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Abstract 
 
Validation has emerged as a significant problem in the development of knowledge-
based systems (KBS). Verification of KBS correctness and completeness has been 
cited as one of the most difficult aspects of validation. A number of software tools 
have been developed to perform such verification, but none of these are in 
widespread use. One of the reasons for this is that little quantitative evidence exists 
to demonstrate the effectiveness of the tools. This paper presents an experimental 
study of three KBS verification tools: a consistency checker, a completeness 
checker, and a testing tool (for correctness). The tools are evaluated on their ability 
to reveal plausible faults seeded into a complex, realistic KBS application. The cost 
of using the tools is also measured. It is shown that each tool is independently 
effective at detecting certain kinds of fault, and that the capabilities of the tools are 
complementary — a result not revealed by previous studies.  

 

 

Short running title: Evaluation of Verification Tools for KBS 

                                                 
*The work described in this paper was conducted while the first author was visiting LIA, 
Université de Savoie, Chambéry, France.  
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1. INTRODUCTION 
 
In software engineering, validation is the process by which developers determine 
whether or not a system meets its users' requirements; it is therefore a crucial part 
of the development of any software. Recent surveys have shown that the 
importance of validation is recognised by developers of knowledge-based 
systems (KBS) ([O'Leary, 1991] and [Hamilton, Kelley and Culbert, 1991]). 
Validation is performed by KBS developers — up to and sometimes exceeding 
allotted budgets — but it is considered to be a difficult, time-consuming, and 
problematic process. Chief among the difficulties identified by KBS developers 
are the verification of KBS completeness and correctness [O'Leary, 1991]. 
Verification is the part of validation concerned with checking formally-defined 
properties of the system, such as consistency, instances of correctness (such as 
defined by test cases, for example), and instances of completeness (coverage of 
the input domain, for example) [Laurent, 1992].1 
 
A number of software tools have been developed over the past decade to assist 
developers in verifying the completeness and correctness of KBS. Three common 
types of tool can be identified: consistency checkers which detect conflicting and 
redundant knowledge in a knowledge base (for example, COVADIS [Rousset, 
88], In-Depth [Meseguer, 1992], KB-Reducer [Ginsberg, 1988] and SACCO 
[Ayel and Vignollet, 1993]); completeness checkers which detect missing or 
deficient knowledge (for example, COCTO [Lounis and Ayel, 1995] and 
COVER [Preece, 1993]); and testing tools for KBS correctness using test cases 
(for example, EVA [Chang, Combs and Stachowitz, 1991] and SYCOJET [Ayel 
and Vignollet, 1993]). Despite the availability of such tools, however, few are in 
widespread use by KBS developers at present. One reason for the slow adoption 
of such tools is that little concrete evidence exists for their utility. Developers 
lack information to help them decide under what circumstances particular tools 
are likely to be useful to them.  
 

 
1.1. Related Studies 

 
Few experimental studies have been performed to evaluate the efficacy of the 
different types of tool on realistic KBS applications. Furthermore, from the 
studies that have been performed, important questions remain unanswered. A 
summary of some significant results and limitations of previous studies follows: 
 
The Minnesota study  Kirani, Zualkernan and Tsai [Kirani et al, 1992] at the 
University of Minnesota, USA, report on the application of several testing 
techniques to a sample KBS in the domain of VLSI manufacturing. With the 
exception of a simple consistency checking tool, all of the methods used were 
manual testing techniques. The KBS itself was a 41-rule production system based 

                                                 
1Laurent in [Laurent, 1992] provides a detailed set of definitions for concepts in KBS validation 
and verification. For our purposes, we define correctness as the ability of the KBS to produce 
output which agrees with some external standard, completeness as the ability to produce output 
for every required input case, and consistency as the ability never to produce output which is 
contradictory (consistency is therefore a special case of correctness). Our use of the term 
verification in this paper agrees with [Benbasat and Dhaliwal, 1989]. 
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upon well-understood physical properties of semiconductors, into which a variety 
of plausible faults were seeded. The results of the study showed that the manual 
testing techniques, though labour-intensive, were highly effective, while the 
consistency checker performed poorly in detecting the seeded faults. 
Unfortunately, the success of the manual testing techniques could be attributed to 
the fact that this KBS application was exhaustively testable. Furthermore, given 
that the consistency checker employed was of only the most basic type (able to 
compare pairs of rules only for conflict and redundancy), it is unsurprising that it 
performed poorly. Therefore, this study does not provide clear evidence — 
positive or negative — for the utility of modern KBS verification tools.  
 
The SRI study  Rushby and Crow [Rushby and Crow, 1990] at SRI, USA, like the 
Minnesota study, compared manual testing techniques with a simple rule 
checker. The application used was a 100-rule production system in an aerospace 
domain, but the structure of the system was largely "flat" and highly simple. 
Faults were not seeded in this study — instead, actual faults were discovered in 
the real application! — so there was no control on the results. While interesting, 
it does not demonstrate verification tool effectiveness.  
 
The Concordia study  Preece and Shinghal [Preece and Shinghal, 1992] at 
Concordia University, Canada, examined the use of a particular consistency and 
completeness checking tool, COVER, on a variety of KBS in different domains. 
COVER was shown to detect genuine and potentially-serious faults in each 
system to which it was applied. However, this study did not compare the 
effectiveness of different kinds of tool. 
 
The SAIC study  Miller, Hayes and Mirsky [Miller, Hayes and Mirsky, 1993] at 
SAIC, USA, performed a controlled experiment on two KBS built in the nuclear 
power domain. Faults were seeded in each system, and groups of KBS 
developers and domain experts attempted to locate the faults using three different 
verification techniques: manual inspection, the VERITE tool (an enhanced 
version of COVER [Preece and Shinghal, 1992]), and MetaCheck, a simulated 
tool based on a conceptual enhancement of VERITE. The VERITE tool and the 
MetaCheck pseudo-tool were shown to provide significant assistance to both the 
groups of KBS developers and domain experts in locating faults. However, like 
the Concordia study, only consistency and completeness checking was 
considered: testing tools were not employed. 
 

1.2. Objectives of This Study 
 
In summary, none of these previous studies has performed a controlled 
experimental comparative evaluation of a representative set of state-of-the-art 
KBS verification tools. The objective of the work described herein was to 
perform such a study, with the following characteristics: 
• using one of each of the three categories of tool: consistency checker, 

completeness checker, testing tool; 
• applying the tools to finding faults in a realistically complex KBS 

application; 
• controlled by seeding known plausible faults independently into several 

versions of the application; 
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• gathering data on the individual and relative abilities of the tools to locate the 
faults, and the costs of using them. 

 
The paper is organised as follows: Section 2 describes the KBS application used 
in the study; Section 3 describes the method used, including the types of fault 
seeded, and the three tools employed; Section 4 presents the results concerning 
fault-detection; Section 5 presents the results concerning cost; Section 6 
considers bias in the study; Section 7 concludes. 
 
The study confirms some of the results of previous studies, showing that each of 
the three methods is effective at detecting certain types of fault. However, the 
results also demonstrate that the three verification tools are highly 
complementary: each detects faults that the others do not. This was not shown by 
the previous studies. It is hoped that the results reported here will promote the 
use of such verification tools, thereby making KBS validation less difficult, and 
KBS more reliable. The results also indicates areas in which current KBS 
verification tools are lacking, suggesting future research and development 
directions. 
 

2. CONTEXT OF THE STUDY 
 

2.1. The Application: GIBUS 
 

2.1.1. General Description 
 
GIBUS (for "Gestion Intelligente de Batteries Utilisées sur Satellite") is a KBS 
application developed by the Electronique Serge Dassault company for the 
European Space Agency (ESA). It was designed to supervise the evolution of 
batteries used on low-orbital satellites and to assist the operator in short-term 
management of these batteries. The accumulators used on a low-orbital satellite 
must supply electrical power to the equipment of the satellite during eclipse 
periods (35 to 40 minutes). The performance that the accumulators have to 
achieve during these eclipse periods depend only upon the needs of the satellite. 
The behaviour of an accumulator during the discharge stage can give some idea 
of the state of this accumulator. Knowing the state of the accumulators is quite 
important because, for example, an excessive discharge of the batteries will 
reduce their lifetime. In extreme cases it can also cause a polarity reversal in 
some accumulators, which will then produce hydrogen — potentially leading to 
the destruction of the accumulators and of the satellite itself.  
 
The GIBUS KBS uses data given by the batteries at every orbit and detects 
abnormal behaviours of the batteries (excessive discharges, excessive recharges, 
short circuits, thermal runaway, etc). Then GIBUS gives advice to the operator so 
that these abnormal behaviours don't recur and that the lifetime of the batteries 
doesn't decrease. 
 

2.1.2. The KOOL Version of GIBUS 
 
The original version of GIBUS was developed with EMICAT 2.0 and Quintus 
Prolog 2.4. When the application was chosen for an evaluation of the validation 



5 

tools developed by partners of the Esprit project ViVa (Verification, 
Improvement and Validation of KBS), GIBUS was reimplemented in KOOL (an 
object- and rule-based system shell from the BULL company). The study we 
present here is based on this KOOL version of GIBUS. The GIBUS application is 
somewhat hybrid, using an object-oriented representation for facts (states of the 
batteries, etc) and a rule-based representation for the reasoning knowledge. A 
more detailed description of the implementation is provided in Appendix A. 
 
GIBUS fact base The facts are defined with an object-oriented representation. 
The objects have attributes and one or several values can be attached to each 
attribute. Every attribute is described with descriptors (or facets) that specify the 
characteristics of the attribute: default value, type, etc. The objects are organised 
in a taxonomy of classes using inheritance. 
 
GIBUS rule base The rules have a classical "if-then" form and are based on first 
order logic (i.e. variables are used inside the rules). Most of the rules (124 of 
them) are used in backward chaining, 75 in forward chaining and 8 in forward 
and backward chaining. The rule base contains 207 rules and is split into five 
subsets: 
• 47 anomaly detection rules and 35 aberration detection rules are used to 

detect erroneous inputs and anomalies in the states of batteries; 
• 42 numerical modelling rules are used to calculate non-measured values and 

the range of acceptable values for measured data. These rules correspond to a 
mathematical model of batteries established by the SAFT company, an 
accumulator manufacturer; 

• 64 diagnostic rules detect the abnormal behaviours of the battery; 
• 19 hint rules are used to give advice to the operator. 
 
Appendix A shows that the KOOL implementation of GIBUS is fairly typical of 
current KBS, being of comparable size and complexity to other systems which 
have been described in the literature, and using knowledge representation and 
programming techniques common in modern KBS-building tools. 
 
 

2.2. Access to Experts and Documentation 
 
When GIBUS was chosen for the ViVa project the application was already 
developed. Therefore, none of the instigators of this study were involved in the 
original knowledge acquisition. However, for the ViVa project, ESA gave access 
to experts to acquire specific knowledge needed by the verification tools. One 
such expert was involved in the development of GIBUS and another worked on 
batteries at ESA. Two interviews (of approximate duration 4 hours each) were 
recorded and transcribed on paper. Unfortunately, because ESA was not directly 
associated with the study described here, neither these experts nor others were 
available.  
 
However, all essential GIBUS  documentation was available: 
• the Detailed Design Document [Detailed Design Document, ESD] of the 

GIBUS project; 
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• the Final Report [Final Report, ESD] of the GIBUS project; 
• the SAFT's Model Validation Report [SAFT's Model Validation Report, 

ESA];2 
• a listing of GIBUS's EMICAT version; 
• the transcriptions of two interviews of the experts recorded for the ViVa 

project [CISI 93a] and [CISI 93b]. 
Therefore, we were sufficiently aware of what GIBUS should do and how and, 
even if we could not play the role of domain expert, we had a good acquaintance 
with the application itself.  
 

2.3. Four Versions of GIBUS 
 
For this study, we chose not to use directly the KOOL version of GIBUS to test 
the different verification tools for the following reasons: first, GIBUS had 
already been validated, so almost all of the faults had already been removed; 
second, because our lack of access to experts prevented us from acquiring the 
actual expected results. Instead, it was decided to use the stable KOOL version of 
GIBUS as a reference version. We then seeded sets of faults into this version to 
obtain three KOOL faulty versions to verify against the reference version. Thus, 
the reference version could be employed as an "expert" to predict the "good" 
results and to compare them with the ones obtained using the faulty versions.  
 
The faulty versions of GIBUS were created by first listing plausible classes of 
fault (see Section 3) and, based on these, creating three sets each containing 
about 25 specific GIBUS faults. Each fault set was created independently by 
different people with experience of developing and debugging KBS. Care was 
taken not to take into account the capabilities of the verification tools when 
creating faults. 
 

3. METHOD 
 

3.1. Classes of Fault 
 
All of the three verification techniques used in the study are applied to the 
implementation of a KBS. This is because, in the nature of KBS development, 
the implementation is typically the sole formal description of the system 
(although other semi-formal descriptions — such as KADS-like conceptual 
models — may exist), and thus the sole description amenable to consistency 
checking, completeness checking, and testing. In view of this, our fault classes 
are based on the implementation. They are similar to those of the SAIC study 
[Miller, Hayes and Mirsky, 1993], and a subset of those in the Minnesota study 
[Kirani et al., 1992] (which defined fault classes for requirements and design 
documents also). We accept that faults may be introduced prior to 
implementation (for example, in a KADS-like conceptual model, or in a 
requirements document), but we argue that such faults manifest themselves in the 
implementation within the classes we define here. 
 

                                                 
2This report summarises the validation of the numerical model of the batteries. This validation 
was conducted by comparing the SAFT model results with experimental results. 
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The eight basic classes of fault we identify below are based upon the structure of 
an object and rule knowledge representation formalism. It is not possible to 
define a mapping between these types of faults and their manifestation in 
instances of incorrectness, incompleteness and inconsistency. Any of the faults 
may cause any manifestation. For example, a simple typographical error in a rule 
may lead to incorrectness, incompleteness or inconsistency in the KBS as a 
whole. We note that these types of faults were observed in the study described in 
[Preece and Shinghal, 1992]. 
 
Editing faults  These are caused by trivial typographical or text-editing errors, 
such as transposed or missing characters, and accidental cuts or pastes (possibly 
leading to truncated or duplicated logic — for example a duplicate rule as 
described in [Preece and Shinghal, 1992]). While the effect of this class of fault 
may be similar to several of the following classes, the essential difference here is 
that there is no rationale for the fault: it just happened "by accident".  
 
Object faults  These are faults in either the object hierarchy (inheritance 
taxonomy) or in the referencing of specific objects or class names. For example, 
an object O may be mis-defined as belonging to a class C' instead of C, where C 
and C' are semantically similar (i.e. the fault is plausible). 
 
Attribute reference faults  An incorrect attribute is referenced in a rule clause. 
For example, an attribute A is referenced in place of A', where A and A' are 
semantically similar (the fault is plausible). 
 
Attribute value faults  Similar to the previous case, but an incorrect symbolic 
value is given for an attribute in a rule clause. 
 
Numerical faults  Similar to the previous case, but an incorrect numeric value is 
given in an arithmetic expression in a rule. 
 
Premise faults  A rule is missing a premise clause, or has an additional 
unnecessary premise, or has an incorrect premise. An example of the latter would 
be the erroneous exchange of two premises from related rules. 
 
Conclusion faults  A rule is missing a conclusion clause, or has an additional 
unnecessary conclusion, or has an incorrect conclusion. As with premise faults, 
an example of the latter would be the erroneous exchange of two conclusion 
clauses from related rules. 
 
Rule deletion faults  A rule is missing. 
 

3.2. Finding the Faults 
 
To find the faults, three kinds of verification tool were employed: a completeness 
checker, a consistency checker, and a testing tool. Each tool was used on the 
three faulty versions, independently of each other (i.e. we did not take into 
account the results obtained with one tool before using another) and the faults 
were not dynamically corrected (i.e. we first used the tools on each version, and 
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then analysed the results of each tool to find the faults). The fault-finding was 
divided into two phases, as follows. 
 
Search for fault symptoms (failures, in IEEE-standard terminology) To obtain 
these symptoms the tools were run on the faulty versions and the output 
compared with those obtained with the reference version. Here, the reference 
version was employed as a substitute for documented correct results (a "gold 
standard") or a human expert (an "oracle"). Possible bias resulting from this use 
of the reference version is considered in Section 6. 
 
Identification of faults (i.e. determining which faults correspond to the symptoms 
and how those faults could be corrected) The faulty versions were compared with 
the GIBUS documentation (and in particular with the EMICAT version), but 
never with the reference version. Here, the GIBUS documentation embodies the 
correct knowledge from human experts. 
 
Finally, the faults found (and the corrections proposed) were compared with the 
faults introduced in each version — this comparison indicates the "raw" power of 
the tools in detecting faults. Before examining the results in Section 4, we 
describe the procedure used to apply each verification tool.  
 

3.2.1. Use of the Consistency Checking Tool  
 
The tool used for consistency checking was SACCO (see Appendix B for more 
details, and [Ayel and Laurent, 1991; Ayel and Vignollet, 1993] for complete 
descriptions). SACCO performs static3 checks on a knowledge base for the 
following logical anomalies: 

• Rule verification: 
— duplicate premises; 
— duplicate conclusions; 
— identical premises and conclusions; 
— tautologies; 
— anti-tautologies; 
— rules without premises or conclusions; 
— malformed premises or conclusions. 

• Cycle detection. 
• Consistency: 

— verifications of types and values for attributes; 
— etc. 

• Redundancies between rules (subsumption). 
 
These checks were performed on the four versions of GIBUS (the three faulty 
ones and the reference version). When SACCO indicated that there was an 
anomaly somewhere in a faulty version and, when this anomaly could not be 
found in the reference version, it was concluded that SACCO had identified a 
"possible" fault. On the other hand, when the anomaly was also found in the 
reference version, it was concluded that the anomaly did not correspond to any 

                                                 
3"Static" in the sense that the KBS is not executed with its inference engine. 
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fault. In effect, the verification of the reference version was used as an "expert 
judgement" on the anomalies, to discriminate between "real" faults and others. 
 

3.2.2. Use of the Completeness Checking Tool  
 
The tool employed checks basic completeness properties only; a detailed 
description of basic  completeness properties together with more advanced ones 
is given by [Lounis and Talbot, 1993; Lounis and Ayel, 1995; Preece, 1993]. Our 
tool assumed that the attributes of the object model can be split into four sub-
classes: 
•  the initial attributes, which should be used only in the premises of the rules; 
•  the terminal attributes which should be used only in the conclusions of the 

rules; 
•  the intermediate attributes which should be used both in the premises and in 

the conclusions of the rules; 
•  the unused attributes which are not supposed to be used in the rules. 
 
The tool assumes also that the rule base can be split into four subclasses: 
•  the initial rules which should use only initial attributes in premises; 
•  the terminal rules which should use only terminal attributes in conclusions; 
•  the intermediate rules; 
•  the rules which are both initial and terminal. 
It should be noted that normally these partitions would (and can) be made in 
interaction with the experts. In this study they were determined using the 
reference version (again the reference version was used to replace the experts). 
 
The completeness check determined — for each faulty version of GIBUS — the 
status of each attribute and each rule (terminal, initial, etc), which was then 
compared with their "theoretical" status (the one obtained with the reference 
version). When there were differences, we tried — using only the documentation 
(including the EMICAT version) and the current faulty version — to identify the 
possible faults which could explain the differences. 
 

3.2.3. Use of the Testing Tool  
 
To perform software testing, three major tasks must be done:  
• create a set of test cases (sufficiently representative to provide significant 

results); 
• determine the "expected results" for each test case; 
• run the cases on the system, and compare the obtained results with those 

expected. 
The first and third tasks are most amenable to assistance from automatic software 
tools. In our study, we used a new version of the SYCOJET testing tool which 
contains a test data generation module, a test execution module, and a run-time 
tracing module (this version of SYCOJET is described in Appendix C, but for a 
more detailed description of the SYCOJET test data generation module see [Ayel 
and Vignollet, 1993]). SYCOJET is used to generate automatically input data for 
test cases. The expected results for each test case cannot be generated 
automatically unless a reference model of the system exists; for example, such a 
model was built to test the ONCOCIN expert system [Shwe, Tu and Fagin, 
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1989], and in our case we were able to use the reference version of GIBUS, as 
explained below. Note that SYCOJET does not automate the process of 
comparing the obtained results with those expected, although this would be a 
useful enhancement to the tool. 
 
Generation of test set We defined three sets of test cases, each of which was 
generated using the SYCOJET test data generator on the reference version of 
GIBUS. Our goal with these three sets of test cases was to evaluate how testing 
results are dependent upon the rule coverage: 

•  the first set — expected to fire 10% of the rules (14 test cases);  
•  the second set — expected to fire 37.5% of the rules (29 test cases); 
•  the third set — expected to fire 46% of the rules (38 test cases). 

These rule coverage percentages were chosen arbitrarily but to be different and to 
allow reasonable time for test data generation. Domain experts were not available 
to provide the expected results; therefore, after the generation of the tests cases' 
input data, they were run on the reference version to obtain output which we 
considered to be the "expected results". 
 
It should be noted that the use of SYCOJET to generate test data is intended to 
make the testing process easier and less biased. However, this does not preclude 
the use of additional (or replacement) cases provided by domain experts — if 
such are available. Certainly, this does not change the way in which the cases are 
used to perform testing. 
 
Results of test case runs  We assumed that domain experts would be able to 
provide, for each test case, the correct reasoning that should be used (i.e. the set 
of rules which should be fired) and the correct results (i.e. the final or 
intermediate deductions on which the reasoning is based). Therefore, we added 
capabilities to the testing tool to store, for each run of a test case: 
• the set of facts used as inputs; 
• the names of the rules fired; 
• a set of deduced facts (all "interesting" deduced facts): 

— the outputs of GIBUS (hints and diagnostics); 
— internal characteristics of the batteries calculated by GIBUS at different 

orbits and stages of these orbits. 
 
Identification of the faults  All test cases were run on the three faulty versions of 
GIBUS and then compared with the results obtained from the reference version. 
When there were differences (i.e. the set of facts deduced was not identical or the 
rules fired were not the same) we have supposed that this failure was due to some 
error in the corresponding faulty version. For each test case we tried 
subsequently to make a distinction between primary failures (i.e. the minimal set 
of failures which could explain the incorrect behaviour) and secondary failures 
(i.e. failures which could be due to previous ones). This work was done manually 
using only the corresponding faulty version. 
 
Once the sets of primary failures were defined, it was possible to identify faults 
and plausible corrections by the comparison of the faulty version with the 
documentation — particularly with the EMICAT GIBUS. For each primary 
failure, this entailed searching for a rule which could contain a fault and explain 
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the failure, verifying (using the EMICAT version and the documents) if those 
rules were correct or not, and proposing the fault and a refinement. Thus, there 
were three stages to make the identification of the faults: 
1) identifying all failures which occurred during the runs of the test cases 
2) attempting to define the primary failures  
3) attempting to identify and to propose a correction for the faults. 
 

4. RESULTS 
 

4.1. Faults on Each Version 
 
Tables 1–3 below summarise, for each faulty version of GIBUS, the number of  
faults seeded in each class, and the number of faults found by the three 
verification tools.  
 

Table 1: Results from faulty version 1 
 

Table 2: Results from faulty version 2 
 

Table 3: Results from faulty version 3 
 
Some general conclusions can be made from these tables. Particularly, we notice 
that more than 61% of the faults were detected and that a correction was 
proposed for those faults. Moreover, SACCO always discovered more than 35% 
of the faults, SYCOJET allowed at least 31% of the faults to be detected, and the 
completeness tool always discovered more than 27% of the faults.  
 
If we look more closely at the results, to try to establish what kind of fault is 
more easily discovered by one method or another, first of all we note that all the 
faults made on the object reference were detected. Moreover, SACCO always 
detected more than 40% of these faults. Concerning attribute value faults, very 
good results were obtained since more than 80% of these faults were detected, 
more than 60% of which by SACCO. Regarding the results for attribute 
reference faults, 100% of these faults were detected in the versions 1 and 2; but, 
only 1 fault on the three introduced was detected in version 3. Globally, our 
results for this kind of fault are good. We also notice that the completeness tool is 
well adapted to the detection of rule deletions since in two versions all these 
faults were detected and 2 of the 3 faults were detected in the other version. 
 
Regarding the results on premise faults, no "global" conclusion can be made. 
Examining the obtained results, taking into account the precise type of fault: a 
premise deletion fault was always detected in the last two versions (2 in version 
2 and 3 in version 3); 2 such faults were introduced in version 1 and one was 
detected by a testing process. We have the same results when two premises were 
exchanged (2 in version 3). Poor results were obtained when a premise was 
duplicated or adjusted because none of these faults were detected by our tools. 
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Nothing can be concluded on editing faults because the results are not uniform; 
however, we can confirm that SACCO's functionality allowed it to discover 
100% of the rule duplication faults (which are included in the editing faults). For 
conclusion faults, the number of introduced faults is not statistically significant. 
More experiments would need to be performed.  
 
On the other hand, these tables show that some faults are difficult to detect with 
the tools and methods used here. This is the case for the numerical ones, but we 
should note that our tools are not designed to detect this class of fault at present 
(recall that, in creating the fault classes, care was taken not to take into account 
the abilities of the verification tools). The consistency checker and the 
completeness checker are not capable of detecting such faults and, for the testing 
process, SYCOJET does not generate test data using boundary values4 (and we 
have used only test data generated by SYCOJET). An improvement of this test 
data generation, taking into account boundary values, has been proposed in 
[Bendou, 1995]. However, it is not our purpose to discuss here the improvement 
of the methods and tools used. 
 
In Table 4, we have grouped the results of the three versions, to give a rough 
average. This table reinforces the conclusions given above. 
 

Table 4: Results with all three versions together 
 
Of course, some faults are detected twice, and sometimes by all the methods. It is 
interesting to study which types of faults are affected by multiple detections. On 
the other hand, some tools (or methods) seem to be "specialised" in discovering 
certain types of faults. In the next section, we summarise the faults detected by 
only one method — which we call single detections — and the multiple 
detections. 
 

4.2. Single and multiple detections 
 
It is interesting to compare the multiple detections with the faults found by only 
one method or tool. All these results are summarised in Tables 5–7, for each 
version. In Table 5, 8 faults were discovered by at least 2 methods, that is 50% of 
the found faults and 31% of the initial faults. In Table 6, 8 faults were discovered 
by at least 2 methods. Indeed, one of the attribute reference faults was detected 
by all the methods so it is counted several times here. Thus 36% of the found 
faults and 31% of the initial faults were discovered by at least 2 methods. In 
Table 7, 8 faults were discovered by at least 2 methods. One of the premise 
faults was detected by all the methods and is counted several times. Thus 47% of 
the found faults and 32% of the initial faults were discovered by at least 2 
methods. 
 

 
Table 5: Single and multiple detections for version 1 
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Table 6: Single and multiple detections for version 2 

 
Table 7: Single and multiple detections for version 3 

 
 
Concerning the single detections, SACCO is the tool which discovers the fewest 
faults. However, it costs the least to employ (see section 5). Moreover, not using 
SACCO would have left 12% of faults not discovered, which is not insignificant. 
These tables show that the completeness tool is well-adapted for specific faults 
(rule deletion, for instance). Indeed, it was difficult, with the other two methods, 
to discover such faults. Improvements and addition of functionalities could 
improve of the results (for example, specific functionalities to discover faults on 
premise or conclusion deletions). Our testing process allowed 16% of the faults 
to be detected by itself, with a maximum rule coverage of 46%. Obtaining better 
test case coverage would have cost a great deal more in computing cases, but 
conceivably this result could be improved with faster hardware and optimised 
algorithms for SYCOJET. In any case, it is hard to imagine that a validation 
process would not include a testing process. 
 

4.3. Rule coverage and testing  
 
Considering the testing method, it is interesting to relate the rule coverage with 
the detected faults. Recall that the three sets of test cases were generated from the 
reference version, so that the same sets were used with the three versions. As 
they are "side results" of our study, we do not show all the results in tables as 
before. However, we examine two illuminating graphs: Figure 1 relates the faults 
discovered (the proportion of the number of faults in each version) to the number 
of test cases executed; Figure 2 relates the same proportional number of faults 
with the real rule coverage on each version. 
 
 

Figure 1: Proportional number of faults discovered related to the number of test 
cases 
 
Figure 2: Proportional number of faults discovered related to the real rule coverage 
 

 
For version 2 and version 3 the results are intuitive: the more test cases, the better 
the real coverage, the better the results. However, this is not the case for version 
1. There is no obvious reason for this, because the introduced faults in version 1 
are not ostensibly different in nature to the ones in the two other versions. The 
results obtained with versions 2 and 3 (Figure 1) seem to indicate that the number 
of faults discovered is in proportion (linear increase) to the number of test cases. 

                                                                                                                                     
4We call a  boundary value a value which appears specifically in a rule; for instance, if (X  <  3) 
appears in a rule, 3 can be considered as a boundary value. 
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Conversely, it seems that the number of faults discovered grows faster than 
linearly (Figure 2). However, we have too few data points to offer strong 
conclusions here. So, these two graphs challenge some intuitive ideas, and call 
for further investigation. 
 
 

5. COST-ORIENTED ANALYSIS 
 
As we have shown in the previous section, the faults which were identified are 
not always the same: the faults found change with each of the three techniques 
we have compared. The number of faults found using each tool, and the 
proportion of those which were discovered just by one of them or discovered by 
more than one of them, gives us a first impression of the relative effectiveness of 
the different validation techniques. However, this is not sufficient if we want to 
have a fair comparison. Indeed, we have also to take into account the costs 
associated to the use of each technique. This is the topic of this section.  
 

 
 
 
5.1. Testing 

 
The cost of testing is very significant: we examine each component cost below.  
 

5.1.1. Generation of Test cases and expected results  
 
First it is necessary to choose the set of test cases which will be used for the test. 
The benefits of testing are extremely dependent on this choice. In particular it is 
very important to have a good coverage of each part of the knowledge base. 
Therefore, the sets of test cases must be built very carefully. The use of a test 
data generator like that of SYCOJET can help a great deal in the sense that the 
user can specify the knowledge base coverage that a set of test cases should 
achieve during its execution. When the test data have been generated, it is then 
necessary to define the results the KBS should give for each case. Without 
"expected results", there is no way to judge if the results produced by the 
application are acceptable or not — faults will not be identifiable. 
 
Unfortunately, this essential step is expensive. If an expert is required to provide 
the test cases, then the cost is entirely in the expert's time. When an automatic 
test data generator, such as that provided by SYCOJET, is used to build the test 
samples, the cost of the test case creation includes the computer time needed to 
generate the data. To illustrate, in this study SYCOJET spent: 
• 19 hours 30 minutes to generate the labels (an extension of De Kleer's labels 

[De Kleer, 1986] for first order rule bases) needed by SYCOJET prior to the 
test data generation itself; 

• 60 seconds to generate data for the first set of test cases (14 test cases and a 
rule coverage of approximately 10% of the rules); 

• 2 hours 20 minutes to generate data for the second set of test cases (29 test 
cases and a rule coverage of approximately 35% of the rules); 
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• 17 hours 30 minutes to generate data for the last set (38 test cases and a rule 
coverage of approximately 45% of the rules). 

Note that the label generation has to be done just one time. Once the labels are 
built, the user can state how many sets of test cases are needed for each test set, 
without having to rebuild the labels. 
 
The hardware used here was a diskless DPX-1000 (BULL Unix workstation) 
with a 68000 processor (and no co-processor). Thus, on a more modern machine 
with a careful implementation of SYCOJET, the times given above could be 
divided by 10 to 100. For example on a DPX-20 (BULL Unix workstation using 
a POWER-PC processor) LISP programs can run 20 times faster than on the 
DPX-1000. Under these conditions5 the time needed to generate the sets of test 
data are much more reasonable: approximately one hour to build the labels and 
another hour to generate the most expensive set of test data. 
 
To determine the expected results associated with the generated test data, we ran 
the data on the reference version. Obviously this is not the normal way to 
proceed (except for non-regression testing). Consequently we cannot evaluate the 
cost of this particular stage. 
 

5.1.2. Runs of test cases  
 
The next step consists of running the test cases and storing the execution results 
(traces, etc). The costs are those associated with the use of the application. In 
fact, the cost depends not only upon the size and the number of the test cases but 
also upon the application (and the version). Table 8 summarises the costs for 
each version and each set of test cases: 
 
 

Table 8: Costs for each version and each set of test cases 
 
 

5.1.3. Analysis of the runs 
 
Finally the results produced have to be analysed. This analysis can be divided 
into four steps:  
•  verifying if the obtained results correspond to the expected ones; 
•  identifying, when they are not correct, the primary failures (to do this it is 

necessary to rebuild at least partially the reasoning of the application); 
•  identifying possible causes (faults) of these primary failures (these causes can 

be far away from the place of the failures in the deductive path); and finally 
•  proposing corrections.  
 
With GIBUS, the analysis of the test case results took two days per version (note 
that all verifications were done manually, so the times given here are times spent 
by humans): 
•  one day to identify all the execution failures; 

                                                 
5 We were obliged to use this particular hardware platform because our version of KOOL was 
tied to it. 
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•  one day to identify the primary failures and their causes. 
 
 

5.2. Completeness 
 
The cost for the verification of completeness is also quite important because, 
often, the anomalies that the tool identifies are far away from the faults which 
explain them. 
 

5.2.1. Validation knowledge acquisition 
 
The first difficulty in verifying the completeness of a KBS is to obtain from the 
experts the necessary "knowledge about completeness". Insofar as we have 
extracted this knowledge from the reference version of GIBUS (recall that we did 
not have access to the experts) it is difficult for us to estimate the cost of this 
stage. 
 

5.2.2. Run of the completeness tool 
 
The tool we have used for completeness checking is quite simple and the checks 
it makes are not very expensive. Most of information is computed, in fact, during 
the load of the knowledge base. So the tool completes the verification very 
quickly (less than one second for GIBUS). Of course, the cost would be greater 
for a more complex tool (such as those  described in [Lounis and Ayel, 1995], 
[Lounis, 1993], and [Preece, 1993]) but we would expect the results to be better. 
 

5.2.3. Analysis 
 
As we have explained before, the analysis of the results of the completeness 
checker can be difficult; for this study, about half a day (four hours) was taken 
for each version of GIBUS. 
  

 
5.3. Consistency 

 
5.3.1. Validation knowledge acquisition 

 
As for completeness, one of the major problems in checking the consistency of a 
knowledge based system is the acquisition of the "consistency knowledge" that 
such a tool needs. During the ViVa project there were two interviews with ESA 
experts ([CISI, 1993a] and [CISI, 1993b]), but the knowledge about consistency 
(for GIBUS) that could be extracted from these was not large [Talbot, 1993a]. 
This is because, as with all knowledge acquisition, it is difficult to "ask the right 
questions" in such interviews (especially when initially unfamiliar with the 
application). In this case, another problem was that the interviews took place too 
long after the implementation of GIBUS, and the experts had difficulty 
remembering the necessary details. Consequently, we have not used all the 
functionalities of SACCO, but only the ones which were less dependant on the 
"consistency knowledge". 
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5.3.2. Running the tool 
 
The checks performed by SACCO were listed in Section 2. Table 9 gives the cost 
for these checks in computer time (as before, the computer used was a diskless 
DPX-1000 with an 68000 processor and no co-processor. Thus, on a modern 
machine with a good implementation of SACCO the times given above could be 
divided at least by 10 to 100): 

 
 

Table 9: Duration of each consistency verification  
  
 

5.3.3. Analysis of the results 
 
Unlike the previous validation techniques, the analysis of the results of a 
consistency checking tool like SACCO is very easy to do: the tool indicates 
clearly where the anomalies are (in which rule and in which part of the rule) and 
what their nature is. So the only remaining task is to verify — against the 
knowledge acquisition documents (in our case against the EMICAT version of 
GIBUS) or with the experts — if the anomalies found correspond to actual faults 
and, if they do, to propose corrections. With GIBUS we took about 2 hours to 
analyse and to find the faults of each version. 
 

5.4. Summary 
 
An evaluation of the cost for each validation technique has to take into account 
the following costs: 

• For testing:  
— test case generation; 
— acquisition of the expected results of each test case; 
— running of the test cases; 
— analysis of the execution results. 

• For consistency checking: 
— acquisition of the consistency validation knowledge; 
— use of the consistency checker; 
— analysis of the problems pointed out by the tool. 

• For completeness checking:  
— acquisition of the validation knowledge about completeness; 
— use of the completeness checker; 
— analysis of the problems pointed out by the tool.  

 
We summarise the evaluation of the costs (per version) obtained for each 
validation technique in Table 10. 
 
 

Table 10: Cost evaluation for each validation technique 
 
A complete evaluation is not really possible because the acquisition costs have 
not been estimated. Even if it is very difficult to say anything without real 
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experiences of such a knowledge acquisition (i.e. without having experienced this 
acquisition for an application under development), we are convinced that it 
should not be underestimated at least for two reasons. Firstly, access to the 
experts is often difficult and entails significant overheads. Secondly, the quality 
of this acquisition will affect considerably the quality of the validation process. 
On the positive side, the acquisition has to be done just once, when this is not the 
case with the other stages. So our conclusions about evaluation costs are that: 
• for testing, the most important costs are those related to the generation of the 

test data, the generation of the expected results and the analysis of test case 
execution; 

• for completeness checking, the most important costs concern the acquisition 
of the knowledge about completeness and the fault analysis; 

• for consistency checking, the most important costs relate to the acquisition of 
the consistency knowledge. 

 
The consistency checking tool is the one for which the analysis of the results is 
the least significant, while testing is the technique for which this cost is the most 
significant. Of course, analysis costs can be decreased if we use tools for this 
task. For example, the comparison between the expected results and the real ones 
can be, at least partially, automated. However, consistency checking will always 
have the advantage over testing and completeness, because the anomalies found 
with testing or completeness checking are more likely to be further away from 
the location of the faults which cause them than is the case for consistency 
checking. 
 
Regarding knowledge acquisition costs (test data and expected results, 
knowledge about what can be considered as consistent or not, and knowledge 
about completeness) a priori we will obtain the same order as for analysis costs. 
However we have to take into account that the completeness tool was very simple 
and that the methods used for consistency checking are those that are the least 
domain-dependant.  
 

6. BIAS 
 
We have proposed a method to evaluate verification tools. Of course this method 
influences the conclusions of the corresponding study. Thus, we need to examine 
the reliability of the evaluation process described above. In this section, we try to 
answer the following questions:  
•  Does the use of a reference version (instead of an expert) facilitate fault 

discovery? 
•  Does it penalise some stage of our process? 
•  Is the cost analysis biased? 
•  Is our fault generation realistic? 
 
For the first question, we can consider that using a reference rule base, allowing 
comparisons between the fired rules in the reference version and those fired with 
the other versions, introduces a bias. For instance, it could favour the discovery 
of removed rules or of removed premises in the faulty versions. To avoid this, 
when such differences appeared in the traces, we didn't take them into account. 
Such a fault was pointed out only if another anomaly could indirectly lead to it. 
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In the same way, we can consider that having a reference version to compare 
numerical results could facilitate testing. Indeed, it could be difficult for an 
expert to determine the presence of a failure when it is a very small numerical 
error. With the comparison we made, every difference, as small as it can be, is 
detected. 
 
Conversely, one could argue that our method can penalise the evaluation process. 
The first point concerns testing. We have generated the test data automatically. 
However, it would have been preferable to submit the generated test cases to an 
expert to guarantee their pertinence and their realism. This was not done. 
Intuitively, we could hope that more pertinent and more realistic test cases would 
increase fault discovery. Moreover, the analyses of the results obtained after the 
execution of the different tools or after the execution of the test cases on any 
faulty version are difficult to perform in the absence of a domain expert. 
 
We can also consider that there exists bias on the cost analysis. Indeed, the cost 
analysis does not take into account time required to learn the validation tools. In 
fact, since we were already very familiar with the tools used, it was not possible 
to evaluate this cost. In the same way, the cost analysis should have taken into 
account, for completeness and consistency checking, the cost of validation 
knowledge acquisition (completeness knowledge and consistency knowledge). 
However it is not possible to analyse this cost considering the unavailability of 
human experts for this study. Similarly, for testing, experts were not involved in 
the expected results acquisition: instead, we obtained these from reference 
version runs. Thus it was not possible to evaluate this acquisition cost. 
 
Finally, one could imagine that our fault generation could influence the 
evaluation. We can say that the previous study of the potential and classical faults 
guarantee the realism of the faults. Moreover, tool functionality was not allowed 
to influence the proposed faults (this can be seen when some faults are not found 
by any of the three validation processes). We believe that the fault generations 
were "honest" and that we have tried to minimise this bias. 
 

7. CONCLUSIONS AND PERSPECTIVES 
 
It was not surprising to us that each of the approaches was effective at detecting 
certain classes of fault. This confirms the previous studies which have used 
manual or automated versions of these kinds of verification. In particular, our 
results agree with the Concordia and SAIC studies of consistency and 
completeness checking ([Preece and Shinghal, 1992; Miller, Hayes and Mirsky, 
1993]), and the SRI and Minnesota studies of testing ([Rushby and Crow, 1990; 
Kirani, Zualkernan and Tsai, 1992]).  
 
However, one of the most interesting results of this study is that the three 
verification tools we have used are complementary. Each of them lead to the 
detection of more than 30% of the faults and, grouped together, to the detection 
of more than 70% of the faults. Moreover, the number of faults which were 
detected twice or three times using different tools is quite small. This is not an 
obvious result because there was no mapping between the eight fault classes and 
the functionalities of the tools. This result was not shown by the previous studies. 
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Therefore, to obtain the best results in KBS validation, we would recommend 
that knowledge engineers take advantage of using all three types of tool. 
 
The relative efficacy of the consistency and completeness checking methods 
appear to contradict directly the conclusions of the Minnesota study [Kirani et al., 
1992]. Of course, neither the tools, the application, nor the method are the same 
and this can explain the differences. For example the application used in [Kirani 
et al., 1992], MAPS, is very small (forward chaining, propositional logic, with 
only 41 rules) compared to the application we used, GIBUS (object-oriented, 
forward and backward chaining, first order logic, with 207 rules). The use of a 
small application can be justified by the fact that evaluation and analysis are 
easier. However, the results obtained using a more realistic application (in terms 
of complexity), can also be considered as more realistic. Particularly, the more 
complex the knowledge base, the more difficult it is to analyse the results of 
testing or of completeness checking. So using a small application could distort 
the comparison between the methods. Moreover, for large knowledge bases, the 
number of test cases needed for testing the application at a sufficient level, is also 
considerably larger. Thus, if in [Kirani et al., 1992] the application was 
exhaustively tested (it was possible regards to the size and the complexity of the 
knowledge base), it would explain the very good results of testing. Conversely, 
the complexity of consistency checking seems to be less dependent on the size of 
the knowledge base.  
 
We do not believe that the difference in size between the two applications is 
sufficient to explain our conflicting conclusions, but it is certainly one of the 
factors which can have a great influence on the results of such a comparative 
evaluation of verification techniques. To perform a more complete comparison of 
the results, we would need to compare the methods and the functionalities of the 
tools used in the two studies. However, the descriptions of the tools and methods 
employed in [Kirani et al., 1992] do not allow us to make a good comparison, 
with the exception of the consistency checker which was less sophisticated than 
SACCO. This could well explain the differences in our findings. 
 
The other conclusions we reach are less surprising. The study has confirmed that 
rule coverage generally gives a good idea of the quality of a set of test cases, but 
also that the results obtained using a set of test cases can depend greatly upon the 
knowledge base used. For example, while the number of faults found in GIBUS 
in general seems to grow with the rule coverage of the sets of test cases, for the 
first version we have found less faults with the third set of test cases (46% of 
rules fired) than with the second one (37,5% of rules fired) — remembering that 
the same set of test cases was used with each version.  
 
In terms of cost, consistency checking is cheapest, completeness checking is a 
little more expensive, and testing is of much greater expense.  
 
It is difficult to generalise our results to all knowledge based systems and, of 
course, further evaluations of other applications are necessary to confirm (or 
challenge) our conclusions. However, since the method we have used minimises 
the need for experts' interpretation of the faults, we can reasonably conclude that 
if we use an application of similar size and complexity to GIBUS, we would 
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expect to obtain similar results. Consequently, since our application has a size 
and a complexity which is representative of actual practice, we would expect that 
consistency and completeness checking, in addition to testing, would be an 
effective combination of methods to validate many of the knowledge based 
systems actually under development. 
 
This study also points towards some research issues: 
• First, it is clear that some effort should be made to facilitate the analysis of 

the results of testing and to interpret them in terms of faults. This is also true 
for completeness checking. 

• Secondly, the results obtained with a very simple completeness checking tool, 
like the one we have used, prove that the researches about completeness 
checking are potentially an important area for the validation of knowledge 
based systems. 

• Thirdly, new evaluations of applications under development are necessary to 
give a more precise idea of costs related to the acquisition of all this 
knowledge which has to be acquired for the validation process (i.e. 
knowledge about what is consistent or not, knowledge about the possible 
inputs of the application, knowledge about the possible outputs, knowledge 
about the validity of these outputs and so on). 

• Finally, a complementary study could be performed to investigate the 
phenomena where the increasing of rule coverage does not always increase 
the number of faults discovered (we have seen that this last number could 
decrease significantly). Can general conclusions be made on this problem?  
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APPENDIX A: GIBUS in KOOL 
 
This appendix provides additional information on the KOOL implementation in 
GIBUS, to demonstrate that it is typical of current KBS implementations. 
 
Table 11 compares the KOOL implementation of GIBUS with other KBS for 
which complexity data are available. These data are from the study in [Preece 
and Shinghal, 1992]. We see that GIBUS is of average size in terms of its number 
of rules, and its ratio of rules to data items is similar to other systems, which tend 
to exhibit a low ratio. We would therefore regard GIBUS as fairly typical of real-
world KBS applications. The complexity of the search space of GIBUS is high 
compared to the other systems, and this should be borne is mind when 
considering the costs of performing validation.  
 

 Description of KOOL 
 
KOOL is a shell produced by the firm Bull for building hybrid expert systems. It 
has more or less the same functionality as Intellicorp’s Kappa product, and is 
fairly typical of current hybrid KBS building tools. KOOL provides extensive 
object-oriented facilities. It is possible to define classes and sub-classes which 
are organised in inheritance trees. In each class, it is possible to define attributes 
which can be inherited by the subclasses and by the instances of the class. The 
attributes are monovalued or multivalued and, as in frame-based languages, 
descriptors are attached to each attribute which define the behaviour of the 
attribute (its type, inheritance properties, etc). It is also possible to attach 
methods to classes, as in object-oriented programming languages.  
 
Rules in KOOL can be used to assert or retract facts (a fact is an instance 
attribute value). For each rule, it is possible to specify if it should be used in 
forward chaining, backward chaining or both. Some example rules appear below. 
Here, object variables are typed by class and have the following general form: 
*xClass where x is an integer and Class a name of a class. 
 
{ Rule + : FirstExampleRule

If *1Human:Has_Child = *2Human
*2Human:Has_Child = *3Human

Then *3Human:Has_Grandparents = *1Human
}
 
This defines a rule named FirstExampleRule which will be used in forward 
chaining. *1Human, *2Human and *3Human are variables which can take their 
values in the instances of the class named Human. Has_Child and 
Has_Grandparents are attributes defined in the class Human. The effect of 
such a rule will be: for each instance of the class Human, H1, H2 and H3 such 
that H2 is one of the values of the attribute Has_Child of H1, and H3 is one of 
the values of the attribute Has_Child of H2, H1 will be added in the set of 
values of the attribute Has_Grandparents of H3.  
 
{ Rule - : SecondExampleRule

If *1Human:Salary = *1Number
*1Human:Dept = *2Number
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(< (divide 7 *2Number) (multiply 12 *1Number))
Then *1Human:PossibleNewLoan =

(minus (multiply 80 *1Number) *2Number)
}
 
This defines a rule named SecondExampleRule which will be used in 
backward chaining to calculate the residuary loan in response to a query. In the 
rule, (< (divide 7 *2Number) (multiply 12 *1Number)) and (minus
(multiply 80 *1Number) *2Number) are LISP expressions which are used 
to define additional conditions and to calculate values.  

 
 
APPENDIX B: The SACCO Tool Used in the Study 

 
SACCO assumes that the knowledge base is split into three parts: a factual part 
describing the domain (which can be empty); a factual part describing the 
problem that the KBS has to solve (this part changes with each particular 
problem); and a deductive part describing the expertise required to solve 
problems. Using the  KOOL implementation of SACCO, the factual parts are 
defined using KOOL objects and the deductive part with KOOL rules. 
 
SACCO assumes also that there is additional knowledge which defines what is 
consistent or inconsistent: 
• type and legal values of each attribute; 
• monovalued attributes which cannot not have more than one value at the 

same time; 
• multivalued attributes for which a maximum number of values can be 

defined; 
• values of a multivalued attribute which cannot be held simultaneously (for 

example, a dog can be small and cute in the same time, but not small, 
aggressive and cute);  

• couples of mutually exclusive attributes (for example, the attributes parents 
and children of one instance of the class Human cannot have the save value 
in the same time: one cannot be both the parent and the child of somebody); 

• generic inconsistencies which are specified using sets of uninstantiated facts 
(effectively a first order extension of De Kleer's no-goods [De Kleer, 1986]). 

 
SACCO performs two kinds of consistency verification: static and dynamic 
checks. For the dynamic checks, it tries to generate consistent fact bases which 
lead to the deduction of inconsistencies. For these checks SACCO takes into 
account the full deductive power of the knowledge base, which is not the case for 
the static checks. Because we have not used these dynamic verifications on 
GIBUS, we will describe here only the anomalies searched by SACCO when  it  
performs static checks on a knowledge base. 
 
Rule Verifications 
 
SACCO examines each rule to find: 
• a rule has duplicate premises; 
• a rule has duplicate conclusions; 
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• a rule has identical premises and conclusions; 
• a rule is without premises or conclusions; 
• tautologies: some constraint in a rule is always true; 
• anti-tautologies: some constraint in a rule is always false; 
• malformed premises or conclusions: there is a reference to an attribute which 

does not exist. 
 
Cycle Detection 
 
A sequence of rules R1,…, Rn is detected as a cycle if there are n variable 
substitutions s1,…, sn such that  
• for i between 1 and (n-1), si unifies one conclusion of Ri and one premise of 

R(i+1), 
• sn unifies one conclusion of Rn and one premise of R1. 
 
Consistency Verifications 
 
Verification of types and values for attributes The values should have types 
which are compatible with the ones defined for the attributes; the sets of values 
should not contain sets of values defined as inconsistent; monovalued attributes 
should not have more than one value. 
 
Detection of conflicting rules There is a conflict between two rules R1 and R2 
when their premises are compatible but not their conclusions. 
 
Detection of contradictory sequences of rules A sequence of rules R1,…,Rn is 
contradictory if there are n variable substitutions, s1,…, sn such that each 
substitution si unifies one conclusion of Ri with one premise of R(i+1) and the 
premises of R1 are not compatible with the conclusions of Rn. 
 
Redundancy and Subsumption between Rules 
 
A rule R1 is redundant if there is another rule R2 and a variable substitution, s, 
such that: 
• each premise of s(R2) is included in the premises of R1 and 
• each conclusion of R1 is included in the conclusions of s(R2). 
So each premise of R2 matches a premise of R1 and each conclusion of R1 
matches a conclusion of R2. 
 

 
APPENDIX C: The SYCOJET Tool Used in the Study 

 
The version of SYCOJET used in the study is written in KOOL and contains three 
modules: a test data generation module, a test execution module and a run-time tracing 
module. We briefly describe these three modules (the vocabulary used here is 
essentially the one used by J.De Kleer [De Kleer, 1986]). 
 
Test Data Generation Module 
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This module is comprised of two components: a label calculator and a value generator. 
It has the architecture shown in Figure 3. The classification of the attributes (as input 
or output) and their domains are extra knowledge given by the expert. Label 
calculation is based on a backward chaining process from output to input attributes. 
During each environment calculation, the label calculator aggregates also the 
predicates it encounters in the rules. The resulted conjunction of predicates on the 
environment's variables constraints the values these variables can take. 
 
The value generator chooses environments inside the labels which will lead to the 
expected coverage (this expected coverage is in this study the percentage of rules 
potentially firable when executing the test data generated). Several types of generation 
are supported: 
• random generation (the values will be chosen randomly); 
• limit generation (the values will be chosen at the limit of their domains); 
• robustness generation (the values will be chosen at the outside of their domains).  
In this study we only used random generation. The value generator checks a postiori if 
the values proposed for the variables of an environment verify the conjunction of 
predicates associated with the environment. 
 
The result of this test data generation module is a set of test data. It cannot provide the 
expected outputs. 
 
Description of the Test Execution Module 
 
As SYCOJET is written in KOOL and the knowledge based systems used are also 
written in KOOL, the test execution module supplies the test data values to the 
attributes of the objects, and then the reasoning is started by KOOL itself. This test 
execution module also calls a priori the run-time tracing module. 
 
Description of the Run-Time Tracing Module 
 
This tracing module runs in parallel with the application; it records which rules are 
fired and which facts are deduced. It gives as output the initial test data, the set of rules 
fired during the run and a set of deduced facts (users can specify the attributes of 
specific objects for which they want to know the values). 
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Table 1: Results from faulty version 1 

 
 
 
Type Number Found % By SACCO % By Testing % Completen. % 

Editing 2 1 50 1 50 1 50   0 

Object 5 5 100 2 40 1 20 4 80 

Attribute reference 6 6 100 4 67 3 50 4 67 

Attribute value 5 5 100 3 60 3 60   0 

Numerical 2 0 0   0   0   0 

Premise 3 2 67 1 33 1 33   0  

Conclusion6 1 1 100   0   0 1 100 

Rule deletion 2 2 100   0   0 2 100 

Total: 26 22 84.6 11 42 9 35 11 42 

 
Table 2: Results from faulty version 2 

                                                 
6A conclusion fault corresponds here to the deletion of a rule conclusion. 

Type Number Found % By SACCO % By Testing % Completen. % 

Editing 3 1 33 1 33 1 33   0 

Object 4 4 100 3 75 3 75 1 25 

Attribute reference 3 3 100 2 67 1 33 1 33 

Attribute value 5 4 80 3 60 1 20 3 60 

Numerical 4 1 25   0 1 25   0 

Premise 4 1 25   0 1 25   0 

Conclusion - - -       

Rule deletion 3 2 67   0   0 2 67 

Total: 26 16 61.5 9 35 8 31 7 27 



29 

 
Type Number Found % By SACCO % By Testing % Completen. % 

Editing 2 2 100 2 100 1 50 0 0 

Object 4 4 100 3 75 1 25 2 50 

Attribute reference 3 1 33   0 1 33 1 33 

Attribute value 4 4 100 3 75 1 25 3 75 

Numerical 4 0 0   0   0   0 

Premise 6 5 83 2 33 4 67 1 17 

Conclusion 1 0 0  0  0  0 

Rule deletion 1 1 100    0   0 1 100 

Total: 25 17 68 10 40 8 32 8 32 

 
Table 3: Results from faulty version 3 

 
 
 
 
Type Number Found % By SACCO % By Testing % Completen. % 

Editing 7 4 57  4 57 3 43     

Object 13 13 100 8 62 5 38 7 54 

Attribute reference 12 10 83 6 50 5 42 6 50 

Attribute value 14 13 93 9 64 5 36 6 43 

Numerical 10 1 10   0 1 10   0 

Premise 13 8 62 3 23 6 46 1 8 

Conclusion 2 1 50  0  0 1 50 

Rule deletion 6 5 83   0   0 5 83 

Total: 77 55 71 30 39 25 32 26 34 

 
Table 4: Results with all three versions together 

 



30 

 
 

Type 

 

No. 

 

% 

 

SACCO 

only 

 

%7 

 

Testing

only 

 

% 

 

Compl.

only 

 

% 

SACCO

& 

Testing 

 

% 

SACCO 

& 

 Compl. 

 

% 

Testing

& 

Compl.

 

% 

Editing 3 33          1 33   0   0 

Object 4 100    1 25    2 50  1 25     

Attribute ref. 3 100  2 67              1 33  

Attribute val. 5 80     1  20 1 20  2 40     

Numerical 4 25    1  25      0    0   0 

Premise 4 25   1 25     0  0   0 

Conclusion - -             

Rule deletion 3 67       2  67   0   0  0 

Total: 26 61,5 2 8 3 12 3 12 4 15 3 12 1 4 

 
Table 5: Single and multiple detections for version 1 

 
 
 

 

Type 

 

No. 

 

% 

 

SACCO 

only 

 

%

 

Testing

only 

 

% 

 

Compl.

only 

 

% 

SACCO

& 

Testing 

 

% 

SACCO 

& 

 Compl. 

 

% 

Testing

& 

Compl.

 

% 

Editing 2 50          1 50       

Object 5 100       3 60 1 25 1 25     

Attribute ref. 6 100      2 33 3 50 2 33 1 17 

Attribute val. 5 100 2 40 2 40   1 20       

Numerical 2 0                  

Premise 3 67 1 33 1 33           

Conclusion 1 100     1 10

0 

      

Rule deletion 2 100       2  10

0 

        

Total: 26 61,5 3 12 3 12 8 31 6 23 3 12 1 4 

 
Table 6: Single and multiple detections for version 2 

                                                 
7in relation to the number of initial errors 
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Type 

 

No. 

 

% 

 

SACCO 

only 

 

%

 

Testing

only 

 

% 

 

Compl.

only 

 

% 

SACCO

& 

Testing 

 

% 

SACCO 

& 

 Compl. 

 

% 

Testing

& 

Compl.

 

% 

Editing 2 100 1 10

0 

      1 50       

Object 4 100  1 25 1 25     2 50     

Attribute ref. 3 33            1 33 

Attribute val. 4 100     1 25 1 25 2 50    

Numerical 4 0                  

Premise 6 83 1 17 3 50   1 17 1 17 1 17 

Conclusion 1 0             

Rule deletion 1 100       1 10

0 

        

Total: 25 61,5 3 12 4 16 2 8 3 12 5 20 2 8 

 
Table 7: Single and multiple detections for version 3 
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 1st set of test cases 2nd set of test cases 3rd set of test cases

Reference version 1'20" 19'09" 24'57" 
1st faulty version 1'23" 54'22" 52'49" 
2nd faulty version 1'29" 23'16" 15'26" 
3rd faulty version 1'22" 30'27" 32'03" 

 
Table 8: Costs for each version and each set of test cases 

 
 

 1st faulty version 2nd faulty version 3rd faulty version 

cycle detection 47 seconds 32 seconds 47 seconds 
rule verifications 241 seconds 246 seconds 244 seconds 
consistency 123 seconds 123 seconds 124 seconds 
redundancy 503 seconds 524 seconds 570 seconds 

 
Table 9: Duration of each consistency verification  

  
    

 consistency testing completeness 

acquisition or  
test case generation 

not evaluable 2 days (computer) not evaluable 

acquisition of the  
expected results 

not pertinent  not evaluable not pertinent  

test case execution  
or use of the tool 

16 minutes 
(computer) 

run of the application:
(±1 hour (computer)) 

1 second (computer) 

results analysis 2 hours (human) 2 days (human) 4 hours (human) 
 

Table 10: Cost evaluation for each validation technique 
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Name Function Rules Declarations Breadth/Depth

MMU-FDIR Diagnosis 105 65 6/1 
TAPES Selection 150 80 3/1.5 
NEURON Diagnosis 190 155 4/2 
DISPLAN Planning 350 55 2/2 
DMS1 Diagnosis 550 510 5/2 

GIBUS Monitoring 207 181 6/148 
 

Table 11: Comparison of the complexity of various KBS 
 

                                                 
8This is the maximum, not mean value. 
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Figure 1: Proportional number of faults discovered related to the number 
of test cases 
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Figure 2: Proportional number of faults discovered related to the real rule 

coverage9 
 

                                                 
9The abscissas are not the same for each version because the execution of the same set of test 
cases does not fire the same rules for the three versions. So the number of rules fired and the rule 
coverage change with the version used. 
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Figure 3: Architecture of the SYCOJET tool used in the study 

 


