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 Rule-based systems can be viewed as possessing two sets of properties :  static and
 dynamic .  Static properties are those that can be evaluated without executing the
 system ,  and dynamic properties can be evaluated only by examining how the system
 operates at run time .  The dynamic properties of a rule-based system have been
 largely neglected in validation and verification work done thus far .  Structural
 verification and static testing techniques do not yield information on how a
 rule-based system achieves its goals at run-time ,  given a set of input data .  This paper
 presents a model for the relationship between the goal states achieved by a
 rule-based system ,  the set of inter-related rules that must fire to achieve each goal
 state ,  and the data items required for the rules in the rule sequence to fire .  Then ,  we
 describe a method for applying this model to study the dynamic properties of a
 rule-based system .  It is demonstrated that this model permits the validation of
 dynamic properties of a rule-based system ,  enabling system developers to decide :  (1)
 if the manner in which the system pursues goals is valid according to the
 specifications (and expectations) of the designers ;  (2) what relationship exists
 between the quality of system output for a given test case and the goals achieved
 during problem-solving on that test case ;  and (3) how the overall problem-solving
 activity of the system relates to the availability of input data .

 ÷  1996 Academic Press Limited .

 1 .  Validating rule-based systems

 Rule-based systems have demonstrated their success as a software technology for
 solving ill-structured problems (Hayes-Roth ,  1985) .  Characteristically ,  such prob-
 lems are solved by a heuristic search through a problem space ,  represented by
 transitions between goal states (Simon ,  1973 ;  Rich ,  1983) .  The rules in a rule-based
 system provide the knowledge for traversing the state space ,  and the knowledge
 which the system uses to decide which goals to pursue .  Often ,  this problem-solving
 strategy must proceed with limited ,  incomplete information (as quantified by the
 number of available items of data) .  This is especially true of real time rule-based
 systems ,  which often cannot wait until all information is available before acting .

 Although rule-based systems have been implemented successfully in many
 domains—including aerospace ,  manufacturing ,  business ,  and medicine—building
 these systems is a challenging task .  In particular ,  assuring the reliability of these
 systems poses a dif ficult problem in exploiting this technology .  The root of this
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 problem lies in the ill-defined nature of the applications ,  and the novel nature of the
 technology .  Since the applications are ill-structured ,  it is hard to define precise
 requirements for software solutions ,  leading to dif ficulties in determining whether
 the system meets its requirements (Batarekh ,  Preece ,  Bennett & Gogono ,  1991) .
 Moreover ,  since the architecture of rule-based systems is unlike conventional
 imperative software ,  many of the conventional software evaluation techniques
 cannot be adapted easily to these systems (Miller ,  Groundwater & Mirsky ,  1993) .

 There has been considerable interest in the problem of assuring the reliability of
 rule-based systems for over a decade ,  manifesting itself in the development of a
 variety of techniques for the validation and verification (V&V) of rule-based systems
 (Gupta ,  1990 ;  Ayel & Laurent ,  1991 ;  Preece & Suen ,  1993) .  Roughly speaking ,
 validation is concerned with ensuring that a system meets its users’ requirements ,
 while verification is concerned with the integrity of the system itself ;  thus ,  validation
 subsumes verification .  In considering the V&V problem ,  it is useful to distinguish
 two sets of properties of a rule-based system :  static and dynamic .  The  static
 properties are those characteristics of a rule-based system that can be evaluated
 without its execution ;  these include the following .

 (S . 1)  The goals (or goal states) of the rule-based system ,  as defined by the system
 designer .

 (S . 2)  The inter-dependent sets of rules that must fire to achieve each goal .
 (S . 3)  The metric for evaluating the quality of the result produced by the system .

 The  dynamic  properties are those characteristics of a rule-based system that can only
 be evaluated by examining how the system operates at run time ;  these include the
 following .

 (D . 1)  The goals that are achieved for a given set of test cases .
 (D . 2)  The inter-dependent sequences of rules that fired for a given set of test

 cases .
 (D . 3)  The quality of the result produced for a given set of test cases .

 The vast majority of previous work in the area of V&V of rule-based systems
 concerns the verification and validation of static properties of the system .  A large
 body of work addresses the structural verification of rule bases ;  many tools have
 been developed which are capable of demonstrating that a rule base is free from
 anomalies such as conflicting rules ,  redundant rules ,  and certain kinds of incompl-
 eteness (Preece ,  Shinghal & Batarekh ,  1992 ;  Nazareth ,  1993 ;  Ginsberg & William-
 son ,  1993 ;  Meseguer & Verdaguer ,  1993 ;  Zlatareva & Preece ,  1993) .  These
 anomalies are all static properties of the rule base of the system [special cases of
 property (S . 2) above] .  Another major body of V&V work concerns—in a broad
 sense—the testing of rule-based systems .  These works include techniques aimed at
 ensuring that the testing received by a rule-based system is adequately thorough ,
 based on coverage of goal states [property (S . 1)] and rules fired [property (S . 2)]
 (Rushby & Crow ,  1990 ;  Kiper ,  1992 ;  Kirani ,  Zualkernan & Tsai ,  1992 ;  Preece ,
 Grossner ,  Gokulchander & Radhakrishnan ,  1994) ,  and metrics for quantifying the
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 quality of the output produced by the system [property (S . 3)] (O’Keefe ,  Balci &
 Smith ,  1987 ;  Adelman ,  1991 ;  O’Keefe & O’Leary ,  1993) .

 The dynamic properties of a rule-based system have been largely neglected in the
 V&V work done thus far .  Structural verification and current testing techniques do
 not yield information on how a rule-based system achieves its goals at run-time ,
 given a set of input data ;  therefore ,  there is no way to decide if the manner in which
 the system chooses to pursue goals is valid using these methods .  Specifically ,  the
 following questions are not adequately addressed by previous work in V&V .

 $  Is the manner in which the system pursues goals valid according to the
 specifications (and expectations) of the system designers? This questions both
 the validity of the goals pursued during problem-solving for a given test case
 (D . 1) ,  and the validity of the sets of inter-related rules fired to achieve those
 goals (D . 2) .

 $  What is the relationship between the quality of system output for a given test
 case (D . 3) ,  and the goals achieved during problem-solving (D . 1)? This
 questions both the validity of goals pursued (D . 1) , †  and the validity of the
 metrics used to quantify output quality (D . 3)

 $  How does overall problem-solving activity [(D . 1) ,  (D . 2) and (D . 3)] of a
 rule-based system relate to the availability of input data ,  and when does its
 performance degrade to an unacceptable level as fewer data items are
 available? This question is of particular concern to developers of rule-based
 systems which must reason with limited information ,  such as real-time systems
 (Laf fey ,  Cox ,  Schmidt ,  Kao & Read ,  1988) and individual agents in distributed
 systems (Grossner ,  Lyons & Radhakrishnan ,  1992 ;  Grossner ,  Preece ,  Gokulch-
 ander ,  Radhakrishnan & Suen ,  1993) .

 The research described herein is aimed at giving rule-based system developers the
 means to study—and thus validate—dynamic properties .  This paper describes our
 models ,  techniques and tools used to study dynamic properties ,  and demonstrates
 their use on a test-bed application .  Section 2 describes an approach to modelling a
 rule-based system as an inter-dependent sets of rules which achieve goals ;  using this
 model ,  we show how to identify the data requirements for each goal (in terms of the
 data items needed to achieve each goal) .  Section 3 presents the application of the
 structural model to study the dynamic properties of a rule-based system .  In Section
 4 ,  we demonstrate using a realistic ‘‘test-bed’’ rule-based system how dynamic
 properties can be tested .  We show that the information provided to the rule-base
 designer by studying dynamic properties enhances the rule-base designer’s ability to
 validate the design of a rule-based system over what can be accomplished with static
 techniques .  The dynamic properties are validated by comparison with the expecta-
 tions of the rule base designer ,  based upon the knowledge acquired from the domain
 expert(s) .  In Section 5 ,  we discuss how the use of our structural model can be
 incorporated into the entire development process for a rule-based system ,  and that
 the testing of dynamic properties is also a part of this development process .  Since ,

 †  This is dif ferent from the first question because not all of the goals pursued have a direct ef fect on the
 final output of fered by the system .
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 like most V&V techniques ,  our method involves a non-trivial amount of human
 ef fort to set-up and to run ,  we aim to demonstrate that the results are worth that
 ef fort .

 The Blackbox Expert is the testbed we use in this paper .  This rule-based system
 has been designed to allow us to simulate the environment that a rule-based system
 would experience when forced to operate with limited information ,  in terms of the
 data items that it may access when problem-solving .  The rule base of the Blackbox
 Expert is suf ficiently complex to demonstrate the ef ficacy of our approach
 (containing hundreds of rules) ,  and serves as a source of realistic examples for this
 paper (Grossner ,  Lyons & Radhakrishnan 1991) .

 The Blackbox Expert is designed ro solve a puzzle called Blackbox ,  which is a
 diagnosis type problem (Grossner  et al . ,  1991) .  The Blackbox puzzle consists of an
 opaque square grid (box) with a number of balls hidden in the grid squares .  The
 puzzle solver can fire beams into the box ,  and observe the beam’s exit point ,  if it
 exists .  The beams fired into the grid will interact in dif ferent ways with the balls
 hidden in the grid ,  and the puzzle solver’s goal is to determine the contents of the
 box based on the entry and exit points of the beams .  The puzzle solver must
 determine if each location of the grid square is empty or contains a ball ,  and in
 addition if the conclusion drawn for the location is certain .  Blackbox is an
 ill-structured problem ;  when the puzzle solver selects a beam to be fired ,  the
 outcome of firing the beam is not known .  Blackbox is also an example of a problem
 where partial solutions are possible .

 2 .  Modelling rule-based systems

 Validating the dynamic properties of a rule-based system requires an understanding
 of the sequence of rules that must fire to achieve each goal .  We call these
 interdependent sets of rules  paths  (Grossner  et al . ,  1993) .  In Section 2 . 1 ,  we describe
 our model for determining the paths of rules that will fire when a rule-based system
 is problem-solving ,  where each path is related to the goal state achieved .  In Section
 2 . 2 ,  we show how we can determine the data items required by each path in order to
 fire all the rules it contains ;  thus ,  paths permit us to relate data items required by the
 rule-based system to the goals it achieves .

 2 . 1 .  RULE BASE STRUCTURE

 Viewed in terms of a state space model (Rich ,  1983) ,  a rule-based system attempts
 to progress from state to state ,  selecting at each point the next desirable state based
 on the current information available .  Each state may be a final state ,  or an
 intermediate state representing a ‘‘meaningful’’ advancement in reaching a final
 state .  It is these states (intermediate and final) that we refer to as  goal states .

 We define a rule-based system  %   by means of the triple  k E ,  RB ,  WM l   where  E  is
 an inference engine ,   RB  is the set of rules for solving the problem ,  and  WM  is the
 working memory where current data ,  represented by  facts ,  are stored .  The state of  %
 at any given time is provided by the set of facts present in  WM  at that time .  A fact
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 that may be present in  WM  is denoted by  f  5  k l  ,  l l   where  l   is a predicate ,   l  is a list
 of data elements ,  and  l   identifies the relationship between the elements of  l .

 In modelling a rule-based system for dynamic validation ,  we need to be able to
 determine if a goal state has been reached :  this indicates that a meaningful
 advancement in solving the problem has occurred .  For this purpose ,  we assume that
 the rule base designer (implicitly in conjunction with the domain expert) is able to
 specify abstract goal states for the problem to be solved .  This is done initially by
 examining the predicates used in the rule base ,  and indicating which of them
 constitute part of some goal state (intermediate or final) ;  these predicates are
 referred to as  end predicates .  We use  Z  to denote the set of end predicates .  Then ,
 each goal state is defined by a conjunction of selected end predicates ,  called a  logical
 completion .  To relate goal states to rules ,  we use the notation  S  O  U  to indicate that
 a set of rules  U  assert facts using all the predicates of some  logical completion
 for a problem  S .  Thus ,  when the rules in  U  fire ,  a goal state of problem  S  will have
 been reached .

 In order to relate the actual rules of the rule base to the goal states in the model ,
 we require a suitable abstraction for rules .  These  abstract rules  are ultimately used to
 construct the paths that we use to model rule-base structure .  An abstract rule  r
 consists of an LHS and a RHS where :

 $  the LHS is a set of fact  templates ,  denoted by  (  r ,  such that at least one fact
 matching  each template must be present in  WM  for the rule to fire ;

 $  the RHS indicates the set of facts that are asserted by  r ,  denoted by  !  r .

 Essentially ,  a template is a specification for a type of fact that must be present in the
 WM  in order for a rule to become enabled to fire ;  as such ,  each template  t  5  k L ,  L l
 consists of a specification for a predicate  L   and a list of variables  L .  A fact is said to
 match a template if there exists a most general unifier  d   such that  k L ,  L l  ?  d  5  k l  ,  l l .
 For convenience ,  we define a mapping function  9  :  A  5  B ,  where  A  5
 h ( L 1  ,  L 1 ) ,  .  .  .  ,  k L n  ,  L n lj   is a set of templates or facts ,   B  5  h l 1  ?  ?  ?  l n j   is a set of
 predicates ,  and  l j   satisfies the specification for  L i  .  For simplicity ,   9 ( h L i  ,  L i ) j )  5  h l j j
 will be denoted by  9  ( k L i  ,  L i l )  5  l j  .

 The templates and facts as well as the mapping function  9 ( k L i  ,  L i l ) gives us a
 notation we can use to develop a notion of inter-rule dependency ,  which we need to
 define paths .  One rule is dependent upon another if the action taken by one rule
 ‘‘permits’’ the other rule to become fire-able .  The conventional form of inter-rule
 dependency is where one rule asserts a fact on its RHS which is required by the
 LHS of another rule .  Formally :   r i  a  r j  ;  ( ' k l  ,  l l  P  ! r i  ,  l  ̧  Z )  é  ( ' k L ,  L l  P  ( r j  ,
 9 ( k L ,  L l )  5  l ) .  Note that we restrict inter-rule dependency :  the condition  l  ̧  Z
 placed on the  depends upon  relation restricts the dependency relationship to rules
 asserting facts which do not identify goal states .  In this way ,  we ensure that rule
 sequences that are constructed using the  depends upon  relation (i . e .  paths) will
 terminate when a goal state is reached .

 Having defined the  depends upon  relationship between two rules ,  methods for
 grouping rules to form  continuous  sequences must be considered ,  that is ,  the rule
 sequences must not stop before a goal state is reached .  We capture a continuous
 sequence of rules by defining a notion of  closure  on a set of rules under the
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 depends upon  relationship .  When considering a set of rules  F ,   F   is  closed  for
 depends upon  if every rule in  F   asserts a fact either using an end predicate ,  or a
 predicate matching a template on the LHS of another rule in  F .

 For the purposes of validation ,  we want to ensure that each path leads to the
 reaching of a single ,  identifiable goal state ,  and that it represents no more than one
 way to reach that goal .  In other words ,  we want out paths to be  unambiguous .  In
 order to remove ambiguities from rule sequences ,  we introduce a restriction called
 singular consumption .  The restriction of  singular consumption  on a set of rules  F
 ensures that every predicate that is asserted by a rule in  F   participates in exactly one
 depends upon  relationship :  this prevents any rule contributing either to the reaching
 of more than one goal in a single path ,  or to the reaching of the same goal in more
 than one way .  (The rule can still act in this fashion in the structural model as a
 whole ,  but it must do so in  dif ferent  paths . )

 Rule sequences constructed using the  depends upon  relation ,  that are  closed ,
 and that are  singularly consumed  are still not quite suf ficient to define a path for
 our purposes :  we must also account for all facts that are needed to enable each rule
 in the sequence to fire .  A set of rules  W enables  a rule  r  to fire if  W  satisfies the
 following conditions :

 $  r  must  depend upon  every rule in  W  ;
 $  every rule in  W  must assert at least one fact that uses a predicate specified by

 the LHS of  r ,  where a fact using that predicate is not asserted by any other rule
 in  W  ;

 $  for each predicate specified by a template on the LHS of  r ,  if that predicate is
 used in a fact asserted by at least one rule ,  then some rule that asserts a fact
 using the predicate must be a member of  W . W  ›  r  denotes that  W  is an
 enabling-set for  r .

 The rule sequences we construct using all of the above conditions permit us to
 model a rule base as a set of paths .  Each path relates the structure of the problem
 (in terms of goal states and logical completions) to the artifacts used to solve the
 problem (the set of inter-dependent rules) .  Our formal definition for a path is as
 follows .

 Definition 1 (Path) .  P k  , a path k in rule base RB sol y  ing problem S is a
 partially - ordered set of rules  k F ,  π  l .

 F   is a set of rules  h r 1  ,  r 2  ?  ?  ?  r n j   with r i  P  RB such that ,
 ( ' U  ‘  F , S  O  U ) ,
 ( ; r i  P  F )( ' W  ›  r i  , W  ’  F ) ,
 F   is  closed  under  depends upon , and
 F   is  singularly consumed .

 Path Hunter is a rule base analysis tool we have constructed to determine the
 paths contained in a rule base (Grossner ,  Gokulchander ,  Preece & Radhakrishnan ,
 1993) .  Given a rule base and the set of declarations for the logical completions
 associated with each of its sub-problems ,  the tool automatically creates the set of
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RA-14-Left%1

P_BALL Place-Ball%2 GMAP_B

CERTAIN_BALLS

GMAP_CERT_B

BALL_CERTAIN Ball-Certain%1

Logical completion

 F IGURE  1 .  An example path .

 abstract rules ,  and generates the set of all paths in the rule base .  Path Hunter found
 512 abstract rules in the Blackbox Expert’s rule base ,  which formed 516 paths .  A
 single path found by Path Hunter is shown in Figure 1 .  The square nodes represent
 abstract rules ,  the ‘‘round’’ nodes represent predicates ,  and the directed arcs
 represent data dependencies between the rules .  The  logical completion  that is
 asserted by this path is  GMAP – B  ∧ CERTAIN – BALLS  ∧ GMAP – CERT – B .  The semantics for
 this path are as follows :  upon examining the evidence (beam entry and exit points)
 currently available ,  select the actions of placing a ball on the grid and marking the
 ball as certain ;  and the outcome is ,  a ball is placed and this ball is marked as certain .

 2 . 2 .  DATA REQUIREMENTS

 The data requirements of a rule-based system can be determined using our formal
 model for capturing rule-base structure .  We recall that a path is a set of rules that
 advance the state of the problem being solved from one goal state to another .  The
 facts required by the rules in a path to fire are the precedence constraints for
 advancing the state of the problem being solved .  There are two issues in using the
 path model to determine the data requirements of a rule-based system :  determining
 the precedence constraints required for a single rule in a path to fire ,  and
 determining when all the rules in a path will be able to fire .

 The initial set of rules that must fire in a path are called  start rules .  Start rules will
 then assert facts enabling the other rules in the path .  The start rules of a path  P k  ,
 denoted by  SR k  ,  is the set of rules  r i  P  F   where the templates in the LHS of  r i   do not
 depend upon  any other rule  r j  P  F ;   SR k  5  h r i  u  r i  P  F ,  ( ; r j  P  F , r i  a /  r i ) j .  For start
 rules ,   W  5  [ .

 The  start set  of a path  P k   is the set of facts required by the start rules of that path
 to become enabled to fire .  A start set of a path is identified by the set of  start
 templates ,  denoted by  ST k  ,  which is the union of the set of templates present on the
 LHS of each of the start rules in the path ;   ST k  5  <  r i P SR k

 ( r i .  The set of predicates
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 used in the start templates for a path is given by  SP k  5  h l j  u  ; k L i  ,  L i l  P  ST k  ,
 9 (( L i  ,  L i ))  5  l j j .

 The  completion set  of a path is the set of facts required for all the rules in that
 path ,  except start rules ,  to become enabled to fire .  A completion set of a path is
 identified by the set of  completion templates ,  and is denoted by  CT k .  The completion
 templates is the set of all templates present on the LHS of all the rules of the path ,
 except start rules ,  which specify a fact that is not asserted by any rule in the path .
 Formally ,   CT k  5  ! r i P ( F 2 SR k ) ( ( r i  2  PT i ,k ) . PT i ,k   is the set of templates from  (  r i   that
 are matched by the facts asserted when the rules that enable  r i   fire .   PT i ,k  5
 hk L i  ,  L i l  u  ( ; r j  P  W , W  ›  r i )( ' d  ,  k L i  ,  L i l  ?  d  5  k l i  ,  l i l ,  k l i  ,  l i l  P  !  r j ) j .  The set of predi-
 cates used in the completion templates for a path is given by  CP k  5  h l j  u  ; k L i  ,  L i l  P
 CT k  ,  9 ( k L i  ,  L i l )  5  l j j .

 Now ,  let us consider the precedence constraints for a rule in a path .  Given a path
 P k  , r i  P  F , r i  ̧  SR k  ,  and  W  ›  r i  ,  then the set of completion templates for  r i   is given
 by  CT i ,k  5  ( ( r i  2  PT i ,k ) .

 Lemma 1 .  If facts matching the completion templates CT i ,k  of rule r i  in a path P k  are
 present in WM , r i  ̧  SR k  , and the  ( r j  P  W , W  ›  r i )  fire , then r i  can fire .

 Proof .  After the  r j  P  W  fire ,   WM  contains the union of all facts asserted by the
 r j  P  W ,  in addition to the facts matching  CT i ,k .  These facts match the templates
 CT i ,k  <  PT i ,k   by definition .  This simplifies to  (  r i   (by putting  CT i ,k  5  ( ( r i  2  PT i ,k )) ;
 thus ,  the facts in  WM  match all the LHS templates of  r i  ,  and hence  r i   can fire .

 Now that we have understood the conditions required for an individual rule in a
 path to fire ,  we can determine the conditions for all the rules in a path to become to
 fire-able .

 Theorem 1 .  Gi y  en a path P k  , if facts matching the completion templates CT k  and start
 templates ST k  are present in WM , then all the rules in the path can fire .

 Proof .  The proof of the theorem follows directly from Lemma 1 by induction .
 According to Theorem 1 ,   ST k   and  CT k   identify the data items will be required by

 the rule-based system to achieve its goals .  In Theorem 1 ,  we have shown that the
 precedence constraints for each path ,   ST k   and  CT k  ,  indicate the facts required for all
 the rules in that path to fire ,  achieving a goal ;  the goal achieved is identified by the
 logical completion asserted by the rules in the path .

 Our Path Hunter tool provides the data requirements for each path ( ST k   and
 CT k ) .  For example ,  the data requirements for our earlier example path are shown in
 Figure 2 .  The set of start rules for the example path shown in Figure 1 is
 h RA-14-Left%1 j .  The data items required by this path to achieve the goal
 represented by the logical completion it asserts are given by its start predicates
 h GMAP ,  SHOT-RECORD ,  GRIDSIZE j ,  and its completion predicates  h GMAP – CERT ,
 CERTAIN – BALLS j .  The start predicates for this path indicate that this path will
 access facts the indicate the contents of the grid squares ,  the beams that have been
 fired .  The completion predicates indicate that this path requires access to facts that
 indicate the certainty of the hypothesis for the contents of the grid squares that have
 been identified .
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CERTAIN_BALLS
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P_ BALL

BALL_CERTAIN

Place-Ball%2
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 F IGURE  2 .  An example path ,  showing its data requirements .

 3 .  Measuring and validating dynamic properties

 Having developed a structural model in terms of paths ,  let us now consider how we
 can study the dynamic properties of a rule-based system in order to answer the
 questions we raised earlier in this paper .

 $  Is the manner in which the system pursues goals valid according to the
 specifications (and expectations) of the system designers?

 $  What is the relationship between the quality of system output for a given test
 case ,  and the goals achieved during problem-solving?

 $  How does overall problem-solving activity of a rule-based system relate to the
 availability of input data ,  and when does performance degrade to an unaccep-
 table level as fewer data items are available?

 In studying dynamic properties we assume that there is an existing rule-based system
 % ,  and Path Hunter has been used to analyse the rule base of  % ,  giving the set of
 paths  h P k  u  P k   is a path in  % j   as well as the start and completion predicates for each
 path ;   SP k   and  CP k .  Our exploration of dynamic properties will require that we
 investigate the relationship between the data items available to a rule-based system ,
 the goals it achieves ,  and the result it produces .

 By its very nature ,  the study of dynamic properties implies that an operational
 system is to be exercised ;  thus ,  the study of dynamic properties is experimental in
 nature .  Experimentation with any system requires careful consideration of dif ferent
 requirements .  Of primary importance is the type of experiments that will be carried
 out ;  that is ,  the hypotheses that will be tested in the experiments ,  the input
 parameters required for conducting the experiments ,  and the outputs that are to be
 measured during the experiments .

 In this section ,  we first describe a design for experiments which can be performed
 to test various hypotheses concerning dynamic properties ;  then ,  we present a
 method for conducting these experiments .  As with the static analysis of a rule-based
 system ,  our structural model plays an important role in permitting the knowledge
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 engineer to conduct experiments designed to test the dynamic properties of
 rule-based systems .

 3 . 1 .  DESIGN OF THE EXPERIMENT

 The design of an experiment typically starts with the hypotheses to be tested .  Then ,
 using the hypotheses one must consider the parameters of the system under study
 that are to be varied ,  those parameters that are to be inputs to the system ,  and those
 that are to be measured as outputs .  Once the hypotheses ,  inputs and outputs that
 will be considered in the experiment have been determined ,  the exact procedure to
 be followed during the experiment can be identified .  In the design of experiments
 for dynamic validation of rule-based systems ,  we will first consider the types of
 hypotheses that might be selected by the knowledge engineer ,  the inputs to the
 system ,  and the outputs that should be measured .  Then ,  we will discuss the
 procedure to be followed .

 The types of hypotheses that we have identified as pertinent for studying dynamic
 properties of rule-based systems are as follows (other hypotheses may be identified
 using the framework we provide in this paper ,  which may be of interest for specific
 applications) .
 (H . 1)  Hypotheses concerning the goals that are achieved (expected behaviour) for a

 specific test case (or set of test cases) ,  given the data items available .  For
 example ,  the rule base designer may postulate that a specific goal would be
 achieved for a given test case and set of data items being available ,  and then
 indicate that a dif ferent goal is expected to be achieved as the set of data
 items available is modified .

 (H . 2)  Hypotheses concerning the paths that are pursued as well as completed by the
 rule-based system for a specific test case (or set of test cases) ,  given the data
 items available .  For example ,  the rule base designer may postulate that for a
 given test case and set of data items being available ,  a goal would be achieved
 by a  specific path ,  or that a set of paths would become activated because the
 data items in their start set would be present in the working memory of  % .

 (H . 3)  Hypotheses concerning the goals achieved by the rule-based system and the
 quality of the result produced .  For example ,  the rule base designer may
 postulate that for a given test case and set of data items being available ,  that
 the achievement of a specific goal would improve the quality of the result that
 was produced .

 (H . 4)  Hypotheses concerning the relationship between the available data and the
 quality of the result produced .  For example ,  the rule base designer may
 postulate that for a given set of data items being available the rule-based
 system will produce results of a specific quality .

 Given the hypotheses to be tested ,  we can clearly see that the inputs that are
 required for the experiment are a set of test cases and a set of expected behaviours
 for the rule-based system .  The variable in these hypotheses is the data items that are
 to be made available to the rule-based system as it solves each test case .  Each time a
 test case is solved ,  we must be able to measure the goals that are actually achieved
 by the rule-based system ,  the paths pursued ,  the paths that were completed ,  and the
 quality of the result produced .
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 Let us refer to the set of test cases to be used in the experiment as  7  .  The domain
 expert may choose to select test cases randomly so that there is no bias (on the part
 of the rule-base designer) added to the experiment ,  or select specific test cases to
 check scenarios that have been identified as potential problem areas for the system ,
 or by using the structural model itself to ensure that the set of cases will exercise the
 components of the system suf ficiently completely (Preece ,  Grossner ,  Gokulchander
 & Radhakrishnan ,  1994) .  When considering dynamic behaviour for a specific test
 case ,  we must consder both the goals which are expected to be achieved for each test
 case and paths pursued .  We will denote the goals which are expected to be achieved
 for each test case by (M e ,  1) [this corresponds to dynamic property (D . 1)] ,  and
 denote the paths which are expected to be pursued by (M e ,  2) [this corresponds to
 dynamic property (D . 2)] .  In any case ,  these expectations and test cases need to by
 provided by the system builder(s) and domain expert(s) ;  this is discussed further in
 Section 5 .  The rule-base designer must also determine the dif ferent sets of data
 items that are to be made available to the rule-base system as the dif ferent test cases
 in  7   are solved ;  the sets of data items are denoted by (V . 1) .  We will denote the
 actual goals achieved by (M . 1) ,  the paths pursued by (M . 2) ,  the path completed by
 (M . 3) ,  and the quality of the result produced by (M . 4) .

 The experiments that we propose for validating dynamic properties will require
 that the rule-based system  %   solves every test case in the set  7   for each set of data
 items contained in (V . 1) .  The measurements taken will be the actual goals achieved ,
 (M . 1) ;  the paths pursued ,  (M . 2) ;  the paths completed ,  (M . 3) ;  and the quality of the
 result produced ,  (M . 4) .  Performing experiments of this type would enable us to test
 each of the four dif ferent types of hypotheses :  (H . 1) can be tested by comparing
 (M e . 1) with (M . 1) ;  (H . 2) can be tested by comparing (M e . 2) with (M . 2) ,  or (M e . 2)
 with (M . 3) ;  (H . 3) can be tested by comparing (M . 1) with (M . 4) ;  and (H . 4) can be
 tested by studying the changes in (M . 4) that occur as the test cases in  7   are solved
 with the dif ferent sets of data items specified in (V . 1) .

 3 . 2 .  EXPERIMENTAL METHOD

 Experiments following the design we propose to validate dynamic properties will be
 conducted by having the rule-based system  %   solve every test case in the set  7   m
 times ,  where  m  is the number of sets of data items contained in (V . 1) .  For  n  test
 cases this requires  n  3  m  executions of  % ,  denoted by  X  1  ?  ?  ?  X ( n 3 m ) .  Each execution
 X i   is subsequently analysed to yield the measurements : (M i  . 1) ,  the goals achieved in
 execution  X i ;  (M i  . 2) the paths pursued in execution  X i  ;  ( M i . 3) ,  the paths completed
 in execution  X i ;  (M i  . 4) ,  the quality of output from execution  X i  .  In order to conduct
 this type of experiment we need mechanisms for measuring (M i  . 1) ,  (M i  . 2) ,  (M i  . 3) ,
 and (M i  . 4) ,  as well as a method for quantifying the level of ‘‘information’’ supplied
 to the rule-based system by each data items contained in (V . 1) .  We will now
 consider methods for obtaining each of these measurements and a method for
 quantifying the level of ‘‘information’’ supplied to the rule-based system by the sets
 of data items in (V . 1) .
 Quality of result produced :  In order to evaluate the  quality  of the solution
 represented by the achievement of a set of final goal states ,  we need an appropriate
 metric or judgment standard .  This is necessarily domain-dependent ,  and may be a
 quantitative or qualitative measure .



 A .  D .  PREECE ,  C .  GROSSNER & T .  RADHAKRISHNAN 156

 Information available :  In order to allow us to compare measurements (M i  . 1) ,
 (M i  . 2) ,  (M i  . 3) ,  and (M i  . 4) that will be obtained for each set of data items in (V . 1) ,
 we need a means of quantifying the ‘‘amount’’ of information that is provided to the
 rule-based system by a particular set of data items .  The ability to quantify the
 amount of information provided will also help us to quantify data availability that
 are to be used in the experiment .  We make use of a metric for the availability of
 data items to rule-based system ,  developed by Grossner ,  called the information
 deficit metric (Grossner ,  1994) .  The information deficit metric produces a value
 between zero and one ,  estimating the availability of the data items that are required
 by the rule-based system when problem-solving .  An information deficit of zero
 indicates that all the data items are available to the system .
 Goals achieved , paths pursued and paths completed :  The goals achieved (M i  . 1) ,  the
 paths pursued (M i  . 2) ,  and the paths completed (M i  . 3) are determined by applying
 the structural model we described in Section 2 to analyse trace files produced by the
 rule-based system as it solves each test case in  7  .  (M i  . 2) is the set of paths in which
 at least one rule can be determined to have fired while  %   solved the test case at
 hand .  (M i  . 3) is the set of paths in which all rules can be determined to have fired .
 (M i  . 1)   is given by the logical completion asserted by all paths in (M i  . 3) (remember
 that each logical completion corresponds to a goal state) .  Normally ,  a trace of the
 inter-dependent sequences of rule firings which occurred when the system was run
 can be obtained by an automatic analysis of the information most commercial
 inference engines are capable of producing for debugging ,  but even if the inference
 engine is incapable of providing such information automatically ,  it is possible to
 instrument the rule base to create a trace as a side-ef fect of normal execution .

 Since each path  P k   is a partially-ordered set of abstract rules ,  and the run-time
 trace is a partially-ordered set of ‘‘real’’ rule firing events ,  it is necessary in analysing
 trace files to identify correspondences between the abstract rules and their ‘‘real’’ or
 concrete  counterparts .  If an unambiguous one-to-one correspondence can be made ,
 then it is a straightforward matter to determine the abstract rule that correspond to
 a concrete rule and to determine the path to which the concrete rule belongs .  In
 reality ,  there may exist ambiguities in determining to which path a rule firing
 sequence belongs ,  because it is not always possible to decide unequivocally which
 abstract rule corresponds to a given conrete rule firing observed in the trace .  It is
 clear why this may be so when the abstract rules are considered as specifications for
 the form of the concrete rules :  this admits the possibility that ,  due to a fault in the
 rule base coding ,  a concrete rule may not conform to its abstract specification .  In
 some cases ,  when a rule fires not all of the facts it is designed to assert because the
 facts are already present in working memory ;  thus ,  the concrete rule does not match
 its abstract specification .  When a concrete rule does not match its specification ,  it
 may appear to correspond to zero or more abstract rules (this phenomenon is
 elaborated further in (Preece  et al . ,  1994)) .  We refer to the case where a concrete
 rule firing appears to correspond to more than one abstract rule as an  equi y  ocal
 mapping .

 Equivocal mappings force us to use dif ferent strategies for determining the
 abstract rule that correspond to a concrete rule and the path to which the concrete
 rule belongs .  With equivocality ,  we cannot be sure if some of the rules in a path
 have or have not actually been observed in the trace ;  therefore ,  we employ three
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 dif ferent measuring strategies :  conservative ,  moderate ,  and liberal .  To formalize our
 measurement method :  abstract rules are denoted as before by  r i ;  concrete rule firings
 are denoted by  r j ;  the fact that rule  r j   causes rule  r k   to fire at run-time is denoted by
 r j    r k ;   unequivocal (i . e .  unambiguous) mappings are denoted by  r j  S  r i ;  and

 equivocal mappings are denoted by  r j  S
 ?  r i .

 We use the notion of a  thread  to determine which rules in path have fired :  there is
 a thread from rule  r 1  to rule  r n   in a path if the path contains the set of  depends upon
 relations  h r 1  a  r 2  ,  r 2  a  r 3  ,  .  .  .  ,  r n 2 1  a  r n j .  The threads in the example path in Figure 3
 are ;   h d 1  ,  d 2 j ,  h d 1  ,  d 3  ,  d 5 j   and  h d 1  ,  d 4  ,  d 6 j .  A thread is  obser y  ed  if and only if there is a
 set of mappings  h r 1  S  r 1  ,  r 2  S  r 3  ,  .  .  .  ,  r n 2 1  S  r n 2 1 ,  r n  S  r n j ,  and there is a set of firing
 causalities  h r 1    r 2 ,  r 2    r 3 ,  .  .  .  ,  r n 2 1    r n j .

 To illustrate this ,  assume in the example that there are unequivocal mappings to
 all but the rightmost rule .  Therefore ,  observed threads in the example path are :
 h d 1  ,  d 2 j ,  h d 1  ,  d 3 j ,  h d 1  ,  d 4 j .  The thread  h d 1  ,  d 3  ,  d 5 j   is not observed because there is no
 unequivocal mapping to the rightmost rule in dependency  d 5  .  Similarly ,  thread
 h d 1  ,  d 4  ,  d 6 j   is not observed because there is no unequivocal mapping to the rightmost
 rule in dependency  d 6  .

 We determine the number of rules that have fired in a path by examining
 dependent pairs of rules in the run-time trace ;  whether a dependent pair of rules is
 accepted or not as being in a path depends upon their position in a thread ,  relative
 to the position of equivocal mappings .  Each of our three measurement strategies
 considers equivocal mappings dif ferently for the purposes of accepting pairs of
 dependent rules .

 In the  conser y  ati y  e strategy ,  we count all the dependent pairs in each thread only
 if all are present in the trace ,  and no equivocal mappings are involved .  More
 formally ,  we count the dependent pair  r i  a  r j   as having been observed if and only if
 there is an observed thread from  r s   to  r e  ,  where  r s   is a start rule for the path ,   r e   is an
 end rule for the path ,  and the thread contains ( r i  a  r j ) .  Using this strategy ,  only the
 two dependent pairs comprising the example thread ( d 1  ,  d 2 ) are counted ,  because all
 other threads from a start rule to an end rule involve an equivocal mapping [Figure
 3(b)] .  The conservative strategy thus minimizes the potential that a dependent pair
 in a path was accepted as having been present in a trace file ,  when in fact it was not .

 Both the moderate and liberal strategies accept dependent pairs in each thread as
 far as the first dependent pair which contains an equivocal mapping .  In the moderate
 strategy ,  dependent pairs containing an equivocal mapping  are not  counted ,  but in
 the liberal strategy ,  dependent pairs containing an equivocal mapping  are  counted .
 Thus ,  in the  moderate strategy ,  we accept dependent pair  r i  a  r j   if and only if there is
 an observed thread from  r s   to  r j  ,  where  r s   is a start rule for the path ,  and the thread
 contains ( r i  a  r j ) .  In the example ( d 1  ,  d 2  ,  d 3  ,  d 4 ) are counted [Figure 3(c)] .  In
 contrast ,  in the  liberal strategy ,  we accept  r i  a  r j   if and if only if there is an observed

 thread from  r s   to  r i   (where  r s   is a start rule for the path) ,   r i  S  r i  ,  r i    r j  ,  and  r j  S
 ?  r j .

 Using this strategy ,  all six of the dependencies in the example are counted [Figure
 3(d)] .

 Determination of goals achieved (M i  . 1) ,  paths pursued (M i  . 2) ,  and paths
 completed (M i  . 3) is practical only if it is performed automatically :  we have
 constructed Path Tracer ,  an analysis tool that examines the trace files produced by a
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 F IGURE  3 .  Examples of coverage in an example path .  (a) The example path ;  (b) coverage of the path
 using  conservative  strategy ;  (c) coverage of the path using  moderate  strategy ;  (d) coverage of the path

 using  liberal  strategy .

 (c)

 (d)

 rule-based system whcn it is problem-solving ,  to determine the number of rules that
 have fired in each path (Preece  et al . ,  1994) .  Path Tracer was implemented to
 process trace files produced by the inference engine of the CLIPS production system
 (Giarratano & Riley ,  1989) ,  but the basic mechanism we use to measure (M i  . 1) ,
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 (M i  . 2) ,  and (M i  . 3) in this paper is general ,  and it is not dif ficult to modify Path
 Tracer to analyse trace file produced by inference engines other than that of CLIPS .

 4 .  Validating dynamic properties :  a case study

 In this section ,  we demonstrate the use of the path model ,  Path Hunter ,  and Path
 Tracer in studying the dynamic properties of the Blackbox Expert .  Our demonstra-
 tion follows the design presented in Section 3 ;  the Blackbox Expert solved a set of
 10 test cases ,  and each test case was solved five times .  Each time the same test case
 was solved ,  we varied the data items available to the Blackbox Expert .  Random test
 cases were used because we did not want to bias our experiment ,  and our goal is to
 demonstrate the benefits of validating dynamic properties of rule-based systems ,  not
 to exhaustively validate the dynamic properties of the Blackbox Expert .  We
 quantified the data items available when a test case was solved using the information
 deficit metric .  When the Blackbox Expert solved each test case ,  we measured the
 actual goals achieved ,  (M . 1) ;  the paths pursued ,  (M . 2) ;  the paths completed ,  (M . 3) ;
 and the quality of the result produced ,  (M . 4) .  The quality of the result produced by
 the Blackbox Expert is measured using the domain dependent metric called
 SCORE ,  developed by human experts in solving Blackbox puzzles (Grossner  et al . ,
 1991) .  The SCORE metric assigns a numerical value between 0 and 300 to a
 proposed solution for a Blackbox puzzle ,  based upon the number of grid squares
 that are correctly identified and the number of beams fired to solved the puzzle .  The
 lower the value assigned by the SCORE metric ,  the better the proposed solution .
 The goals that were achieved by the Blackbox Expert each time a test case was
 solved were determined using Path Tracer .

 In our demonstration we will consider the following aspects of the Blackbox
 Expert’s dynamic properties .

 $  We will determine how the problem-solving ability of the Blackbox Expert—
 both in terms of goals achieved (D . 1) and output quality (D . 3)—relates to the
 availability of input data ;  this is determined by comparing the number of goals
 that are achieved (M . 1) with the SCORE (M . 4) of the results produced as the
 data items available are reduced .  Examining this relationship provides a
 mechanism by which we can decide when performance can degrade to an
 unacceptable level ,  as fewer and fewer data items are available .

 $  We will determine the relationship between the quality of the output produced
 by the Blackbox Expert for a given test case [property (D . 3)] ,  and the goals it
 achieved solving that test case (D . 1) ;  thus ,  we will establish the impact of
 achieving a specific goal on the result produced .  Determining this relationship is
 accomplished by considering each goal that is achieved (M . 1) as each test case is
 solved ,  the path that was responsible for the goal being achieved (M . 3) ,  and the
 SCORE of the result produced (M . 4) .

 $  We will examine the manner in which the Blackbox Expert pursues goals and
 decide if this is valid according to its specifications (and the expectations of its
 designers) .  We base this decision both upon the system’s choice of goals to
 pursue at run-time [property (D . 1)] ,  and upon the paths it activates to achieve
 these goals [property (D . 2)] .  We determine the system’s choice of goals by
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 F IGURE  4 .  Goals achieved ,  SCORE ,  and rules fired .

 examining goals achieved (M . 1) and the paths activated in achieving goals (M . 2)
 and (M . 3) ;  it is also possible that a decision as to the acceptability of a goal
 being pursued would require consideration of SCORE (M . 4) .

 Problem-solving ability :  Let us first consider how the problem-solving ability of the
 Blackbox Expert was af fected by the availability of data .  Figure 4(a) indicates the
 total number of goals that were achieved by the Blackbox Expert as it solved the
 test set ,  and Figure 4(b) shows the average SCORE for the results produced by the
 Blackbox Expert as the information deficit increases .  As expected ,  the SCORE of
 the results produced by the Blackbox Expert increased as the information deficit it
 faced increased ,  and the number of goals achieved under each counting strategy
 decreased as the information deficit faced by the Blackbox Expert increased .  This
 indicates that the ability of the Blackbox Expert to solve Blackbox puzzles is
 reduced as the number of data items available is reduced .

 The shape of the curves shown in Figure 4(a) and Figure 4(b) also indicate the
 sensitivity of the Blackbox Expert to a change in the number of data items available .
 Using the relationship between result produced and data items available to the
 Blackbox Expert depicted in Figure 4(a) and Figure 4(b) ,  the developers of the
 Blackbox Expert are able to set the minimum availability for the data items
 required ,  given the desired quality for the result to be produced .  Of course ,  the
 specific level chosen for the Blackbox Expert ,  or any other rule-based system ,  will
 be dependent upon the environment in which the system must operate .

 This method of studying the dynamic properties of a rule-based system by
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 F IGURE  5 .  Sensitivity of specific goals .

 examining goals achieved for each test case can be contrasted with the view
 provided by simply considering the rules fired when solving each test case .  Figure
 4(c) presents the ratio of rules fired at each information deficit to the number of
 rules fired with an information deficit of 0 ,  and the ratio of the number of goals
 achieved at each information deficit to the number of goals achieved with an
 information deficit of 0 .  This gives us the percentage of goals achieved (rules fired)
 at each information deficit used in the experiment compared to goals achieved (rules
 fired) with an information deficit of 0 .  At an information deficit of 0 . 8 ,  the number
 of rules fired decreases by 60% ,  but the number of goals achieved declines by only
 39% (using the liberal counting strategy) ;  even though the Blackbox Expert is still
 able to achieve over 60% of the goals it achieved with an information deficit of 0 ,  it
 is nearly unable to solve any portion of the Blackbox puzzle (SCORE is 291) .
 Examining goals achieved ,  rather than simply measuring rules fired ,  definitely
 provides us with an in-depth view of the problem-solving activity of the Blackbox
 Expert .
 Impact of specific goals :  Let us now consider the impact of achieving specific goals
 on the result produced by the Blackbox Expert ,  or the ability of the Blackbox
 Expert to produce a result .  Figure 5(a) shows a sample of goals that were af fected by
 the change in information deficit that was experienced by the Blackbox Expert .  For
 each of the goals ,  we plot the number of test cases in which the goals were achieved
 as the data items available were reduced .  In Figure 5(a) we consider the number of
 test cases in which a goal is achieved rather than total number of times a goal is
 achieved because we only wish to determine if suf ficient data items are available for
 a goal to be achieved ;  we do not care if the goal is achieved once ,  or many
 times—we simply want to know if it is achieved at all .

 Figure 5(b) explains the meaning attached by the rule-base designer to each goal .
 In order to consider the impact of achieving each goal as the data items available to
 the Blackbox Expert is reduced ,  we will examine the path that was responsible for
 that goal being achieved ,  but in order to be brief we show only the paths for goal
 133 and goal 136 (see Figure 6) .  Examining the paths that achieve each goal ,  and the
 data items required by the rules in each path ,  we interpret the trends shown in
 Figure 5 as follows .

 Goal 136 is achieved in more test cases ,  indicating that more conflicts are
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 F IGURE  6 .  Paths achieving goal 136 and goal 133 .

 generated as the number of data items available are reduced .  Figure 6 shows the
 path responsible for achieving goal 136 ,  and the path responsible for achieving goal
 133 ;  goal 133 was the goal achieved by the Blackbox Expert when all data items
 were available .  Considering the paths responsible for the achievement of goal 133
 and goal 136 ,  we can conclude that the increased achievement of goal 136 as the
 number of data items available to the Blackbox Expert are reduced occurs because
 of an interaction between goal 136 and goal 133 .  Both the paths achieving goal 136
 and goal 133 have the same start rule  RA-18-1%1  and require the same start
 predicates  h GMAP ,  SHOT – RECORD ,  GRIDSIZE j .  As we reduced the data items
 available ,  the data items as identified by the start predicates for both paths were still
 available to the Blackbox Expert ,  but the data items identified by the completion
 predicates were not .  As a result ,  all the rules in the path responsible for achieving
 goal 136 fire ,  but not all the rules in the path achieving goal 133 can fire ;  thus ,  goal
 136 is achieved rather than goal 133 ,  signaling a conflict .  The conflict signalled by the
 Blackbox Expert indicates that while the Blackbox Expert had suf ficient data items
 available to recognize a specific configuration in the Blackbox ,  it was unable to draw
 a conclusion (updating grid squares) based upon that configuration because it
 required access to data items that were unavailable .
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 Goal 7 exhibits a rapid decline ;  goal 7 can only be achieved if suf ficient data items
 are available for the Blackbox Expert to detect that all the balls in the grid have
 been located .  This is only likely to occur in situations where most of the data items
 regarding the contents of the grid squares are available .  The non-achievement of
 goal 7 impacts the ability of the Blackbox Expert to detect when an end game
 situation has been reached .  In the case that the Blackbox Expert is unable to detect
 end game situations ,  it tends to fire more beams ,  resulting in an elevated score .

 Goals 8 and 9 form a set of goals in which at least one of the members of the set
 has to be accomplished ;  problem-solving terminates when either goal 8 or goal 9 is
 achieved .  Of course ,  problem-solving must terminate ,  even when the number of data
 items available is small ;  thus in each test case ,  either goal 8 or goal 9 is achieved .  As
 the data items available are reduced ,  the number of test cases which terminate by
 achieving goal 9 reduce ,  causing the number of test cases which terminate by
 achieving goal 8 to increase .

 Goal 11 exhibits a rapid rise followed by a more gentle decline .  The trend
 exhibited by goal 11 occurs due to an interaction between goal 11 and 198 .  The
 paths achieving goals 11 and 198 have the same start rules ,  and thus the same start
 sets .  However ,  the completion sets for these two paths are dif ferent .  Goal 11 is
 achieved when the data items specified in the completion set of the path achieving
 goal 198 are unavailable ,  indicating that the current line of reasoning to achieve goal
 198 is to be terminated .

 Goal 25 is an example of a goal that is fairly sensitive to the availability of data
 items ,  and its achievement directly af fects the result produced .  The achievement of
 goal 25 is dependent upon data items that indicate the contents of dif ferent grid
 squares ,  that indicate the certainty of grid squares ,  and the entry and exit points for
 the beams that have been fired .  As the data items available are reduced ,  it is less
 likely that the Blackbox Expert can detect the scenario required to achieve goal 25 .
 The non-achievement of goal 25 indicates that the quality of the result produced by
 the Blackbox Expert is reduced because the Blackbox Expert is unable to determine
 the contents of the grid squares .

 It is evident that when determining the impact of the availability of data items on
 the result produced by a rule-based system ,  not all goals can be considered to be
 equal in terms of the role they play in the problem-solving process ,  in terms of the
 ef fect they will have on the result produced by the rule-based system ,  or in terms of
 their sensitivity to a change in the availability of data items .  Certain goals ,  while
 central to the problem-solving process (such as goals 7 ,  8 ,  9 ,  and 11 for the Blackbox
 Expert) ,  may have little direct ef fect on the final result that is produced by the
 rule-based system ,  even if they can be achieved more often .  Other goals ,  such as
 goal 25 for the Blackbox Expert ,  have a direct impact on the result produced each
 time they are achieved .
 Goals pursued :  Let us now consider if the manner in which the Blackbox Expert
 chose to pursue goals in our experiment is valid ,  according to our expectations .

 The increased achievement of goal 136 instead of goal 133 is problematic ,  because
 it represents a waste of resources ,  and the result produced by the Blackbox Expert is
 not as good as it is could be .  Better results are possible because the contents of
 several grid squares are known by the Blackbox Expert ,  but it is not able to update
 the grid to indicate this .  As it is currently designed ,  the firing of rule  RA-18-1%1
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 (see Figure 6) in this situation serves no other purpose ,  but to generate the conflict ,
 which is not useful .  It is clear that  RA-18-1%1  should be redesigned so that it fires
 only when it can record the contents of the grid squares about which it is able to
 draw conclusions .

 The decline in the ability of the Blackbox Expert to achieve goal 7 is acceptable .
 Even though this represents a degradation in the ability of the Blackbox Expert to
 solve Blackbox puzzles ,  the degradation due to the reduced achievement of goal 7
 represents a graceful reduction in the ability of the Blackbox Expert’s problem
 solving ability .  However ,  it should be noted that as the information deficit becomes
 large ,  the Blackbox Expert may start to fire too many beams ,  resulting in an
 elevated SCORE ;  this can be problematic .

 The achievement of goal 9 indicates that the Blackbox Expert has terminated the
 solving of a test case because it has determined that the puzzle has been solved ,  and
 the achievement of goal 8 indicates that solving of a test case terminated because the
 Blackbox Expert determined that there were no beams left to fire that were likely to
 help it in completing the result for a test case .  As the number of data items available
 are reduced ,  it is part of the specification for the Blackbox Expert to determine that
 it cannot improve the current result for a given test case by firing more beams ,  and
 then decide to terminate its problem solving ef fort .

 The trend in the achievement of goal 11 could be an indication of a problem in the
 design of the start rules for the paths achieving goal 198 .  The rules in the start set for
 the path achieving goal 198 fire ,  but then the action to be carried out by the other
 rules in the path achieving goal 198 are aborted ,  and goal 11 is achieved instead ,
 terminating the line of reasoning with no progress made in the result being
 produced .  This is a waste of resources .

 While the achievement of goal 25 is reduced ,  indicating that the result produced
 by the Blackbox Expert will have a higher SCORE ,  the major drop in the number
 of test cases in which goal 25 is achieved occurs when the information deficit is quite
 high (information deficit  .  0 . 6) and is as expected .  This trend in the achievement of
 goal 25 should be considered when setting the minimum information deficit under
 which the Blackbox Expert should operate ,  as this can become a problem if the
 information deficit faced by the Blackbox Expert becomes too large .
 Summary :  By studying the dynamic properties of the Blackbox Expert ,  we were
 able to get a more in-depth view and expose a number of potentially problematic
 phenomena ,  none of which could be revealed by static validation methods .

 $  We were able to determine when the absence of specific data items caused a
 degradation in the Blackbox Expert’s ability to solve problems .  This reveals
 which data items are important for problem-solving ,  in terms of their
 availability to the system .

 $  We were able to discover cases in which the data items in the start set of a path
 were available ,  but the data items in the completion set were unavailable ,
 leading to wasted problem-solving ef fort .  This lead us to reconsider the
 conditions used on the LHS of the start rules of the path .

 $  We were able to validate our expectations with regard to the role of goals in
 problem-solving ,  by comparing the trends in achievement of specific goals
 against their impact upon the result produced .  This allowed us to verify that
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 the Blackbox Expert’s ability to solve Blackbox puzzles degrades gracefully as
 the data items available were reduced .

 Modifying the design of future versions of the Blackbox Expert in light of what we
 have learnt in this demonstration and what we could learn by a complete study of
 the Blackbox Expert’s dynamic properties will give us considerable confidence in
 the reliability of the system .  Our confidence in the system will be much greater than
 what it would have been if our validation were restricted only to verifying static
 properties of the system , †  and testing the input – output relationship without
 consideration of the ‘‘inner workings’’ of the system .

 5 .  Validation in the life-cycle

 The previous section demonstrated the utility of our approach on a specific
 rule-based system .  This section ,  in contrast ,  focuses upon the domain-independent
 aspects of the approach ,  showing how it can be used in the development of an
 arbitrary rule-based system .  We describe how validation of dynamic properties fits
 naturally into the life-cycle for rule-based systems .  Rather than prescribe a specific
 life-cycle model ,  we now examine the aspects of each common life-cycle phase in
 relation to our method .
 Specification and conceptual modelling phases :  In contrast with many other
 approaches ,  we take a ‘‘minimal’’ approach to the specification of rule-based
 systems .  Our method imposes few constraints on the structure and function of the
 required system .  We assume that developers will make a statement-of-requirements
 early in development ,  and will create a ‘‘conceptual model’’ of the system as
 knowledge is acquired and analysed .  This is in accordance with most currently
 recommended methodologies ,  for example (Steels ,  1990 ;  Clancey ,  1992 ;  Wielinga ,
 Schreiber & Breuker ,  1992) .  We require only that the following information be
 present in such descriptions ,  which should not be overly burdensome to specify :

 $  required classes of input ,  output and intermediate information ;
 $  required goal states ;
 $  significant relationships required between goals (indicating when a specific goal

 should be achieved) .

 Design and implementation phases :  The role of the design phase is to decide how
 the descriptions obtained during the specification and conceptual modelling phase
 will be realized as an operational system .  In the case of an OPS5-like implementa-
 tion ,  the design commitments we require are as follows :

 $  representation of the conceptual classes of information by means of predicates
 and fact templates ;

 $  identification of the combinations of predicates which correspond to the goal
 states :  these specify our  logical completions ;

 $  encoding of the tasks to be performed to solve the problem by means of rules .

 One of the reasons we chose an OPS5-like language on which to develop our

 †  Note that the Blackbox Expert had already been subjected to static verification by the CLIPS CRSV
 utility prior to the the work described in this paper .
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 approach is that of generality :  the CLIPS language includes structured data objects ,
 procedural rule actions (including  if  – then  conditional actions) ,  control rules ,  and
 calls to external functions .  (The Blackbox Expert employs all of these programming
 techniques . ) This permits our method to cope with realistic rule-based systems ,  not
 merely ‘‘clean’’ rule bases .

 Validation and verification phases :  Once an implementation exists ,  Path Hunter can
 be used to build the structural model of the system .  This permits faults to be
 detected ,  where there are problems in building the model (for example ,  where it is
 impossible to identify any paths for a given logical completion) or where the model
 includes anomalous structures (for example ,  apparent irregularities in some paths) .
 Verification is not the topic of this paper ,  so we will not dwell on this issue here ;  the
 topic considered in more detail in (Preece  et al . ,  1994) .

 Regardless of whether or not validation of the dynamic properties of the system
 will be performed as described in the previous section ,  it will always be necessary to
 test the system on a selection of cases .  There are two types of criteria to be met in
 creating a suitable set of test cases :

 Functional criteria :  These criteria concern the tasks that the system is required to
 perform ,  as for any software system (Adrion ,  Branstad & Cherniavsky ,  1982) .
 Guidance as to the composition of the test set with respect to functional criteria
 will be provided by the descriptions of tasks ,  input and output in the specification
 and conceptual model .

 Structural criteria :  These criteria concern the exercising of each component of the
 system—again ,  as for any software system (Adrion  et al . ,  1982) .  Here our
 structural model is especially helpful ,  since we can ensure that test cases are
 included which exercise all paths (and ,  hence ,  all rules also) .  This problem is
 considered in detail in Preece  et al .  (1994) .

 Taken together ,  the implemented system ,  the set of test cases ,  and the design and
 specification descriptions provide the inputs to the dynamic validation procedure .  It
 is necessary to decide at this stage whether to validate the system with incomplete
 data and ,  if so ,  how the incompleteness will be simulated .  Our information deficit
 metric is domain-independent for this purpose .

 There is always a trade-of f to be made between the need to produce a reliable
 system and the ef fort involved in validation .  Therefore ,  it is not possible to make a
 prescription as to how validation of dynamic properties should be done for an
 arbitrary rule-based system .  However ,  we recommend the following as a practical
 strategy .

 (1)  Ensure that the test case set contains suf ficient cases to test all critical
 functions ,  and a representative range of non-critical functions (Miller ,  1990) .

 (2)  Run the set of test cases and gather trace information as described in Section
 3 ;  run each case at dif ferent levels of data availability if this is required .

 (3)  Identify cases for which the performance of the system is unacceptable :  look
 at the dynamic behaviour of the system for these cases and identify faulty
 rules and paths .  In addition ,  it is probably appropriate to sample a number of
 cases for which the system seems to be performing acceptably and look at the
 dynamic behaviour to verify that all is as expected .
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 (4)  If the preceding analyses reveal anomalous or erroneous behaviour with
 respect to specific goals ,  examine the achievement profiles for these goals
 across the whole test set and at dif ferent levels of data availability (if
 appropriate) .

 (5)  If appropriate ,  examine the performance profile for the system as a whole ,  at
 dif ferent levels of data availability ,  to identify critical or anomalous features .

 Note that this is a  y  alidation  procedure (as opposed to verification) because the
 system is compared again the  expectations  of the domain experts and would-be
 users ,  rather than against a rigid functional specification .

 Our structural model plays a valuable role in identifying the causes of any
 anomalous behaviour that is identified as the rule-based system is validated ,  because
 it describes the rule base at a coarser level of granularity than that of individual
 rules ,  which is directly related to the specifications and conceptual model .

 6 .  Conclusion

 In this paper ,  we have demonstrated how dynamic properties of a rule-based system
 can be validated .  The dynamic problem-solving behaviour of the system is revealed
 using a structural model of rule execution paths ,  which is in turn used to analyse
 run-time traces .  Traces are obtained from running the system on a set of test cases ,
 at dif ferent levels of data availability .  The rule base designer is thus able :

 $  to determine when the absence of specific data items causes a degradation in
 the systems ability to solve problems (hence ,  which data items are most
 important for problem-solving) ;

 $  to discover wasted problem-solving ef fort (cases in which the data items in the
 start set of a path were available ,  but the data items in the completion set were
 unavailable) ;

 $  to validate the domain experts’ expectations with regard to the role of specific
 goals in problem-solving ,  and the result produced .

 Overall ,  we have demonstrated (using a complex rule-based system as a test-bed)
 that the information provided to the rule-base designer by studying dynamic
 properties enhances the rule-base designer’s ability to validate the design of a
 rule-based system over what can be accomplished with static techniques .
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