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Abstract We present a framework for semantic web applications based on con-
straint interchange and processing. At the core of the framework is a
well-established semantic data model (P/FDM) with an associated ex-
pressive constraint language (Colan). To allow data instances to be
transported across a network, we map our data model to the RDF
Schema specification. To allow constraints to be transported, we define
a Constraint Interchange Format (CIF) in the form of an RDF Schema
for Colan, allowing each constraint to be defined as a resource in its
own right. We show that, because Colan is essentially a syntactically-
sugared form of first-order logic, and P/FDM is based on the widely-
used extended ER model, our CIF is actually very widely applicable
and reusable. Finally, we outline a set of services for constraint fusion
and solving, which are particularly applicable to business-to-business
e-commerce applications. These services are accessible using the CIF.

1. Introduction and Motivation

The semantic web vision is to enable rich machine-processing of web
information sources [2]. Most of the work done to date in realising this
vision has focussed upon developing “web friendly” representations for
structured data. Building on the XML standard, a number of proposals
for expressing data schemas have appeared, including RDF, RDFS, and
XML Schema [4]. These approaches support the representation and
communication of entity-relational information in web applications, for
example, allowing a set of instances of some entity type to be gathered
from several structured web pages, and transported for storage in a web-
connected database.

The next significant stage in the realisation of the semantic web lies
in extending the basic data schema representations with information on
how the data can and should be used. This information can take various
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forms, including logical axioms, rules, constraints, or even functional and
procedural representations. This work will create the reasoning services
for the semantic web. Berners-Lee’s vision for these reasoning services is
that they are built on top of the data schema representations. Early work
in this direction included inference engines for large-scale ontologies [4,
8], mechanisms for representing and reasoning with business rules [11],
and mobile constraint languages and constraint-solving frameworks [13,
7).

In this paper, we present a Constraint Interchange Format (CIF)
aimed specifically at business-to-business e-commerce applications on
the semantic web. The constraint language is well-established, having
been used successfully in diverse and challenging application domains
such as representing and reasoning about protein structures in biomed-
ical applications [6], and configuring telecommunications network ser-
vices [5]. Earlier versions of the CIF were based on Prolog term struc-
tures; this paper presents a new XML encoding of the CIF, designed to
be more open and less platform-dependent than its predecessor. The
new XML-CIF has been modelled using the RDF Schema specification,
so that constraints become web resources about which statements can
be made (for example, statements about the authorship and context of
a constraint). In addition, the CIF has been designed to refer to RDF
Schema, definitions so that the terms referred to in a constraint can have
corresponding RDF Schema, descriptions. The motivation here is to al-
low applications of RDF Schema to use our CIF and constraint-solving
services, in keeping with Berners-Lee’s vision of reasoning services atop
the data representation layer.

The paper is organised as follows: the next section introduces our
constraint language, Colan, and the semantic data model upon which it
operates; the following section describes the design of the XML-CIF en-
coding of Colan expressions; the penultimate section gives an overview
of the constraint-solving services already available for semantic web ap-
plications using the CIF; the final section concludes.

2. The Colan Constraint Language

An entity-relationship (ER) diagram (or UML class diagram) is com-
monly thought of as being useful chiefly as a diagrammatic guide or vi-
sualisation of the types of entities and relationships in a database (or an
object-oriented application); it is less commonly seen as an operational
basis for forming queries or specifications. In our previous work [1, 6]
we showed how quantified constraints can be expressed in our Colan
language, in a very readable form of first order logic, including evalu-
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constrain each t in tutor such that astatus(t)="research"
so that each s in advisee(t) has grade(s) > 60;

First-order logic version:

(Vi,s,9) tutor(t) A astatus(i,‘research’) A advisee(t,s) A grade(s,g) = ¢>60

person

id -> string
fname -> string
surnane -> string

( tutor N st udent W
astatus -> string student _id -> string
advi see ->> student grade -> integer

Figure 1. Example Colan constraint and ER diagram for corresponding schema.

able functions which can be computed over data values represented in
the ER diagram. Hence, the underlying data model is called the Func-
tional Data Model (FDM). The semantics of the objects referred to in
Colan constraints are described in terms of this extended ER data model,
which is of the kind in widespread use in UML and in database schemas.
Our FDM, P/FDM (Prolog/Functional Data Model) is a Semantic Data
Model based on Shipman’s original data model [12]. (For full details of
P/FDM, Colan [1], and related work, see: www.csd.abdn.ac.uk/~pfdm)

An example Colan constraint is shown in Figure 1, which expresses a
constraint on a university database containing student records. A vari-
able t ranges over an entity type tutor which is populated with stored
object instances. Each of these instances may be related to instances of
student entities through the relationship advisee, which delivers a set
of related entities as in an object-oriented language. Thus functions may
also represent a derived relationship, or method. The entity classes can
form part of a subtype hierarchy, in which case all properties and meth-
ods on the superclass are inherited by each subclass. Method definitions
may be overridden, but not constraints.

This is significant for semantic web applications, since it means that
information represented in this way is not restricted to human inspec-
tion — it can be proof-checked mechanically, transformed by symbol
manipulation, or sent to a remote constraint solver. Moreover, given
a standardised interchange format, data and attached constraints from
multiple sources can be gathered together, checked for compatibility,
and used to derive new information. Because the P/FDM data model
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is an extended ER model, it maps very easily onto the RDF Schema,
specification, as we shall show in the following section.

Colan is as expressive as the subset of first-order logic that is useful for
expressing integrity constraints: namely, range-restricted constraints [1,
6]. This class of constraints includes those first-order logic expressions in
which each variable is constrained to be a member of some finite set of
values. Figure 1 shows the Colan constraint in the equivalent first-order
logic representation.

2.1. Constraints in Semantic Data Models

One of our original motivations for the introduction of constraints into
P/FDM was to enrich the capability of the data model in capturing se-
mantics. Data models are more than type systems (which they resemble
syntactically) because they also represent constraints on the data. Thus
a powerful constraint language has enabled us to capture the semantic
information that others have endeavoured to express by extending the
diagrammatic notation of the ER model. Thus, although the original
FDM was somewhat lacking in semantics, we have been able to more
than make up for that by introducing constraints.

In doing this, we have capitalised on a cardinal virtue of the FDM, that
it enables one to make well-formed mathematically precise computations
over data stored as instances of entities related by an ER diagram. Thus
we based the Colan formalism for constraints on just these well-formed
computations, revising and extending it to use the full expression syntax
of P/FDM’s Daplex query language. Crucially, because the expressions
are fully quantified and referentially transparent, it is straightforward
to move them into other contexts and transform them in ways which
preserve their semantics. This would not be so if our expression of data
semantics had been confined to a diagrammatic notation.

In summary, we have introduced our constraint language, Colan, and
the semantic data model upon which it operates, and we have argued
for the applicability of this language and data model to semantic web
applications. The following section describes our new XML encoding of
Colan in the form of a Constraint Interchange Format (CIF) based on
the RDF Schema specification.

3. XML Constraint Interchange Format

In defining our Constraint Interchange Format, we were guided by the
following design principles:
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s the CIF would need to be serialisable into XML, to make it maxi-
mally portable and open;

m constraints should be represented as resources in RDF, to exploit
RDF’s widely-used data model and ease of parsing, and so that
RDF statements can be made about the constraints themselves;

m there must be no modification to the existing RDF and RDF
Schema specifications, so that the CIF would be layered cleanly
on top of RDF;

® it must be possible for constraints to refer to terms defined in any
RDF Schema, with such references made explicit.

As we showed in the previous section, the entity-relational basis of
both our P/FDM data model and RDF made it relatively straightfor-
ward to map from the former to the latter. In building the RDF Schema
for our CIF we were guided by the existing grammar for Colan [6] which
relates constraints to entities, attributes and relationships present in the
ER model. This grammar serves as a metaschema for the Colan con-
straints (such metaschemas are very common in relational and object
database systems). A number of issues arose in developing the RDF
Schema, for CIF, discussed in the following subsections.

3.1. Metaclasses for Entities and Relations

Our implementation of the P/FDM semantic data model makes use
of an entmet class that holds information on all entity classes, and a
propmet class that holds information on relationships (functions), both
stored and derived. The metaschema is fully queryable, and for this
purpose the property values of members of these metaclasses are all
held as strings (as is common in data dictionaries), so that the answer
to a query on them returns the name of an entity or relation and not
the contents of the entity or relation. The P/FDM Daplex definitions
of the entmet and propmet classes are shown in Figure 2, together with
their superclass, objmet.

The property rdfname on the entmet and propmet classes holds the
unique URI for an RDF resource, and thus provides an explicit link to the
RDF Schema, definition for the corresponding RDF Schema, class or prop-
erty. Thus, constraints carry explicit relationships to the domain ontol-
ogy (as represented by an RDF Schema) for the terminology to which
they refer. We chose to employ our own entmet and propmet classes
rather than use the RDF Class and Property classes directly, in order
to maintain close compatibility with our original Colan metaschema,
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% objmet - superclass of entity and property metaclasses
declare objmet ->> entity
declare oname(objmet) -> string

% entmet - the metaclass of all entity classes

declare entmet ->> objmet

declare super(entmet) -> entmet

declare rdfname(entmet) -> string % link to RDF Schema

% propmet - the metaclass of all properties (functions)
declare propmet ->> objmet

declare fname(propmet) -> string

declare firstargtype(propmet) -> entmet

declare resulttype(propmet) -> entmet

declare has_inv(propmet) -> boolean

declare rdfname(propmet) -> string % link to RDF Schema

Figure 2. P/FDM Daplex definitions for entity and property metaclasses.

and support extensibility in the CIF (for example, Figure 2 shows that
propmet has additional properties not required by RDF Property).

In the RDF Schema we introduce the corresponding metaclasses,
entmet and propmet, which will record the graph of classes and proper-
ties. Thus there will be one instance of the entmet class for each actual
class representing a real-world entity in the instance level RDF Schema,
for a given application domain. These metaclasses then provide the nat-
ural result types for properties used in constraints. Thus, for example,
we can use them to say that an atomic boolean value in a predicate in a
constraint can be derived by comparing the property value of a variable
which holds an entity identifier with another value given by an expres-
sion. This entity and property must be known. We could even write a
metalevel constraint to require their consistency, as checked by a type
checker.

Figure 3 shows the RDF Schema definitions corresponding to the
Daplex definitions of the objmet and entmet classes from Figure 2. It
is worth noting that, because properties in RDF are global, some of the
original local P/FDM property names must be renamed (for example,
entmet_rdfname in Figure 3, renamed from rdfname in Figure 2).

The basic rules we used when mapping the P/FDM declarations to
RDF Schema are as follows:

» a3 P/FDM class ¢ defined as an entity (declared as ¢ ->> entity)
maps to an RDF resource of type rdfs:Class (where rdfs is the
namespace prefix for the RDF Schema descriptions);
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<rdf :RDF
xmlns:rdf="http://wuw.w3.org/1999
/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://wuw.w3.org/
2000/01/rdf-schema#">

<rdfs:Class rdf:ID="objmet">
<rdfs:subClass0f rdf:resource=
"http://wuw.w3.0rg/2000/01/
rdf-schema#Resource"/>
</rdfs:Class>

<rdf:Property rdf:ID="oname">
<rdfs:domain rdf:resource=
"#objmet" />
<rdfs:range rdf:resource=
"http://www.w3.0rg/2000/01/
rdf-schema#Literal"/>
</rdf:Property>

Figure 3.

<rdfs:Class rdf:ID="entmet">
<rdfs:subClass0f
rdf :resource="#objmet"/>
</rdfs:Class>

<rdf :Property rdf:ID="super">
<rdfs:domain
rdf :resource="#entmet"/>
<rdfs:range
rdf :resource="#entmet"/>
</rdf :Property>

<rdf:Property
rdf : ID="entmet_rdfname">
<rdfs:domain
rdf :resource="#entmet" />
<rdfs:range rdf:resource=
"http://wuw.w3.0rg/2000/
01/rdf-schema#Literal"/>
</rdf :Property>

</rdf :RDF>

RDF Schema definitions for the objmet and entmet classes.

m a P/FDM class c declared to be a subtype of another class s (de-
clared as ¢ ->> s) maps to an RDF resource of type rdfs:Class,
with an rdfs:subClassOf property the value of which is the class

named s;

» a P/FDM function f declared on entities of class ¢, with result
type r (declared as f(c¢) => r) maps to an RDF resource of type
rdf :Property with an rdfs:domain of ¢ and an rdfs:range of r.

3.2.

Representation of Variables in Constraints

A fundamental notion in Colan is that a variable is always introduced
in conjunction with a set that it ranges over. Thus terms such as (p in
pc) and (e in employee) are common, as in the example expressions:

(p in pc) such that name (p) = "xxx"

(e in employee) such that salary (e) > 5000 and age (e) < 50

This is represented in the syntax by the setmem metaclass, while vari-

ables themselves are described by the variable class, both defined as
shown in Figure 4. An instance of the variable class is a legal instance
of an expr class (representing an expression) by virtue of a series of
subclass relationships. There is also a semantic constraint that such an
instance must already have been introduced with a quantifier; this is not
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<rdfs:Class rdf:ID="variable">
<rdfs:subClass0f
rdf :resource="#operand" />
</rdfs:Class>

<rdf :Property rdf:ID="varname">
<rdfs:domain
rdf :resource="#variable"/>
<rdfs:range rdf:resource=
"http://www.w3.0rg/2000/01/

<rdf:Property rdf:ID="var">
<rdfs:domain
rdf :resource="#setmem"/>
<rdfs:range
rdf :resource="#variable"/>
</rdf :Property>

<rdf:Property rdf:ID="set">
<rdfs:domain
rdf :resource="#setmem"/>

rdf-schema#Literal"/>
</rdf :Property>

<rdfs:range

rdf :resource="#setexpr"/>
</rdf :Property>
<rdfs:Class rdf:ID="setmem">

<rdfs:subClass0f

rdf :resource="#boolprim"/>
</rdfs:Class>

Figure 4. RDF Schema definitions relating to the setmem metaclass.

currently captured in the RDF Schema but could possibly be represented
using the RDF Schema ConstraintResource extension mechanism. An
example XML-CIF fragment corresponding to the Colan fragment (p
in pc) is shown in Figure 5.

Space prohibits us from including the full CIF RDF Schema, here, but
both it and the full P/FDM schema are available at: www.csd.abdn.ac.uk
/research/akt/cif/ together with example constraints. In summary, our
CIF RDF Schema serves the purpose of describing what are valid con-
straints, themselves expressed at an instance level in RDF. It combines
the information in a grammar, which is normally used by a syntax
checker or a parser, with information normally held in a database schema
and used to validate database queries. The interesting thing is that the
P/FDM data description language is expressive enough to capture this,
especially cardinality constraints. RDF is not so expressive, although
it does provide for schema constraints such as cardinality through the
ConstraintResource extension mechanism.

It should be noted that the metaschema makes a clean separation be-
tween the description of constraints (both universal and existential) and
expressions. Constraints and their boolean components are a represen-
tation of first-order logic, with the usual connectives. Any knowledge
source that uses FOL should be able to understand this. Expressions
refer to facts about entities, their subtypes, attributes and relationships,
and is based on the widely-used concepts of an ER model. The corre-
sponding data could be held in XML or a variety of storage schemas.

The following section describes our existing framework for using CIF
constraints, as used in KRAFT [10] and for which communication and
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<cif:setmem> <cif:entmet>
<cif:var> <cif:entmet_rdfname>
<cif:variable ID="#p"> http://www.aktors.org/
<cif:varname>p</cif:varname> domain/pc_conf ig#pc
</cif:variable> </cif:entmet_rdfname>
</cif:var> </cif:entmet>
<cif:set> </cif:entclass>
<cif:entset> </cif:entset>
<cif:entclass> </cif:set>

</cif:setmem>

Figure 5.  XML-CIF fragment corresponding to the Colan fragment (p in pc).

coordination are achieved by the exchange and fusion of constraint knowl-
edge.

4. Fusion of Constraints from Different Sources

Having a semantic data model (P/FDM) extended with constraints
(Colan) and mapped into an open interchange format (RDF Schema and
XML-CIF) supports a range of applications in which information needs
to be moved across a network with rich metalevel information describing
how the information can be used. An example application common in
business-to-business e-commerce involves the composition of a package
product from components selected from multiple vendors’ catalogues
(for example, consumer electronic equipment, package holidays, fitted
kitchens, or financial products). In each case, there are various kinds
of constraints which must be aggregated and solved over the available
component instances: constraints representing customer requirements
(“I want a PC with a colour printer”), constraints representing rules
for what constitutes an acceptable package (“any printer must have a
driver that is compatible with the PC OS”), and constraints representing
restrictions on the use of particular components (“this printer has drivers
only for Windows OSes”).

In this last case, the ability to store constraints together with data
in P/FDM allows instructions to be attached to the class descriptor for
data objects in a product catalogue database. When a data object is
retrieved, these attached instructions must also be extracted to ensure
that the data is properly used. Thus the attached constraint becomes
mobile knowledge which is transported, transformed and processed in
a distributed environment. An advantage of this approach is that we
can use constraint logic solving techniques to see if a complex set of
constraints, whose form is not known until runtime, does have a solution.
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4.1. A Constraint Fusion Example

To demonstrate constraint fusion from different sources, consider a
configuration problem where a PC is built by combining components
from vendors. All of the constraints below are expressed in Colan and
so would be exchanged using the XML-CIF representation described in
the previous section.

The user specifies his requirement in the form of constraint through
the user-agent. In this example, he specifies that the PC must use a
“pentium?2” processor but not the “win95” OS:

constrain each p in pc
to have cpu(p)="pentium2" and name(has_os(p)) <> "win95"

For the components to fit together, they must satisfy certain con-
straints imposed by the solution database. For example, the size of the
OS must be smaller or equal to the hard disk space for a proper instal-
lation:

constrain each p in pc
to have size(has_os(p)) =< size(has_disk(p))

Now the candidate components from different vendors may have instruc-
tions attached to them as constraints. In the vendor database of oper-
ating systems, “winNT” requires a memory of at least 32 megabytes:

constrain each p in pc such that
manufacturer(p) = "HAL" and name(has_os(p))="winNT"
to have memory(p) >= 32

When we fuse all constraints together so that they apply to the solution
database, we get the description of an equivalent constraint satisfaction
problem (note the conditional constraint in the last line):

constrain each p in pc
to have cpu(p)="pentium2"
and name(has_os(p)) <> "win95"
and size(has_os(p)) =< size(has_disk(p))
and if manufacturer(p) = "HAL" and name(has_os(p))="winNT"
then memory(p)) >= 32 else true

The process of solving the application problem, therefore, is to retrieve
data from other databases and populate the solution database while sat-
isfying (i) all the integrity constraints attached to the solution database,
(ii) constraints on data objects and (iii) user requirement constraints.
This process corresponds to a generate-and-test approach where invalid
candidates are rejected by database integrity constraints. A more effi-
cient prune-and-search approach can be achieved by exporting constraint
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fragments to a constraint fusing mediator which composes the overall de-
scription as a constraint satisfaction problem (CSP) for a configuration
task so that it may plan the solution. The CSP is then analysed and
decomposed into database queries and constraint logic programs which
are fed across to distributed databases and constraint solvers, under the
control of a mediator [9].

5. Discussion and Conclusion

In this paper, we have presented a framework for semantic web appli-
cations based on constraint interchange and processing. At the core of
the framework is a well-established semantic data model (P/FDM) with
an associated expressive constraint language (Colan). To allow data in-
stances to be transported across a network, we have mapped our data
model to the less expressive (but adequate) RDF Schema. To allow con-
straints to be transported, we have provided a Constraint Interchange
Format (CIF) in the form of an RDF Schema for Colan, allowing each
constraint to be defined as a resource in its own right.

Because Colan is essentially a syntactically-sugared form of first-order
logic, and P/FDM is based on the widely-used extended ER model,
our CIF is actually very widely applicable and reusable. Through the
KRAFT project, we have available a set of services for constraint fusion
and solving, which are particularly applicable to business-to-business e-
commerce applications. All of these services can be accessed using the
CIF.

We targeted our approach for use with RDF Schema, and in particular
the XML encoding of RDF Schema, in an effort to maximise the appli-
cability of our work. RDF Schema is the simplest and most universal
of the semantic web data representations, while still being adequately
expressive for our purposes. In linking Colan to RDF Schema, we also
allow its usage with more expressive data modelling languages built on
top of RDF Schema, including DAML+OIL [4], and the anticipated rec-
ommendations of the W3C WebOnt initative (www.w3c.org). However,
a basic requirement of our approach in defining the RDF Schema, for
Colan expressions was that it should in no way require modification to
the underlying RDF definitions (this is in contrast to the OIL approach,
which requires modification at the RDF layer in order to capture certain
kinds of expression [3]).

Our constraint interchange and solving services are being incorpo-
rated into the AKT infrastructure, as one of the basic knowledge reuse
mechanisms in the AKT service layer. Further information on this work
can be found at: www.aktors.org
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