another KS. Only if none of these cases apply i@akl i st | t emcreated and added to the
Tasklist Panel.

In our current implementation the Controller is relativeignple. After all the KSs have
been registered, the system “cycles” over each one askitoggypbpulate the Tasklist Panel
(by calling itscanCont r i but e method). Next, the Controller examines the contents of the
Tasklist and decides which items to action (by calling therapriatemakeCont ri but i on
method of a KS). After actioning the appropriakaskl i st1t ens on the Tasklist Panel,
the Controller has the option of retaining tasks that havebeen actioned, or removing any
remaining items from the Tasklist completely. This is puralhousekeeping measure as it
prevents redundant or “out of date” items remaining on thekllst Panel. Then the cycle
begins again. If nothing new has been added after a complete, ¢t is assumed that none
of the KSs can contribute further and the CSP Solver KS is aettlzand attempts to find a
solution.

While this is relatively straightforward to implement, itfer from optimised. We plan to
increase the intelligence of the Controller to further fothes problem solving, which should
improve performance, as well as introduce threading toavgconcurrency (taking advantage
of Jena’svbdel ChangedLi st ener interface).

6 Conclusions

In this paper we have discussed the implementation of a btsokl system in Java, using Jena.
From the onset, we wished to make the system as generic ablppstlowing groups and
constraint reasoning to be orthogonal to the choice of ogioby not giving the underlying
blackboard any ontological structure.

An important issue we encountered was a lack of efficiencyhefttvo stage approach
of canCont ri but e andmakeCont ri but i on for KS interaction; the work involved in
determining if a KS can contribute is comparable to the datwak involved in making the
contribution. However we believe the benefits of the blaegkoarchitecture outweigh this
shortcoming since the paradigm allows us to perform a mixeasoning methods on instance
data. We would argue that performance could be improved bynatting more time to the
development of the AWB+B to further optimise it.

We have also highlighted the importance of ensuring oellgvantitems are placed on the
blackboard. Since the blackboard system is attemptingrtvalese distributed SW data it does
not wantall the data available from each of the KSs; it is only interegteas small a subset of
this as is possible in order to solve the CSP problem. It iscth@f the Controller to ensure that
this is the case. In our future work we plan to investigate glexity and scalability trade-offs
(e.g. using multiple ontologies that require being mappecteasing the size of the dataset,
etc.) as well as the modification of the Controller strateggribance performance.

Even with these improvements, we still foresee that the taken to solve the CSP can
exceed the acceptable threshold for rendering a web pagalttime. Quite simply, reasoning
and CSP solving are time consuming, so a certain level of padies expected on the part of
the user. Even with application optimisation, there afdegimplexity issues. The Blackboard
framework gives us a number of options on how to explore tireser future work. What if
the data on the blackboard makes the CSP undecidable? Whairisdpp KS starts to perform
reasoning that could take hours or days to complete? Thiykhe Blackboard Architecture
guards against the inefficiency of KSs — the overall procéssmutrolling the problem solving
remains with the Controller. Had we implemented an asynaduswersion of the application,
then a time-out mechanism can be added to the Controllerag¢Sftakes an inordinate amount
of time to respond it is just ignored. The architecture sufgpihe addition or removal of KSs

from the system, with the only adverse effect being on qualithe results.

Acknowledgements

This work is supported under the Advanced Knowledge Tedugiet (AKT) IRC, supported by the EPSRC
(grant number GR/N15764/01). The AKT IRC comprises the Brsities of Aberdeen, Edinburgh, Sheffield,
Southampton and the Open University. For further infororatieeht t p: / / ww. akt or s. or g

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

R. Brachman, V. Gilbert, and H. Levesque. An Essential itytiteasoning System:
Knowledge and Symbol Level Accounts of KRYPTON. The Ninth International Joint
Conference on Artificial Intelligence (IJCAI-8%ages 532-539, Los Angeles, California,
USA, 1985.

N. Carver and V. Lesser. The Evolution of Blackboard Contkathitectures. CMP-
SCI Technical Report 92-71, Computer Science Departmenth8oulilinois University,
1992.

R. S. Engelmore and A. Terry. Structure and Function of@RY SALIS System. InThe
Sixth International Joint Conference on Atrtificial Intekigce (IJCAI79)pages 250-256,
Tokyo, Japan, August 20-23 1979.

L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. Thars#y-1l Speech-
Understanding System: Integrating Knowledge to Resolvesttamty. ACM Computing
Surveys12(2):213-253, 1980.

E. A. Feigenbaum, H. P. Nii, J. J. Anton, and A. J. Rockm@mgnal-to-signal Transfor-
mation: HASP/SIAP Case Studpl Magazine 3(2):23-35, 1982.

S. Harris and N. Gibbins. 3store: Efficient Bulk RDF Storagk 1st International
Workshop on Practical and Scalable Semantic Systems (B®Sges 1-20, 2003.

B. Hayes-Roth, F. Hayes-Roth, F. Rosenschien, and S. Camanavatdelling Planning
as an Incremental, Opportunistic ProcessTe Sixth International Joint Conference on
Artificial Intelligence (IJCAI79)pages 375-383, Tokyo, Japan, August 20-23 1979.

C. McKenzie, A. Preece, and P. Gray. Extending SWRL to Expfadly-Quantified
Constraints. In G. Antoniou and H. Boley, editoRyles and Rule Markup Languages
for the Semantic Web (RuleML 2004NCS 3323, pages 139-154, Hiroshima, Japan,
November 2004. Springer.

H. P. Nii. Blackboard Systems: The Blackboard Model of Reai Solving and the
Evolution of Blackboard Architecture®\l Magazine 7(2):38-53, 1986.

N. Shadbolt, N. Gibbins, H. Glaser, S. Harris, and mraefel. CS AKTive Space, or
How We Learned to Stop Worrying and Love the Semantic WEBE Intelligent Systems
19(3):41-47, 2004.

D. Tsarkov and I. Horrocks. DL Reasoner vs. First-Ordesver. In 2003 Descrip-
tion Logic Workshop (DL 2003yolume 81, pages 152-159. CEUR (http://ceur-ws.org/),
2003.

10

