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Abstract

Anomalies such as redundant� contradictory and de�cient knowledge in a knowledge base are

symptoms of probable errors� Detecting anomalies is a well	established method for verifying

knowledge	based systems� Although many tools have been developed to perform anomaly de	

tection� several important issues have been neglected� especially the theoretical foundations and

computational limitations of anomaly detection methods� and analyses of the utility of such

tools in practical use� This article addresses these issues by presenting a theoretical founda	

tion of anomaly detection methods� and by presenting empirical results obtained in applying

one anomaly detection tool to perform veri�cation on �ve real	world knowledge based systems�

The techniques presented apply speci�cally to verifying rule	based knowledge bases without

numerical certainty measures�
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Knowledge Base Veri�cation

The importance of assuring the reliability of knowledge	based systems �KBS� is now widely

recognized� It is also widely recognized that the process of veri�cation is an important part

of reliability assurance for these systems� Although de�nitions of KBS veri�cation vary in the

literature� one common theme is that veri�cation of a knowledge base �KB� includes checking

the knowledge for logical anomalies such as redundant knowledge� contradictory knowledge� and

missing knowledge� Such veri�cation is called anomaly detection�

In the decade following the appearance of the �rst known anomaly	detection program for

KBS �Suwa et al�� ������ the �eld has developed rapidly� Two broad phases of research and

development can be identi�ed


��������� Systems developed during this period detected simple manifestations of redundant

knowledge �typically duplicate and subsuming pairs of rules�� contradictory knowledge

�pairs of rules with equivalent conditions but contradictory conclusions�� and missing rules

�logical combinations of permissible input not matching the conditions of an existing rule in

the KB�� Pioneering systems included the RCP �Suwa et al�� ����� and CHECK �Nguyen

et al�� ������ systems addressing e�ciency issues included ESC �Cragun and Steudel� ���
�

and Puuronen�s algorithm �Puuronen� ���
��

��������� Work in this period increased the power of anomaly detection systems by extending

the de�nitions of anomalies beyond simple pairs of rules
 redundancies and contradictions

arising over chains of rules could be detected� as could more subtle cases of missing knowl	

edge� Signi�cant systems included COVADIS �Rousset� ������ EVA �Stachowitz et al��

���
�� and KB	Reducer �Ginsberg� ������ with e�ciency issues being addressed by tools

such as COVER �Preece� ����� and SACCO �Laurent and Ayel� ������

The �eld of veri�cation has until now focussed upon building novel anomaly detection systems

and improving the e�ciency of existing systems� While these are important pursuits� some other

critical issues have remained largely unaddressed


� What are the theoretical foundations of KBS veri�cation by anomaly detection� and how

can we be sure that such methods are reliable�
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� What are the theoretical limitations of anomaly detection methods� and how do they

impact upon the use of the methods in practice�

� How useful are these methods in practice� More speci�cally� is the cost of detecting the

anomalies repaid by the possible improvement in the KB�

This article is an �experience report� on anomaly detection in two ways
 �rst� we draw

upon the past ten years of experience to establish a theoretical framework in �rst order logic by

which anomaly detection systems can be analyzed� then� we study the application of a sample

anomaly detection tool called COVER to a number of real	world KBS� highlighting the actual

performance and utility experienced from using the tool� To give the reader a �avour of the

performance of COVER� the appendix to this article lists examples of many of the anomaly

types� taken from our sample of real	world KBS �listing examples of every anomaly would have

made this article overly long�� The techniques presented in this article apply speci�cally to the

veri�cation of rule	based knowledge bases which do not use numerical certainty measures�

Veri�cation Principles

The following commonly	accepted assumptions about KBS veri�cation are made in this article


�� Both the syntax �form� and semantics �meaning� of anomalies must be de�ned in terms

of the syntax and semantics of the knowledge representation language used to express the

KB�

�� Anomalies are de�ned in terms of the declarative meaning of the KB� rather than any

procedural meaning�

�� Anomalies are detected by examining the syntax of a KB� although they may be understood

semantically�

�� Anomaly detection methods apply only to the knowledge base of a KBS�certain properties

of the inference engine are assumed but not veri�ed�

�� Anomalies are not errors
 they are symptoms of probable errors in a KB�
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The �rst principle states that syntactic and semantic de�nitions of anomalies are representa	

tion language	dependent� they are de�ned usually in �rst	order logic or� when no variables or

functions are needed� in propositional logic�

The second principle states that anomaly detection is concerned with the static meaning of

the KB� rather than any dynamic meaning conferred by the use of an inference engine� This

implies that� in some cases� it will be necessary to separate procedural �task� and declarative

�domain� knowledge in order to perform anomaly detection� In such cases� the best approach

might be to perform anomaly detection at the level of a conceptual model of the KB� rather

than at the level of an implemented KB� The reason for this is chie�y that the pragmatics of an

implementation may force the implementor to mix procedural and declarative knowledge that

are conceptually separate �Preece� ������ thereby complicating anomaly detection�

The third principle means that� for example� where there are two identical rules in a KB�

one of them is clearly redundant semantically� but this can be detected only by �nding two rules

that are syntactically identical�

The fourth principle is generally considered to be a strength of the approach� because it allows

for independent veri�cation of inference engine and knowledge base� However� it is necessary

to specify those properties of the inference engine upon which the correctness of the results of

anomaly detection relies �examples include de�nitions of the logical inference rules employed by

the engine� methods for handling uncertainty� and con�ict resolution�� moreover� the inference

engine should be veri�ed with respect to these properties� an example of this approach was

presented by Krause et al� �������

The �fth principle makes the distinction between anomaly and error� which has often been

blurred in the literature� For example� in the case of duplicate rules� the anomaly is redundancy�

and this is a symptom of any of a number of possible errors� including a simple KB editing error

�the same rule was entered twice� or a case in which one �or both� of the two rules is incorrect

or has some parts missing� Some anomalies may not represent an error at all� for example� a

circular chain of inference in a KB to be used with an inference engine that eliminates endless

loops� One issue� then� is the utility of detecting certain anomalies� in terms of the likelihood

with which they indicate actual errors in a KB�
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Anomalies in the Knowledge Base

In this section� the types and subtypes of KB anomalies are speci�ed� In order to do this� it is

necessary to specify �rst the form of the KB in which the anomalies may be present�

Knowledge Base De�nitions

We assume the KB to be expressed at the level of a conceptual model of the system �Preece� ������

The conceptual model describes the knowledge base of the expert system in an implementation	

independent manner� in terms of real	world entities and relations �Wielinga and Schreiber� ������

To remove any ambiguity in veri�cation� it is advantageous for the conceptual model to have

an explicit semantic foundation� Therefore� for our purposes� we assume the conceptual model

to be expressed in a subset of �rst	order logic� as de�ned below� A familiarity with the basic

concepts and notations of �rst	order logic is assumed �Shinghal� ������

Knowledge base For the purposes of this article� a knowledge base K is de�ned to be a set

of expressions� K � R�D� where R is a rule base and D is a declaration set� de�ned below�

Rule base A rule base R is a set of expressions fR�� � � � � Rng called rules� where Ri � Li� �

� � ��Lim �Mi� in which Li� � � � � � Lim �Mi are literals from �rst	order logic� Within the scope of

this section� the rules are restricted to Horn clause form� �Note that the COVER veri�cation

tool described later permits a restricted treatment of negated literals in rule antecedents�

see the appendix example on circular dependency�� Two functions are de�ned on a rule R �

L� � � � � � Lm �M 


antec�R� � fL�� � � � � Lmg

conseq�R� � M

Informally� antec�R� supplies the literals from the antecedent of R� and conseq�R� supplies the

literal from the consequent of R�

Declaration set A declaration set D is a set of expressions� D � G � L � C� where
 G is a

set of goal literals� L is a set of input literals� and C is a set of semantic constraint expressions�
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The goal literals declaration de�nes the set of all literals that could possibly be output from the

knowledge base �depending on the domain� this may be interpreted as a set of �conclusions� or

�actions��� The input literals declaration de�nes the set of literals that constitute all possible

input to the knowledge base �depending on the domain� this may be interpreted as a set of

�symptoms� or ��ndings��� Goal literals and input literals are assumed to be ground literals�

that is� no variables occur in them� Typically� the set of goal literals and the set of input literals

are disjoint�

The semantic constraints declaration is a set of literals fL�� � � � � Lng� which means that

L� � � � � � Ln is an inconsistency �this is equivalent to saying that the inde�nite Horn clause

�L� � � � � � �Ln is a tautology�� For example� the semantic constraint fmale�x�� pregnant�x�g

says that� for all x� x cannot be both a male and pregnant� The set of such semantic constraints

constitutes C� de�ned above�

Environment An environment is a subset of input literals that does not imply a semantic

constraint� More formally� for environment E� ��E � C��� for all C � C and for any sub	

stitution � �where C� denotes the instance of C obtained by carrying out substitution � in

C��

Inferrable hypothesis The set H of hypotheses in the rule base is de�ned to be the set of

literals in the consequents and their instances
 H � H i� ��R � R��conseq�R�� � H��

Informally� a literal H is inferrable from a rule base R if there is some environment E such

that H is a logical consequence of supplying E as input to R� We say that H is an inferrable

hypothesis� Formally� the predicate infer is de�ned as follows


infer�H�R� E� i� �R� E� 	 H

This implicitly assumes that R � E is satis�able�

I is the set of all inferrable hypotheses� I � fH j �E�infer�H�R� E��� Note that I 
 G�

That is� for any rule base� a subset of the inferrable hypotheses will be declared to be the goal

literals for the rule	based system� any remaining inferrable hypotheses are merely intermediate

conclusions or �sub	goals��






Anomaly

Unused
input

Redundancy Subsumed Duplicate
rule rules

Unfirable Unsatisfiable
conditionrule

Unusable
consequent

Contradictory
rules

Circularity

Deficiency

Ambivalence

Figure �
 The four types of anomaly and their special cases�

Firable rule Informally� a rule R � R is �rable if there is some environment E such that the

antecedent of R is a logical consequence of supplying E as input to R� Formally


firable�R�R� E� i� �����R� E� 	 antec�R��

Anomaly De�nitions

We can identify four types of knowledge base anomaly
 redundancy� ambivalence� circularity�

and de�ciency� Each of these types covers a number of special cases� The relationships between

the general and special cases of anomalies are shown in the tree of Figure �� The general types

of anomaly are near the root of the tree� anomalies shown deeper in the tree are special cases

of the anomalies directly above them� For example� an unused input is a special case of missing

rule �de�ciency�� We discuss each type of anomaly in detail below� Examples of most of these

types of anomaly� taken from real expert system applications� appear in the appendix�

Redundancy� Unsatis	able condition A rule R in a rule base R contains an unsatis�able

condition if a literal in its antecedent uni�es with neither an input literal nor the consequent of

another rule in R� Formally� R is redundant if


��L � antec�R������I � L��L� � I� � ��R� � �R� fRg���L� � conseq�R����
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Redundancy� Unusable consequent A rule R in a rule base R contains an unusable

consequent if its consequent uni�es neither with a goal literal nor a literal in the antecedent of

another rule in R� Formally� R is redundant if


��G � G����conseq�R�� � G� � ��R� � �R� fRg���conseq �R�� � antec�R����

Redundancy� Subsumed rule A rule R is redundant if another rule R� subsumes it� that is�

for some substitution �� we have R� R��� Rules R and R� are duplicates i� �R� R�����R� �

R���

Redundancy� Redundant rule This is the most general case of redundancy for a rule
 rule

R is redundant in rule base R i�� for every environment� the hypotheses inferred by R are the

same� regardless of the presence or absence of R� Formally� R is redundant if


��E � E��fH j infer�H�R� E�g � fH j infer�H�R� fRg� E�g�

An un�rable rule R is a special case of the above


���E � E� firable�R�R� E�

The case of an unsatis�able antecedent condition in R� de�ned above� is a special case of an

un�rable rule� In addition� an unusable consequent in R� and duplication or subsumption of R

are special cases of the general case of redundancy�

Ambivalence� Ambivalent rule pair A pair of rules R and R� are ambivalent if the an	

tecedent of R� subsumes the antecedent of R� and their consequents infer a semantic constraint

C� Let � be a substitution� Then formally� R and R� are ambivalent if


�����antec�R� � antec�R���� � �fconseq�R�� conseq�R���g � C��

Ambivalence� Ambivalent rules A rule base R contains ambivalent rules if� for some

environmentE and some substitution �� all the literals in some semantic constraint are inferrable

from the rule base� Formally� R contains ambivalent rules if


��C � C� E � E���L � C�� infer�L�R� E�

The case of an ambivalent rule pair� de�ned above� is a special case of ambivalent rules�

�



Circularity� Circular dependency A knowledge base contains circular dependency if there

is a hypothesis H that uni�es with the consequent of a rule R in rule base R� where R is �rable

only when H is supplied as an input to R� Formally� the knowledge base contains circularity if


��R � R��E � E��H � H�

�H � conseq�R�� � �firable�R�R� E� � firable�R�R� E � fHg�

That is� H depends on itself� If H cannot be input since it is not an element of L� then there

is no way that H can be inferred�

De	ciency� Unused input A knowledge base has de�ciency if it contains a literal I that is

declared as an input� but which is unused� that is� it is neither declared as a goal nor uni�es

with a literal in the antecedent of some rule R in R� Formally� I is unused if


��I � L����I � G� � ��R � R��I � antec�R����

De	ciency� Missing rule The knowledge base has de�ciency when� for an environment E�

the rule base R will not produce any output� Formally� R is de�cient if� for environment E � E


�fG j infer�G�R� E�g � 
�

where 
 denotes the empty set� A missing rule is the most general case of de�ciency� the case

of an unused input is a special case of de�ciency�

Anomaly Detection Procedures

This section analyzes the types of KB anomaly along a di�erent dimension to that of the previous

section� Whereas the previous section presented a taxonomy of anomaly types under four

basic classes �redundancy� ambivalence� circularity� de�ciency�� this section groups anomalies

according to the theoretical computational complexity of the algorithms required to detect

them�

Integrity Checks

The following anomalies� as de�ned above� are detected by an integrity check
 unsatis�able con	

dition� unusable consequent� and unused input� All of these anomalies basically involve simple
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�connectivity� of the KB� viewed as a directed graph� detecting them requires an algorithm that

checks each antecedent and consequent literal of each rule in the KB against a set of cache tables

�for the input set� goal set� and hypothesis set�� The theoretical complexity of this algorithm

is O�n�� for a KB with n rule expressions� One such algorithm is presented by Preece et al�

�����b��

Rule Checks

The following anomalies� as de�ned above� are detected by a rule check
 redundant rule pair�

and ambivalent rule pair� Detecting each of these anomalies requires an algorithm that compares

each rule in a KB against all other rules� the theoretical complexity of this is O�n�� for n rules�

Various rule	check algorithms are detailed by Cragun and Steudel ����
�� Nguyen et al� �������

Preece et al� �����b�� and Puuronen ����
��

Rule Extension Checks

The following anomalies� as de�ned above� are detected by a rule extension check
 redundant

rule� ambivalent rules� circular dependency� and missing rule� These are the most di�cult

anomalies to detect� detecting them essentially requires that every possible inference chain

through the KB be traced and analyzed� in other words� it is necessary �rst to compute the

extension of the KB� and then to check the extension for anomalies� By extension� we mean

the result of �ring every possible chain of rules in the knowledge base� For example� to detect

the general case of ambivalence� it is necessary to �nd a set of rule chains that leads to the

inferring of all the literals of a semantic constraint� such that all the chains would arise from

some environment� The statement of this anomaly would require reporting to the veri�cation

tool user
 the inference chains� the environment� and the semantic constraint inferred �the

user must then decide whether there is an error in the rules� the environment� or the semantic

constraint declaration��

This procedure is very expensive computationally� owing to the need for computing the

extension of the knowledge base� Essentially� the method must compute every possible path

through the search space de�ned by the rule base� this will be bd paths� where b is the breadth of
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the rule base� de�ned as the average number of literals in rule antecedents� and d is the depth of

the rule base� de�ned as the average number of rules in an inference chain �Preece et al�� ����b��

Nevertheless� experiments using implementations of this method show that it is feasible� even

for large real	world knowledge bases �Ginsberg� ����� Preece et al�� ����b�� Sample algorithms

for the procedure are described by Ginsberg ������� Preece et al� �����b�� Rousset ������� and

Stachowitz et al� ����
�� In the worst case� this method is intractable� for this reason� recent

research has proposed methods which make use of heuristics to focus the search for anomalies

�Laurent and Ayel� ����� Preece� ������ The main idea behind this work is to generate only a

partial extension for parts of the knowledge base where anomalies are likely�

Empirical Study

In this section� the results of applying an anomaly detection tool to a sample of real	world KBS

are presented and analyzed� The tool used in this study is the COVER veri�cation program�

described in detail by Preece et al� �����b�� Two questions are addressed in this study


� How well does the actual performance obtained using COVER conform to the theoretical

complexities of the algorithms employed� and what additional� practical factors a�ect

performance�

� What types of errors are revealed from the anomalies reported by COVER� and� therefore�

how useful are the checks performed by the tool�

COVER was used to verify the knowledge bases of �ve KBS� described in Table �� Three of

the systems are currently in operational use� while the other two �MMU	FDIR and NEURON�

were built speci�cally as demonstration systems �and were veri�ed for that purpose�� The �ve

systems exhibit a representative set of applications� from diagnosis to planning� in a variety of

domains� and vary in complexity from small ���� rules� to large ���� rules�� The table shows

also the number of declarations present in each system �that is� the size of D for each�� Note that

these were implementations� rather than conceptual models� While we would have preferred to

verify conceptual models� as discussed earlier� none were available for these systems� Although

the �ve systems cannot be considered a statistically signi�cant or even truly representative
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Name Rules Declarations Purpose Used� Developed for

MMU
FDIR ��� �� Fault diagnosis No NASA

TAPES ��� �� Product selection Yes �M Corp

NEURON ��� ��� Neurological

diagnosis

No Concordia University

DISPLAN ��� �� Health care planning Yes U�K� Health Service

DMS� ��� ��� Fault diagnosis Yes Bell Canada

Table �
 Description of KBS veri�ed by the COVER anomaly detection tool�

System Integrity Rule Extension Breadth� Total

name check check check depth time

MMU
FDIR � � sec� �� sec� �� min� ��� �� min�

TAPES � � sec� �� sec� �� min� ����� �� min�

NEURON � sec� �� sec� 
� min� ��� 
� min�

DISPLAN �
 sec� �� sec� ��� sec� ��� ��� sec�

DMS� �� sec� ��� sec� ��� hrs� ��� ��� hrs�

Table �
 Approximate real time elapsed using COVER to check �ve KBS�

sample of KBS� they do provide a useful testbed for a preliminary analysis of anomaly detection

by COVER�

Performance Considerations

Timing data obtained from running COVER on the �ve sample systems appear in Table �� these

data were obtained running on a Sun ����� Workstation �times are either to the nearest second

or minute� whichever is most appropriate��

The time for the integrity check is approximately linear� in keeping with the theoretical

complexity� Interestingly� the COVER program performs a check for circular inference chains in

this time� as well as the integrity checks� the circularity check has little e�ect on performance�

because the major computational e�ort involved is in checking each rule when the inference

chains are short �see �depth� in Table ��� The additional e�ort� which is roughly similar for

��



each rule� is in building cache tables�

The time for the rule check shows performance of COVER to be better than the theoretical

complexity of O�n��� This is because the main cost of the check lies in comparing the antecedent

parts of pairs of rules which have equivalent or contradictory consequents� Determining whether

the consequents are equivalent or contradictory is a minor operation� and so the actual cost of

the check depends upon the number of rules that have equivalent or contradictory consequents�

In the TAPES system� for example� this cost was high� while in the NEURON system this cost

was low� As can be seen from the data� the TAPES system� despite its fewer rules� required

more computational e�ort than NEURON for the rule check�

The time for the extension check re�ects both the complexity and the variability of this

check� There is no correlation between the number of rules or declarations in the system and

the cost of this check� Instead� as revealed by the theoretical analysis� it is the breadth and

depth of the search space de�ned by the KB that determine the complexity of the extension

check� for this reason� mean values for these ratios for each system are given in Table �� It

should be noted that in no instance did the complexity of this check approach the worst case

indicated by the theoretical analysis� Chie�y� this is because the inference chains in the sample

knowledge bases are short� and it is clear that� when this is so� the relatively expensive �but

exhaustive� extension check is feasible�

Experience and anecdotal evidence suggests that short inference chains may be far more

common in practice than long inference chains� If this is true� then intensive research into

methods for dramatic improvement of the e�ciency of extension checks will be of limited utility�

since such improved methods will be of value in verifying only a small number of KBS�

Utility Considerations

Table � shows� for each of the �ve sample systems� the number of each type of anomaly detected

by COVER� and the number of each that directly revealed one or more errors in the knowledge

base� In all these cases� �completed� knowledge bases were checked by COVER�that is� the

systems were considered to have been tested satisfactorily by other means �typically running

a large number of actual and contrived test cases on the systems� and evaluating the output

produced� and had all been delivered to their users� �Of course� all errors revealed using COVER
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Anomaly type MMU
FDIR TAPES NEURON DISPLAN DMS�

Redundancy

unsatis�able condition � � ����� ����� ���

unusable consequent ��� � � ��� �

redundant rule pair � ��� � ��� ����

redundant rule ����� ��� ����� ����� ���


Ambivalence

ambivalent rule pair � ��� � ��� �

ambivalent rules � ��� � ��� �����

Circularity

circular dependency � � � ����� �

De�ciency

unused input � � � ���� �

missing rule � ����� � ����
 �
��

Table �
 Numbers of anomalies�errors detected by COVER in �ve KBS�

were subsequently corrected��

The most striking result here is that� despite the best e�orts of their developers� real	world

KBs often contain anomalies� sometimes in surprisingly large numbers� Furthermore� where

anomalies are present� they frequently correspond to errors in the KB� The notable exceptions

in Table � are the following


� Cases of subsumed �redundant� rule pairs� where a more general rule subsumes a speci�c

rule� and the con�ict resolution strategy to be employed by the inference engine would

ensure that the more speci�c rule is �red in preference�therefore� the subsumption is not

considered to be an error�

� Cases of circularity which are intended� by the KB designers� to explicitly model looped

reasoning�

� Cases of de�ciency where the �missing� cases represent �do nothing� situations� and were

intentionally not included in the KB�
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Therefore� from this study� these three types of anomaly would seem to have the least utility�

in terms of their indication of actual errors in the knowledge base� We might say that the

reporting of these three types of has the lowest �signal	to	noise� ratio� which is an important

factor in considering the utility of detecting the various anomalies�

A second point to note is that the totals for the more general anomalies listed in the table

include the totals for the anomalies that they subsume� For example� the redundant rule totals

include the unsatis�able condition� unused consequent� and redundant rule pair totals� similarly�

the more general cases of ambivalence and de�ciency include the totals for their special cases

�that is� the total for ambivalent rules includes that for ambivalent pair� and the total for missing

rules includes that for unused inputs��

In view of the above observations� there is evidence to suggest that the most useful types of

anomaly are those detected by the integrity check� this assertion is based on the relative number

of these anomalies� the high likelihood with which they indicate actual errors� and the low cost

of detecting them�

A �nal point is that the types of anomaly present in a KB seem to be in�uenced by certain

characteristics of the KB� One observation supporting this statement is that those systems with

short inference chains appear unlikely to contain many extension	check anomalies �other than

those already revealed by integrity and rule checks�� because there is less potential for the

designer to make subtle errors in formulating chains of rules� A second supporting observation

is that KBs written in �rst	order logic tend to harbour more anomalies than those written in

propositional logic� because there is more potential for the designer to make errors when writing

rules with variables� in the sample� only DISPLAN made extensive use of variables in �rst	order

logic�

Examples of the actual anomalies and errors uncovered by COVER in the �ve sample systems

appear in the appendix�

Conclusions

Some conclusions arising from this work are stated below�

We do not agree with the claim made by Rushby ������ that the theoretical foundation of

��



anomaly detection methods is poorly understood� Although this foundation was unclear in the

early literature� it is straightforward to recast the de�nitions of the early tools in terms of a

�rmly	speci�ed set of de�nitions of anomalies and algorithms �Preece et al�� ����a��

Integrity checks inexpensively reveal anomalies in KBs� which have a high likelihood of in	

dicating errors� Many popular commercial KBS tools do not provide built	in integrity checkers

�although some do o�er such tools as utilities� similar in spirit to the lint tool for the C pro	

gramming language��

Although KB extension checks have been criticized in the past because of their theoretical

complexity limitations� there is evidence to suggest that these techniques will often be practical

in real	world systems development� In fact� before more research is conducted into methods

for improving the e�ciency of these techniques� perhaps more experience should be obtained

regarding whether such work is really necessary� although it may be desirable�
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Appendix� Example Anomalies

In this appendix� we examine some illustrative examples of anomalies detected in the real	world

KBS listed in the body of this article� For each example� we highlight the anomaly� consider

whether it indicates an error and� if so� explain how the error was corrected�

Redundancy Example� Un	rable Rule

This example is taken from the NASA MMU	FDIR system� written using the CLIPS rule lan	

guage� �CLIPS is described fully in J� Giarratano and G� Riley� Expert Systems� Principles

and Programming� PWS	Kent� New York� ����� We are grateful to Chris Culbert of the NASA

Lyndon B� Johnson Space Center for making the MMU	FDIR system available to us�� The

MMU	FDIR system contained the following rule


�defrule cea�a�gyro�input�roll�pos��

�aah off� �gyro on�

�gyro movement roll pos�

�side a on�

�side b on�

�rhc roll none pitch none yaw none�

�thc x none y none z none�

�vda a �m on�

��

�assert �failure cea��

�assert �suspect a��

�printout t crlf �aah failed to correct pos roll��

�

The problem here lies in the �rst line of the antecedent
 the combination of the conditions

�aah off� and �gyro on� is inconsistent �this knowledge was made available to COVER as a

semantic constraint declaration� and� therefore� the rule is un�rable� The error here is that the

�rst condition should read �aah on��

��



Redundancy Example� Subsumed Rule

This example is taken from the Bell Canada DMS� system� which was originally written using

the Level � expert system shell product �Level � is a trademark of Information Builders Inc���

The DMS� system contained the following rules


RULE 	
� to check for ��DGP FAIL A


	
�

IF MA�LAMPS IS ��DGP FAIL A

AND MA�LAMPS IS 
�DGP FAIL B

AND MA�LAMPS IS 	�LINE FAIL A

AND MA�LAMPS IS ��LINE FAIL B

THEN DONEIT

AND POINTA �� �Replace the Digroup A � B

QPP���
QPP��� Cards at the RCT�

AND POINTB �� �Replace the Digroup A � B

QPP���
QPP��� Cards at the CCT�

RULE 	

 to check for ��DGP FAIL A


	

IF MA�LAMPS IS ��DGP FAIL A

AND MA�LAMPS IS 
�DGP FAIL B

AND MA�LAMPS IS 	�LINE FAIL A

THEN DONEIT

AND POINTA �� �Replace the Digroup A � B

QPP���
QPP��� Cards at the RCT�

AND POINTB �� �Replace the Digroup A

QPP���
QPP��� Cards at the CCT�

The intention of the designer in writing these rules was to assign values �via the �� operator�

to string variables �POINTA and POINTB� as side	e�ects of establishing the fact DONEIT� This is a

common method of forcing procedural operations in backward	chaining systems� This works in

Level � because the rules are entered into the knowledge base in order of antecedent speci�city�

more speci�c rules �such as rule ���� appear before less speci�c ones �such as rule ����� The

con�ict resolution strategy employed by Level � of selecting rules in order of appearance means

that the most speci�c rule applying in a given case will always be the one that �res� COVER�

��



however� had no access to this assumption �it was not stated anywhere in the rule base�� and so

COVER reported the two rules as a subsumed pair�

Although no error results from these subsumed rules� it can be argued that such implied

dependencies between rules make understanding and maintaining the system unnecessarily dif	

�cult� The problem is that knowledge which could have been explicitly stated in the rule

antecedents has instead been �hidden� in the ordering of the rules� An alternative to the ap	

proach used would be to remove the implicit dependency between these rules by making the

later rules more speci�c� For example� after consulting the domain expert� rule ��� above could

be modi�ed as follows �note the addition of the fourth condition in the antecedent�� which would

allow the system to perform correctly regardless of rule ordering�

IF MA�LAMPS IS ��DGP FAIL A

AND MA�LAMPS IS 
�DGP FAIL B

AND MA�LAMPS IS 	�LINE FAIL A

AND NOT MA�LAMPS IS ��LINE FAIL B

THEN ���

The disadvantage of this approach is that it results in more complex rules� For this reason� the

system was not modi�ed to remove the subsumption�

Redundancy Example� Redundant Rule

This example is taken from the DISPLAN system� which is written in a rule language based on

Prolog� DISPLAN contained the following three rules


if mentalState hasValue lucid

then noProblem�mentalState��

if mentalState hasValue lucid

then assessmentIrrelevant�mentalState��

if assessmentIrrelevant�Category�

then noProblem�Category��
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The COVER environment checker detected that� in the above three rules� the �rst rule is

redundant� since it is subsumed by a combination of the second and third rules� but the third

rule is more general� The �rst rule states that� if patients are classi�ed as lucid� then they have

no problem with their mental state� The second rule states that the assessment of mental state is

not relevant to DISPLAN if it is classi�ed as lucid� The third rule states that� for any assessment

category� if it is irrelevant to DISPLAN then there can be no problem with the category�

This error occurred because the concept of irrelevant assessments was introduced into the

knowledge base via the predicate assessmentIrrelevant� but the knowledge base was not fully

modi�ed to incorporate it properly� This example highlights the value of a veri�cation tool

during maintenance and expansion of a knowledge base�

Ambivalence Example� Ambivalent Rules

This example is taken from the DISPLAN system� which has the following rules� in a Prolog	

based rule language


if patientHomeless

then goingHome hasValue no�

if homeAssessmentCategories includes Category

and patientHomeless

then Category hasValue irrelevant�

The COVER environment checker detected ambivalence in this case� where the �rst rule says

that a patient will not be going home if he or she is homeless� and the second rule says that� for

all home assessment categories� if the patient is homeless then the category is irrelevant�

The ambivalence arises because� by default� the set homeAssessmentCategories includes the

element goingHome �that is� goingHome is a home assessment category�� This leads to the

following instance of the second rule� which is clearly ambivalent with the �rst rule above

�remembering that goingHome is a single	valued parameter�


if homeAssessmentCategories includes goingHome and

patientHomeless

then goingHome hasValue irrelevant�
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Circularity Example� Circular Dependency

This example is taken from the DISPLAN system� The COVER integrity checker detected

circularity in the following rules


if additionalServices includes support�Service� Problem�

then servicesSupport includes support�Service� Problem��

if extraSupportNeeded�mobility�

then additionalServices includes support�occupationalTherapist� mobility��

if carerCannotSupport�Problem�

and not servicesSupport includes support�Service� Problem�

then extraSupportNeeded�Problem��

The �rst rule says that a pair support�Service� Problem�� representing the notion that a patient�s

problem is to be supported by a particular service� is to be added to the set of supporting

services servicesSupport if it is a member of the set of additional services additionalServices� The

second rule says that an occupational therapist will provide support for mobility if extra support

is needed for mobility� The third rule says that extra support is needed for some problem if the

patient�s �carer� �usually his or her family� cannot support the problem� and the problem is not

already supported by some service in the set of supporting services�

To see the circularity more clearly� consider what happens when DISPLAN needs to deter	

mine whether the pair support�occupationalTherapist� mobility� is a member of servicesSupport�

This leads to the following rule instances


if additionalServices includes support�occupationalTherapist� mobility�

then servicesSupport includes support�occupationalTherapist� mobility��

if extraSupportNeeded�mobility�

then additionalServices includes support�occupationalTherapist� mobility��

if carerCannotSupport�mobility� and

not servicesSupport includes support�Service� mobility�
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then extraSupportNeeded�mobility��

In trying to prove the condition

not servicesSupport includes support�Service� mobility�

in the third rule as negation by failure� one of the cases DISPLAN will need to test is


servicesSupport includes support�occupationalTherapist� mobility�

This will lead it to the �rst rule� and we have a circular inference chain� which was not obvious

from the original rules�

De	ciency Example� Missing Rule

This example is taken from the DMS� system� COVER reports pseudo	conditions for rules

which it determines to be logically necessary for the completeness of the knowledge base� but

which are absent� One such set of pseudo	conditions appears below�

IF FLOW�B�COM�PWR�FUSE IS NO AND

FLOW�B�REPL�FUSE IS YES AND

FLOW�B�VOLTAGES IS NO

THEN ���

The notation ��� indicates that COVER believes that a consequent should be supplied for this

set of conditions� In actuality� this case does not require a rule to be added to the knowledge

base because of the procedural semantics of the rule
 establishing the �rst condition to be

true requires that the user investigates whether a fuse has blown� if this is not so �the query is

answered NO�� then there is no need to investigate the second condition� which involves replacing

the fuse Although COVER has no way of knowing this� it is obvious to the designer that this

is not really a missing case�

Missing rules are detected by COVER using a generate	and	test method
 the program gen	

erates combinations of data items and values and tests to see if the situations indicated by these

combinations are covered by rules in the knowledge base� If not� COVER reports the combina	

tions as indicating potentially missing rules� Since this checking procedure will be very lengthy

for complex knowledge bases� owing to the number of combinations of data items and values�
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the user of COVER is able to specify parameters to control the extent of the search for missing

rules�

COVER also makes use of the existing domain knowledge to control the search� enabling

it to look for likely missing rules� For example� by using information about which data items

appear together in rules or inference chains� COVER can decide if certain data items are likely to

appear together in missing rules� these are called relevant data items� Then� instead of generating

combinations of all data items and values� it can restrict the generation to combinations of the

relevant data items and their values� The data items F	B
FUSE
BLOWN� F	B
RESET
FAIL and

F	B
CT
FUSE
AGAIN in the above rule were determined to be relevant to one another using this

rule	of	thumb�
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