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Abstract

We present a framework for semantic web applications based
on constraint interchange and processing. At the core of
the framework is a well-established semantic data model
(P/FDM) with an associated expressive constraint language
(Colan). To allow data instances to be transported across a
network, we map our data model to the RDF Schema speci-
fication. To allow constraints to be transported, we define a
Constraint Interchange Format (CIF) in the form of an RDF
Schema for Colan, allowing each constraint to be defined as
a resource in its own right. We show that, because Colan is
essentially a syntactically-sugared form of first-order logic,
and P/FDM is based on the widely-used extended ER model,
our CIF is actually very widely applicable and reusable. Fi-
nally, we outline a set of services for constraint fusion and
solving, which are particularly applicable to business-to-
business e-commerce applications. All of these services can
be accessed using the CIF.

Introduction and Motivation
The semantic web vision is to enable rich machine-
processing of web information sources (Berners-Lee 1999).
Most of the work done to date in realising this vision has
focussed upon developing “web friendly” representations
for structured data. Building on the XML standard, a
number of proposals for expressing data schemas have ap-
peared, including RDF, RDFS, and XML Schema (Fensel
et al. 2000b). These approaches support the representa-
tion and communication of entity-relational information in
web applications, for example, allowing a set of instances
of some entity type to be gathered from several structured
web pages, and transported for storage in a web-connected
database.

The next significant stage in the realisation of the seman-
tic web lies in extending the basic data schema represen-
tations with information on how the data can and should
be used. This information can take various forms, includ-
ing logical axioms, rules, constraints, or even functional
and procedural representations. This work will create the
reasoning services for the semantic web. Early work in
this direction included inference engines for large-scale on-
tologies (Fensel et al. 2000a; Heflin & Hendler 2000),
mechanisms for representing and reasoning with business

rules (Reeves et al. 1999), and mobile constraint lan-
guages and constraint-solving frameworks (Torrens & Falt-
ings 1999; Gray, Hui, & Preece 1999). Building on this
early work, there is now a significant number of large-scale
projects developing semantic web reasoning services, in-
cluding AKT1, DAML2, IBROW3, and Ontoknowledge4.

In this paper, we present the current status of a Constraint
Interchange Format (CIF) under development as part of
the AKT project, aimed specifically at business-to-business
e-commerce applications on the semantic web. The con-
straint language is well-established, having evolved during
the course of a number of previous projects, including the
P/FDM5 and KRAFT6 projects. It has been used success-
fully in diverse and challenging application domains such
as representing and reasoning about protein structures in
biomedical applications (Kemp et al. 2000), and config-
uring telecommunications network services (Fiddian et al.
1999). Earlier versions of the CIF were based on Prolog
term structures; this paper presents a new XML encoding
of the CIF, designed to be more open and less platform-
dependent than its predecessor. The new XML-CIF has
been modelled using the XML Schema specification, so that
constraints become web resources about which statements
can be made (for example, statements about the authorship
and context of a constraint). In addition, the CIF has been
designed to refer to XML Schema definitions so that the
terms referred to in a constraint can have corresponding
XML Schema descriptions. The motivation here is to al-
low, in principle, any application of RDF Schema to use
our CIF and constraint-solving services.

The paper is organised as follows: the next section in-
troduces our constraint language, Colan, and the semantic
data model upon which it operates; the following section
describes the design of the XML-CIF encoding of Colan
expressions; the penultimate section gives an overview of
the constraint-solving services already available for seman-
tic web applications using the CIF; the final section con-

1www.aktors.org
2www.daml.org
3www.swi.psy.uva.nl/projects/ibrow/home.html
4www.ontoknowledge.com
5www.csd.abdn.ac.uk/ � pfdm
6www.csd.abdn.ac.uk/research/kraft.html



constrain each t in tutor
such that astatus(t)="research"

no s in advisee(t) has grade(s) =< 30;

constrain each r in residue to have
distance(atom(r,"sg"),

atom(disulphide(r),"sg")) < 3.7;

tutor student

astatus -> string
advisee ->> student

student_id -> string
grade -> integer

person

id -> string
fname -> string
surname -> string

Figure 1: Example Colan constraints from different appli-
cation domains. The ER diagram models the relationships
between entity classes in the first constraint.

cludes.

Colan: A Constraint Language Based on an
Object Data Model

An entity-relationship (ER) diagram (or UML class dia-
gram) is commonly thought of as being useful chiefly as
a diagrammatic guide or visualisation of the types of enti-
ties and relationships in a database (or an object-oriented
application); it is less commonly seen as an operational
basis for forming queries or specifications. In our previ-
ous work (Bassiliades & Gray 1994; Gray et al. 1999)
we showed how quantified constraints can be expressed
in our Colan language, in a very readable form of first
order logic, including evaluable functions which can be
computed over data values represented in the ER diagram.
Hence, the underlying data model is called the Functional
Data Model (FDM). The semantics of the objects referred
to in Colan constraints are described in terms of this ex-
tended ER data model, which is of the kind in widespread
use in UML and in database schemas. Our FDM, P/FDM
(Prolog/Functional Data Model) is a Semantic Data Model
based on Shipman’s original data model (Shipman 1981).7

Two example Colan constraints are shown in Figure 1.
The first example demonstrates how Colan (Bassiliades &
Gray 1994) expresses a constraint on a university database
containing student records. The same constraint language
is applicable to the domain of protein structure modelling,
as shown by the second example constraint restricting bond
lengths. In the first example, a variable t ranges over
an entity type tutor which is populated with stored ob-
ject instances. Each of these instances may be related to
instances of student entities through the relationship ad-
visee, which delivers a set of related entities as in an

7For full details of P/FDM, Colan, Colan, and related work,
see: www.csd.abdn.ac.uk/ � pfdm

object-oriented language. These entities can be restricted
by the values of attributes such as grade. There are also
other entity types such as residue (representing parts of
protein chains) which have method functions for determin-
ing distances by computation. Thus functions may also rep-
resent a derived relationship, or method. The entity classes
can form part of a subtype hierarchy, in which case all prop-
erties and methods on the superclass are inherited by each
subclass. Method definitions may be overridden, but not
constraints.

This is significant for semantic web applications, since
it means that information represented in this way is not re-
stricted to human inspection — it can be proof-checked me-
chanically, transformed by symbol manipulation, or sent to
a remote constraint solver. Moreover, given a standardised
interchange format, data and attached constraints from mul-
tiple sources can be gathered together, checked for compat-
ibility, and used to derive new information. Because our
P/FDM data model is an extended ER model, it maps very
easily onto the RDF Schema specification, as we shall show
in the following section.

Colan is as expressive as the subset of first-order logic
that is useful for expressing integrity constraints: namely,
range-restricted constraints. This class of constraints in-
cludes those first-order logic expressions in which each
variable is constrained to be a member of some finite set
of values. Its use avoids the classic problem of safety of
certain expressions (Van Gelder & Topor 1991).

Thus we have a formalism which gives us a precise de-
notation for constraints but it does not force us to evaluate
them as integrity checks. The constraint expresses a for-
mula of logic which is true when applied to all the instances
in a database, but it is also applicable to instances in a solu-
tion database which is yet to be populated with constructed
solutions by a solver process (Gray et al. 1999). Here it
is behaving more like a specification than as an integrity
check. The power of this in the context of the semantic web
is that constraints can be passed as a form of mobile knowl-
edge between agents and processes; they are no longer tied
to a piece of database software.

In general, we believe that there is much to be gained
from using the FDM as an intermediate representation of
queries and constraints sent to remote sites, even when tar-
get databases use relational storage (Kemp et al. 2000).
This is because FDM was originally devised for this pur-
pose, in the Multibase heterogeneous distributed database
project (Landers & Rosenberg 1982).

The Role of Constraints in Semantic Data Models
One of our original motivations for the introduction of con-
straints into P/FDM was to enrich the capability of the data
model in capturing semantics. Data models are more than
type systems (which they resemble syntactically) because
they also represent constraints on the data. Thus a powerful
constraint language has enabled us to capture the semantic
information that others have endeavoured to express by ex-
tending the diagrammatic notation of the ER model. Thus,
although the original FDM was somewhat lacking in se-



ALICE version:

all T in tutor (where S.astatus="research")
implies: (all S1 in S.studadvised implies:
(S1.grade > 60))

Colan version:

constrain each t in tutor
such that astatus(t)="research"
so that each s in
advisee(t) has grade(s) > 60;

First-order logic version:

( � t,s,g) tutor(t) � astatus(t,‘research’) � advisee(t,s) �
grade(s,g) � g � 60

Figure 2: Example constraint shown in ALICE, Colan, and
first-order logic versions.

mantics, we have been able to more than make up for that
by introducing constraints.

In doing this, we have capitalised on a cardinal virtue of
the FDM, that it enables one to make well-formed math-
ematically precise computations over data stored as in-
stances of entities related by an ER diagram. Thus we
based the Colan formalism for constraints on just these
well-formed computations, revising and extending it to use
the full expression syntax of P/FDM’s Daplex query lan-
guage. Crucially, because the expressions are fully quan-
tified and referentially transparent, it is straightforward to
move them into other contexts and transform them in ways
which preserve their semantics. This would not be so if our
expression of data semantics had been confined to a dia-
grammatic notation.

Much early work on constraints, including deductive
database approaches, used a predicate logic formalism.
Closely related work by (Urban 1989) led to ALICE which
is a declarative language for the expression of complex
logic-based constraints in an OODB environment, also us-
ing a semantic data model. An early example of rep-
resenting semantic constraints in a functional syntax was
in the Extended Functional Data Model project (Kulka-
rni & Atkinson 1986; Gray, Kulkarni, & Paton 1992).
Other proposals for functional constraint languages in-
clude PRISM (Shepherd & Kerschberg 1984), ADAPLAN
(the Applicative Data Programming Language) (Erwig
& Lipeck 1991) and PFL (Persistent Functional Lan-
guage) (Reddi 1993).

Figure 2 shows the same constraint in three representa-
tions: ALICE, Colan, and first-order logic.

Note that, in Colan, the phrase so that is optional pre-
ceding a quantifier, and that has can be replaced by to
have. These small changes do not affect the mathematical
meaning, but they do help to make the functional style of
Colan more readable to a non-mathematician than the pred-
icate logic version. Thus, when following a universal quan-
tifier in functional form, the keyword has behaves like an
implication. However, following an existential quantifier,
has behaves like a conjunction (possibly with an implied

true). Further details, showing how universal quantifiers
have a weak translation while existential quantifiers have a
strong one are given in (Embury & Gray 1995).

In summary, we have introduced our constraint language,
Colan, and the semantic data model upon which it operates,
and we have argued for the applicability of this language
and data model to semantic web applications. The follow-
ing section describes our new XML encoding of Colan in
the form of a Constraint Interchange Format (CIF) based on
the RDF Schema specification.

XML Constraint Interchange Format
In defining our Constraint Interchange Format, we were
guided by the following design principles:

� the CIF would need to be serialisable into XML, to make
it maximally portable and open;

� constraints should be represented as resources in RDF, so
that RDF statements can be made about the constraints
themselves;

� there must be no modification to the existing RDF and
RDF Schema specifications, so that the CIF would be
layered cleanly on top of RDF;

� it must be possible for constraints to refer to terms de-
fined in any RDF Schema, with such references made
explicit.8

As we showed in the previous section, the entity-
relational basis of both our P/FDM data model and RDF
made it relatively straightforward to map from the former
to the latter. In building the RDF Schema for our CIF we
were guided by the existing grammar for Colan (Gray et
al. 1999) which relates constraints to entities, attributes
and relationships present in the ER model. This gram-
mar serves as a metaschema for the Colan constraints (such
metaschemas are very common in relational and object
database systems). A number of issues arose in develop-
ing the RDF Schema for CIF, discussed in the following
subsections.

Metaclasses for Entities and Relations
Our implementation of the P/FDM semantic data model
makes use of an entmet class that holds information on all
entity classes, and a propmet class that holds information
on relationships (functions), both stored and derived (Em-
bury & Gray 1995). The metaschema is fully queryable,
and for this purpose the property values of members of
these metaclasses are all held as strings (as is common in
data dictionaries), so that the answer to a query on them re-
turns the name of an entity or relation and not the contents
of the entity or relation. The P/FDM Daplex definitions of
the entmet and propmet classes are shown in Figure 3,
together with their superclass, objmet.

8Essentially, we use RDF Schemas as a simple but practical
form of ontology; previous work in the context of the KRAFT
project (Preece et al. 2001) highlighted the importance of making
explicit ontological mappings within knowledge resources.



% objmet - superclass of entity and prop-
erty metaclasses
declare objmet ->> entity
declare oname(objmet) -> string

% entmet - the metaclass of all en-
tity classes
declare entmet ->> objmet
declare super(entmet) -> entmet
declare rdfname(entmet) -> string
% link to RDF Schema

% propmet - the metaclass of all proper-
ties (functions)
declare propmet ->> objmet
declare fname(propmet) -> string
declare firstargtype(propmet) -> entmet
declare resulttype(propmet) -> entmet
declare has_inv(propmet) -> boolean
declare rdfname(propmet) -> string
% link to RDF Schema

Figure 3: P/FDM Daplex definitions for entity and property
metaclasses.

The property rdfname on the entmet and propmet
classes holds the unique URI for an RDF resource, and thus
provides an explicit link to the RDF Schema definition for
the corresponding RDF Schema class or property. Thus,
constraints carry explicit relationships to the domain ontol-
ogy (as represented by an RDF Schema) for the terminol-
ogy to which they refer.

In the RDF Schema we introduce the corresponding
metaclasses, entmet andpropmet, which will record the
graph of classes and properties. Thus there will be one in-
stance of the entmet class for each actual class represent-
ing a real-world entity in the instance level RDF Schema
for a given application domain. These metaclasses then
provide the natural result types for properties used in con-
straints. Thus, for example, we can use them to say that
an atomic boolean value in a predicate in a constraint can
be derived by comparing the property value of a variable
which holds an entity identifier with another value given
by an expression. This entity and property must be known.
We could even write a metalevel constraint to require their
consistency, as checked by a type checker.

Figure 4 shows the RDF Schema definitions correspond-
ing to the Daplex definitions of the objmet and ent-
met classes from Figure 3. It is worth noting that, be-
cause properties in RDF are global, some of the original lo-
cal P/FDM property names must be renamed (for example,
entmet rdfname in Figure 4, renamed from rdfname
in Figure 3).

The basic rules we used when mapping the P/FDM dec-
larations to RDF Schema are as follows:

� a P/FDM class � defined as an entity (declared as
� ->> entity) maps to an RDF resource of type
rdfs:Class (where rdfs is the namespace prefix for
the RDF Schema descriptions);

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="objmet">
<rdfs:subClassOf rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdfs:Class>

<rdf:Property rdf:ID="oname">
<rdfs:domain rdf:resource="#objmet"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

<rdfs:Class rdf:ID="entmet">
<rdfs:subClassOf rdf:resource="#objmet"/>

</rdfs:Class>

<rdf:Property rdf:ID="super">
<rdfs:domain rdf:resource="#entmet"/>
<rdfs:range rdf:resource="#entmet"/>

</rdf:Property>

<rdf:Property rdf:ID="entmet_rdfname">
<rdfs:domain rdf:resource="#entmet"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>
...
</rdf:RDF>

Figure 4: RDF Schema definitions for the objmet and
entmet classes.

� a P/FDM class � declared to be a subtype of another class
� (declared as � ->> � ) maps to an RDF resource of type
rdfs:Class, with an rdfs:subClassOf property
the value of which is the class named � ;

� a P/FDM function
�

declared on entities of class � ,
with result type � (declared as

�
( � ) -> � ) maps to

an RDF resource of type rdf:Property with an
rdfs:domain of � and an rdfs:range of � .

Representation of Variables in Constraints

A fundamental notion in Colan is that a variable is al-
ways introduced in conjunction with a set that it ranges
over. Thus terms such as (p in pc) and (e in em-
ployee) are common, as in the example expressions:

(p in pc) such that name (p) = "xxx"
(e in employee) such that
salary (e) > 5000 and age (e) < 50

This is represented in the syntax by the setmem meta-
class, while variables themselves are described by the
variable class, both defined as shown in Figure 5. An
instance of the variable class is a legal instance of an
expr class (representing an expression) by virtue of a se-
ries of subclass relationships. There is also a semantic con-
straint that such an instance must already have been intro-
duced with a quantifier; this is not currently captured in the
RDF Schema but could possibly be represented using the
RDF Schema ConstraintResource extension mech-
anism. An example XML-CIF fragment corresponding to
the Colan fragment (p in pc) is shown in Figure 6.



<rdfs:Class rdf:ID="variable">
<rdfs:subClassOf rdf:resource="#singleton"/>

</rdfs:Class>

<rdf:Property rdf:ID="varname">
<rdfs:domain rdf:resource="#variable"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

<rdfs:Class rdf:ID="setmem">
<rdfs:subClassOf rdf:resource="#boolprim"/>

</rdfs:Class>

<rdf:Property rdf:ID="var">
<rdfs:domain rdf:resource="#setmem"/>
<rdfs:range rdf:resource="#variable"/>

</rdf:Property>

<rdf:Property rdf:ID="set">
<rdfs:domain rdf:resource="#setmem"/>
<rdfs:range rdf:resource="#setexpr"/>

</rdf:Property>

Figure 5: RDF Schema definitions relating to the setmem
metaclass.

<cif:setmem>
<cif:var>

<cif:variable ID="#p">
<cif:varname>p</cif:varname>

</cif:variable>
</cif:var>
<cif:set>

<cif:entset>
<cif:entclass>
http://www.aktors.org/domain/pc_config#pc
</cif:entclass>

</cif:entset>
</cif:set>

</cif:setmem>

Figure 6: XML-CIF fragment corresponding to the Colan
fragment (p in pc).

In summary, our CIF RDF Schema9 serves the purpose of
describing what are valid constraints, themselves expressed
at an instance level in RDF. It combines the information
in a grammar, which is normally used by a syntax checker
or a parser, with information normally held in a database
schema and used to validate database queries. The inter-
esting thing is that the P/FDM data description language
is expressive enough to capture this, especially cardinality
constraints. RDF is not so expressive, although it does pro-
vide for schema constraints such as cardinality through the
ConstraintResource extension mechanism.

It should be noted that the metaschema makes a clean
separation between the description of constraints (both uni-
versal and existential) and expressions. Constraints and
their boolean components are a representation of first-order
logic, with the usual connectives. Any knowledge source
that uses FOL should be able to understand this. Expres-
sions refer to facts about entities, their subtypes, attributes
and relationships, and is based on the concepts of an ER
model, which are very widely used. The ER model ab-
stracts over relational storage, flat files and object-oriented
storage, following the principle of data independence. It

9Space prohibits us from including the full CIF RDF Schema
here, but both it and the full P/FDM schema are available at:
www.csd.abdn.ac.uk/research/akt/cif/
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Figure 7: KRAFT utilises both data and constraints which
are mobile in the KRAFT domain; constraint knowledge
flow is shown as grey arrows while data flow is in black.

does not tie one to any particular system, such as Oracle or
P/FDM.

The following section describes our existing framework
for using CIF constraints, as originally developed in the
KRAFT project (Preece et al. 2001) for supporting virtual
organisations in which communication and coordination are
achieved by the exchange and fusion of constraint knowl-
edge.

Fusion of Constraints from Different Sources
Having a semantic data model (P/FDM) extended with con-
straints (Colan) and mapped into an open interchange for-
mat (RDF Schema and XML-CIF) supports a range of ap-
plications in which information needs to be moved across
a network with rich metalevel information describing how
the information can be used. An example application com-
mon in business-to-business e-commerce involves the com-
position of a package product from components selected
from multiple vendors’ catalogues (for example, consumer
electronic equipment, package holidays, fitted kitchens, or
financial products). In each case, there are various kinds
of constraints which must be aggregated and solved over
the available component instances: constraints represent-
ing customer requirements (“I want a PC with a colour
printer”), constraints representing rules for what constitutes
an acceptable package (“any printer must have a driver that
is compatible with the PC OS”), and constraints represent-
ing restrictions on the use of particular components (“this
printer has drivers only for Windows OSes”).

In this last case, the ability to store constraints together
with data in P/FDM allows instructions to be attached to
the class descriptor for data objects in a product catalogue
database. When a data object is retrieved, these attached
instructions must also be extracted to ensure that the data is
properly used. Thus the attached constraint becomes mo-
bile knowledge which is transported, transformed and pro-
cessed in a distributed environment. This approach used in
the KRAFT project (Preece et al. 2001) differs from a con-
ventional distributed database system where only database
queries and data objects are shipped.

Since constraint processing is a more general formal-
ism, it can also be used to represent user specifications



on the required solutions. Here, the user-agent (Figure 7)
serves as another information source feeding user require-
ment knowledge into the system in the form of constraints.

In general, there are three different ways to utilise the
fused constraints:

1. We can check the constraints against sets of objects re-
trieved by a distributed database query across the net-
work, so as to reject any not satisfying the conditions.

2. We can use some combination of selection information
in the constraint to refine the distributed database query,
and thus do it more efficiently. This could also use the
principles of semantic query optimisation.

3. We can use constraint logic solving techniques to see if
a complex set of constraints, whose form is not known
until runtime, does have a solution.

A Constraint Fusion Example
To demonstrate constraint fusion from different sources,
consider a configuration problem where a PC is built by
combining components from vendors. All of the constraints
below are expressed in Colan and so would be exchanged
using the XML-CIF representation described in the previ-
ous section.

The user specifies his requirement in the form of con-
straint through the user-agent. In this example, he specifies
that the PC must use a “pentium2” processor but not the
“win95” OS:

constrain each p in pc
to have cpu(p)="pentium2"
and name(has_os(p)) <> "win95"

For the components to fit together, they must satisfy cer-
tain constraints imposed by the solution database. For ex-
ample, the size of the OS must be smaller or equal to the
hard disk space for a proper installation:

constrain each p in pc
to have size(has_os(p))

=< size(has_disk(p))

Now the candidate components from different vendors may
have instructions attached to them as constraints. In the
vendor database of operating systems, “winNT” requires a
memory of at least 32 megabytes:

constrain each p in pc such that
manufacturer(p) = "HAL"
and name(has_os(p))="winNT"

to have memory(p) >= 32

When we fuse all constraints together so that they apply to
the solution database, we get the description of an equiv-
alent constraint satisfaction problem (note the conditional
constraint in the last line):

constrain each p in pc
to have cpu(p)="pentium2"
and name(has_os(p)) <> "win95"
and size(has_os(p)) =< size(has_disk(p))
and if manufacturer(p) = "HAL"

and name(has_os(p))="winNT"
then memory(p)) >= 32 else true

The process of solving the application problem, there-
fore, is to retrieve data from other databases and popu-
late the solution database while satisfying (i) all the in-
tegrity constraints attached to the solution database, (ii)
constraints on data objects and (iii) user requirement con-
straints. This process corresponds to a generate-and-test
approach where invalid candidates are rejected by database
integrity constraints. A more efficient prune-and-search ap-
proach can be achieved by exporting constraint fragments
to a constraint fusing mediator which composes the over-
all description as a constraint satisfaction problem (CSP)
for a configuration task (Gray et al. 1998) so that it may
plan the solution. The CSP is then analysed and decom-
posed into database queries and constraint logic programs
which are fed across to distributed databases and constraint
solvers, under the control of a mediator (Hui & Gray 2000;
Hui 2000).

Discussion and Conclusion
In this paper, we have presented a framework for semantic
web applications based on constraint interchange and pro-
cessing. At the core of the framework is a well-established
semantic data model (P/FDM) with an associated expres-
sive constraint language (Colan). To allow data instances to
be transported across a network, we have mapped our data
model to the less expressive (but adequate) RDF Schema.
To allow constraints to be transported, we have provided a
Constraint Interchange Format (CIF) in the form of an RDF
Schema for Colan, allowing each constraint to be defined as
a resource in its own right. Because Colan is essentially a
syntactically-sugared form of first-order logic, and P/FDM
is based on the widely-used extended ER model, our CIF
is actually very widely applicable and reusable. From the
KRAFT project, we have implemented a set of services for
constraint fusion and solving, which are particularly appli-
cable to business-to-business e-commerce applications. All
of these services can be accessed using the CIF.

We targeted our approach for use with RDF Schema,
and in particular the XML encoding of RDF Schema, in
an effort to maximise the applicability of our work. RDF
Schema is the simplest and most universal of the proposed
semantic web data representations, while still being ade-
quately expressive for our purposes. In linking Colan to
RDF Schema, we also allow its usage with more expres-
sive data modelling languages built on top of RDF Schema,
including DAML-ONT10 and OIL11. However, a basic re-
quirement of our approach in defining the RDF Schema for
Colan expressions was that it should in no way require mod-
ification to the underlying RDF definitions (this is in con-
trast to the OIL approach, which requires modification at
the RDF layer in order to capture certain kinds of expres-
sion (Decker et al. 2000)).

Our constraint interchange and solving services are be-
ing incorporated into the AKT infrastructure, as one of
the basic knowledge reuse mechanisms in the AKT service

10www.daml.org
11www.ontoknowledge.com/oil



layer. Further information on this work can be found at:
www.aktors.org
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Appendix
A complete example constraint in XML-CIF is shown be-
low, together with the corresponding Colan version.

Colan version:

constrain all p in pc
to have name(has_os(p)) <> "win95"

XML-CIF version:

<rdf:RDF
xmlns:rdf="http://www.w2.org/1999/

02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w2.org/2000/

01/rdf-schema#"
xmlns:cif="http://www.aktors.org/cif#"
xmlns:pc_config="http://www.aktors.org/

domain/pc_config#">

<cif:impliesconstr ID="qc1">

<!--p in pc-->
<cif:qvar>
<cif:setmem>

<cif:var>
<cif:variable ID="#p">

<cif:varname>p</cif:varname>
</cif:variable>

</cif:var>
<cif:set>

<cif:entset>
<cif:entclass>
http://www.aktors.org/

domain/pc_config#pc
</cif:entclass>

</cif:entset>
</cif:set>

</cif:setmem>
</cif:qvar>

<cif:if>
<cif:boolconst>

<cif:constname>True</cif:constname>
</cif:boolconst>

</cif:if>

<cif:then>
<cif:body>

<cif:impliesconstr>
<!--o in has_os(p)-->

<cif:qvar>
<cif:setmem>
<cif:var>

<cif:variable ID="#o">
<cif:varname>o</cif:varname>

</cif:variable>
</cif:var>
<cif:set>

<!--o=has_os(p)-->
<cif:mvfncall>

<cif:prop>
<cif:fname>has_os</cif:fname>
<cif:rdfname>

http://www.aktors.org/
domain/pc_config#has_os

</cif:rdfname>
</cif:prop>
<cif:arg>

<cif:variable about="#p"/>
</cif:arg>

</cif:mvfncall>
</cif:set>

</cif:setmem>
</cif:qvar>
<cif:if>

<cif:boolconst>
<cif:constname>True</cif:constname>

</cif:boolconst>
</cif:if>
<cif:then>

<cif:body>
<cif:impliesconstr>

<!--n=name(o)-->
<cif:qvar>

<cif:setmem>
<cif:var>

<cif:variable ID="#n">
</cif:variable>
<cif:varname>n</cif:varname>

</cif:var>
<cif:set>

<cif:mvfncall>
<cif:prop>

<cif:fname>name</cif:fname>
</cif:prop>
<cif:arg>

<cif:variable about="#o"/>
</cif:arg>

</cif:mvfncall>
</cif:set>

</cif:setmem>
</cif:qvar>
<cif:if>
<cif:boolconst>

<cif:constname>True</cif:constname>
</cif:boolconst>

</cif:if>
<cif:then>
<!--n<>"win95"-->
<cif:comparison>

<cif:op1>
<cif:variable about="#n"/>

</cif:op1>
<cif:op2>

<cif:stringmet>
<cif:value>win95</cif:value>

</cif:stringmet>
</cif:op2>
<cif:operator>

<![CDATA[ <> ]]>
</cif:operator>

</cif:comparison>
</cif:then>

</cif:impliesconstr>
</cif:body>

</cif:then>
</cif:impliesconstr>

</cif:body>
</cif:then>

</cif:impliesconstr>
</rdf:RDF>


