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Abstract 
A key problem in managing intelligence, surveillance and reconnaissance (ISR) 
operations in a coalition context is assigning available sensing assets – of which there are 
increasingly many – to mission tasks. High demands for information and relative scarcity 
of available assets implies that assignments must be made taking into account all possible 
ways of achieving an ISR task by different kinds of sensing. Moreover, the dynamic 
nature of most ISR situations means that asset assignment must be done in a highly agile 
manner. The problem is exacerbated in a coalition context because it is harder for users to 
have an overview of all suitable assets across multiple coalition partners. In this paper, 
we describe a knowledge-driven approach to ISR asset assignment using ontologies, 
allocation algorithms, and a service-oriented architecture. An illustration of the use of the 
system from a mobile device is presented. 
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Introduction 
 
In a coalition context, making the most effective use of intelligence, surveillance, and 
reconnaissance (ISR) assets is a challenging problem1. There are typically multiple ways 
to achieve an ISR task using sensor-provided data. For example, the NIIRS (National 
Image Interpretability Rating Scales) framework characterises various kinds of ISR tasks 
that can be achieved using visual sensing data of different types (visible, radar, infrared 
and multispectral)2. An end-user, for example an ISR analyst, cannot be expected to have 
specialist sensing knowledge: they need to be able to state their information needs in 
terms of what they want (for example, tracking high value targets in an area) rather than 
how those needs may be satisfied by sensor data. Assets are owned by different coalition 
partners, who need to control how their assets are shared with other partners1. Therefore 
the problem of identifying suitable ISR assets is difficult, without a great deal of 
knowledge about sensing capabilities and availability of coalition assets. Because the 
situation evolves rapidly, the asset-provisioning infrastructure that supports ISR 



operations must be agile, being responsive to changes in users’ needs and the availability 
of relevant assets. 
  
A solution to the coalition ISR asset-task assignment problem needs a common 
representation of tasks and assets, extensible to new kinds of task or asset. Tasks need to 
be expressed at a high level, in terms of what the user wants. Efficient mechanisms are 
needed for matching tasks to available assets, where all possible means of satisfying a 
task are considered. As part of a solution to this problem, several works have proposed 
the use of some form of knowledge base or mapping that relates sensor capabilities to 
task requirements, to aid either automatic or semi-automatic identification of suitable 
assets for tasks3,4,5. In our previous work6 we developed an approach to automatic asset-
task assignment founded on the Military Missions and Means Framework (MMF)7. We 
created ontologies of task and asset types, and an automatic procedure for matching one 
to the other, through the capabilities required on one and provided by the other. In this 
paper, we describe the current status of this approach and its implementation using a 
service-oriented architecture with mobile apps to serve users of the system. 
 
 
An Ontological Approach to Asset-Task Matching 
 
To derive our asset-task matching ontology, we formalized concepts and relationships 
from the MMF documentation, tailored to the ISR domain, as shown in Figure 1. 
Missions are comprised of operations which are in turn comprised of tasks. Tasks require 
capabilities, which are provided by assets. Assets include platforms and systems; systems 
– including sensors – are mounted on platforms. The relationship allocatedTo captures 
that an asset is assigned to resource a particular task. The ontology is implemented in the 
Web Ontology Language, OWL DL.  
 
 



 
Figure 1: Missions and Means Framework ISR ontology 

 
 
The current matching procedure using this ontology is based on the NIIRS framework. 
NIIRS associates various kinds of ISR tasks with ratings for the various kinds of visual 
sensing that can collect data sufficient to achieve the tasks. We formalized a collection of 
statements derived from NIIRS and related literature in the form of a knowledge base 
which, in abstract form, contains a set of intelligence clause tuples with six elements:  
• an intelligence capability which is one of the three capabilities in NIIRS – detect, 

distinguish, identify – or localize; 
• a set of detectable things drawn from the NIIRS framework (for example, kinds of 

vehicle or building);  
• a set of more specific features of the detectable entities (for example, the roads or 

guard posts of a base, or the runways of an airport); 
• a context, defining the preconditions that must hold for the intelligence clause to apply 

(for example, detection of a ship in the context of open water); 
• the type of sensor-provided data which includes the NIIRS types – visible, radar, 

infrared, multispectral – plus other types including acoustic and seismic; and 
• a NIIRS rating on a scale of 0 to 9 (for example, visible-6 or radar-4). 
 
A user expresses their task in terms of required intelligence capability and detectable as 
above; for example, detect {tank} or distinguish {tank, jeep}. Required tasks feature 
either a single detectable (for detect, identify and localize tasks) or a pair of detectables 
(for distinguish tasks). The user also specifies the area of interest and other parameters 
shown later in the paper in the context of our mobile app. 
 
The capabilities required by a task are determined by matching the task’s intelligence 
capability and detectable to the KB of intelligence clauses. Two kinds of inference are 
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used here: firstly, some types of task imply others (for example, the ability to identify 
something implies also an ability to detect it); secondly, a hierarchy of detectables meant 
that, for example, any clause involving detect and a kind of detectable is considered to 
cover all more specialised kinds of that detectable also (so, for example, the task detect 
{ car } covers specialised kinds of car: jeep, SUV, saloon, etc). 
 
Sensors are allocated to tasks in terms of bundles (a task may require more than one 
sensor, for example a pair for 2D-localisation of an object); a bundle type is a 
combination of a platform type and a set of sensor types that can be mounted on that 
platform type. The ontology contains the additional relationship interferesWith to cover 
cases where types of sensor are incompatible. Bundle types are derived from deployable 
configurations as discussed in the next section, which also take into account restrictions 
on the number of sensors that can be mounted simultaneously on a platform. In terms of 
our MMF ontology, a bundle type provides a set of capabilities that is the union of the 
capabilities provided by either the platform type or a sensor type in the bundle type. 
 
A bundle type matches a task type if the set of capabilities provided by the bundle type 
contains the set of capabilities required by the task type. We say that a bundle type 
minimally matches a task type when no sensor type can be removed from the bundle type 
such that the matches relationship still holds. 
 
Using these definitions, the matching procedure operates as follows: 

1. A user creates a task, from which the system derives the corresponding required 
intelligence capability and detectables. 

2. The system determines all bundle types that minimally match the task. 
3. The system determines all possible bundle instances that conform to each bundle 

type in the required area of interest. A bundle instance is a deployable, configured 
set of assets of the platform and sensor types defined by the bundle type. These 
are determined by querying the coalition’s asset catalogue, governed by sharing 
and deployment policies as described later. For example, a UAV would not be 
selected for an area under a no-fly zone. 

4. The system uses an allocation mechanism to choose the most appropriate bundle 
instance to assign to the user’s task. Depending on the context of use, there will 
be different ways to do this; one method is to use a distributed allocation protocol8 
that attempts to maximise overall utility of assigned assets in the face of multiple 
competing tasks. The protocol aims at maximising the utility provided to the most 
important tasks, allowing for sensor assets to be reallocated to more important 
newly created tasks (we refer to this as preemption). For this, it is necessary to 
have an appropriate utility function to determine the “goodness” of assigning a 
particular bundle instance to a given task. We give an example in the sidebar 
“End-to-end asset-task allocation and information delivery”. 

 
Our knowledge-based approach is intended to be extensible and maintainable. The core 
sensor, platform and task ontologies are based on pre-existing models, chosen for their 
relatively stable and accepted nature6. The ontologies are open to new asset, task, and 
capability types – in fact, the NIIRS framework was added as an extension to the original 



ontologies. Some types of platform are not yet incorporated into our system, for example 
satellites, but they are covered by the ontologies on which our approach builds (e.g. 
Ontosensor5), so adding them would be straightforward. In general, we would expect new 
types of assets, tasks, and capabilities will appear only rarely. To make their assets 
available to our system, a new coalition partner needs to create representations of their 
asset instances in a shared asset catalogue; how this is done will depend on the 
underlying middleware: we give an example of an approach using a service-oriented 
architecture later in this paper. One area where future extension is planned is the 
inclusion of humans as sensors. 
  
 
Sidebar: End-to-end asset-task allocation and information delivery 
 
Figure 2 shows an overview of our approach, with an example. The process operates 
clockwise from the top left of the figure. The user specifies a task to localize SUVs in an 
area of interest. The matching procedure uses the MMF ISR ontology and knowledge 
base clauses to determine that this task can be achieved by assets with a Visible NIIRS 
rating of 4 (or higher) or an Acoustic NIIRS rating of 6 (or higher). These ratings are 
provided by the following bundle types respectively: a UAV platform with video camera 
sensor, or an unattended ground system platform with an acoustic array sensor. (This 
example is simplified: many more possibilities and more specific kinds of asset actually 
exist for this task.) Bundle instances are now generated and ranked with a utility function 
for the localization task. A bundle instance may contain more than one instantiation of 
the bundle type, where more than one set of deployed assets is needed to achieve the task. 
In our example, this results in the generation of three pairs of acoustic sensing bundles, 
each containing two instances of the bundle type <UGS,AcousticArray> (at least two 
assets are required for triangulation). For the bundle type <UAV,VideoCamera>, the 
bundle generation process results in two visual sensing bundle instances composed of a 
single UAV mounting a camera. In total, there are five candidate bundles. As a result of 
the ranking process, one of the acoustic bundles is chosen and assigned to the task. We 
envisage our approach being deployed in the context of a service-oriented architecture, 
where sensors and processing services are “wrapped” as Web services, allowing highly 
agile configuration of services to deliver information to a user – potentially to a mobile 
device if the user is in the field – once assets are assigned. 
 
 



 
 
Figure 2: Overview of the our ISR asset-task assignment approach 
 
 
 
 
Extensible Matching Framework 
 
To be useful in a coalition context, a asset-task assignment system needs to be extensible 
and flexible, not only in terms of new ontological and KB elements (for example, to 
incorporate new kinds of sensing assets and alternative formulations of ISR tasks), but 
also in terms of extended matching schemes (including alternative allocation procedures). 
This extensibility and flexibility is enabled by Ontological Logic Programming (OLP)9, 
which combines Prolog with DL-based reasoning. An OLP program can dynamically 
import various ontologies and use the terms (i.e., classes, properties, and individuals) in 
these ontologies directly within an OLP program. The interpretation of the ontological 
terms is delegated to an OWL DL reasoner during interpretation of the OLP program, 
supporting operations including subsumption, satisfiability, consistency, class 
equivalence, and class instance checking. 
 
A fragment of our OLP implementation to compute deployable configurations (for use as 
bundle types) is shown in Figure 3. The OLP program is a Prolog program, where 
concepts and properties from the underlying ontologies are referenced directly. The MMF 
ISR ontology (http://homepages.abdn.ac.uk/c.emele/pages/ita/index.php?page=resources) 
is imported on the first line. The getConfigurations predicate computes deployable 
configurations (bundle types) for a specific task. Each sensor must be carried by a 
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deployable platform that provides all of the operational requirements of the task (e.g., 
constant surveillance). If a sensor cannot be carried by a deployable platform, there is no 
point in considering deployable configurations with that sensor type. Using this 
knowledge, a tailored and efficient matchmaker can be employed. This matchmaker first 
identifies the deployable platforms that meet the requirements of the task. Once many 
possibilities are narrowed down by determining deployable platforms, the sensor types 
that provide the intelligence capabilities required by the task are determined 
incrementally so that those sensors can be mounted on the deployable platforms. In the 
code, terms from the MMF ISR ontology have the prefix “istar:”. Most of these are 
shown in Figure 1 (requireOperationalCapability can be considered a specialization of 
requiresCapability).  
 
 
%import http://…/ISTAR.owl  
getConfigurations(T,[P|S]):- 
    deployablePlatform(T,P), 
    extendSolution(T,P,[],S). 
deployablePlatform(T,P):- 
    istar:`Platform'(P), 
    not((istar:`requireOperationalCapability'(T,C), 
         not(istar:`provideCapability'(P,C)))). 
extendSolution(T,P,Prev,Next):- 
    requireSensor(T,P,Prev,X), 
    istar:`mounts'(P,X), 
    A=[X|Prev], 
    extendSolution(T,P,A,Next). 
extendSolution(T,P,S,S):- 
    not(requireCapability(T,P,S,_)). 
requireSensor(T,P,S,X):- 
    requireCapability(T,P,S,C), 
    istar:`provideCapability'(X,C). 
requireCapability(T,P,S,C):- 
    istar:`requireCapability'(T,C), 
    not(provideCapability(S,C)), 
    not(provideCapability([P],C)). 
provideCapability([Y|Tail],C):- 
    istar:`provideCapability'(Y,C),!; 
    provideCapability(Tail,C). 

 
Figure 3: OLP program to compute deployable configurations 

 
This method for computing deployable configurations is based on the idea that the search 
space can be significantly reduced using domain knowledge. For this purpose, 
dependencies between sensors and platforms are exploited. Using this principle, at each 
iteration, the matchmaking algorithm rules out many combinations and significantly 
reduces the time required to compute deployable configurations. We compared the 
computational performance of the OLP program in Figure 3 with a set-covering 
algorithm that exhaustively searches for deployable configurations. As the size of 
deployable configurations increases, our experiments have shown the OLP-based 
approach outperforms the exhaustive search approach significantly: time consumption of 



the exhaustive search increases exponentially while that of the proposed approach is 
linear9. 
 
 
Asset-Task Matching in a Service-Oriented Architecture 
 
To allow our approach to operate within a service-oriented architecture for sensor 
information processing and delivery, we have deployed the asset-task matching 
mechanism as a service within the ITA Fabric10. The Fabric provides a distributed 
stream-oriented middleware layer that mitigates the complexity of managing message 
flows between coalition partners and across disparate networks, while also encapsulating 
network and security management for resource-constrained networks. The Fabric 
implements a two-way messaging bus and a set of middleware services providing 
connectivity between all network resources, to each other and to users. A typical Fabric 
node consists of a message broker, an instance of the Fabric Manager, and an instance of 
the Fabric Registry.  The Fabric Manager manages all the communication channels 
between nodes, the routing of messages between nodes, sensing resources and users. 
Information about all nodes, routes and ISR resources is recorded in the Fabric Registry: 
a database distributed across each of the Fabric nodes, recording resource types, physical 
locations, operational characteristics, task commitments, and current operational 
status/availability. The Registry implements the asset catalogue – one of the immediate 
benefits of embedding our approach in the Fabric is the matching process can use the 
Fabric Registry to limit the generation of bundle type to only those deployable 
configurations where asset instances are available for assignment. 
 
Integration of our approach in the ITA Fabric is shown in Figure 4. R1…R5 represent 
sensing resources, and N1...N4 are fabric nodes. Because Fabric nodes are intended to be 
highly lightweight, deployable on low-powered sensor platforms, it is infeasible to run 
the computationally-expensive DL-based reasoning operations on a Fabric node. Instead, 
the functionalities of our approach are divided into two separate components: the OLP 
implementation of the reasoning procedure is deployed on a server, accessible via an API 
defined a set of RESTful Web services, separate from the user-facing application that 
allows users to submit tasks and receive recommendations. We refer to the reasoning API 
as RaaS: Reasoning-as-a-Service. 
 
 



 
 

Figure 4: Integration of our approach in the ITA Fabric 
 
 
Asset-Task Matching via a Mobile Device 
 
As a concept illustration of the use of our approach, we have created mobile apps for both 
smartphone and tablet platforms. The most recent version is implemented as an iPad app. 
The main features of this app are: 
• Allow a user to create an ISR task in an area-of-interest, by means of a convenient 

user interface, and submit the task for asset assignment. 
• Allow a user to view all tasks with assigned assets in an area of interest (subject to 

access policies).  
• Allow the sharing of tasks among users (again, subject to access policies). 
The motivation for task sharing was to reduce competition among tasks for resources, by 
making it relatively easy for a user to share an existing task rather than to create a new 
request for resources. The app is intended to give a user an overview of how well-covered 
an area is in ISR terms, not just in terms of what tasks are currently being resourced, but 
also the likely permanence of these tasks (by allowing the user to view details of the tasks 
such as their ownership and priority). This is very different from simply showing the 
current location of sensor assets deployed on the field; in fact, displaying such 
information may be unfeasible due to visibility policies; for example, a coalition member 
might not be allowed to see other partners’ sensor locations or exact resource types, 
though they might have the rights to access the data collected. Moreover, displaying 
locations of sensors on the field could also be misleading for a commander, who might 
plan a mission in a certain area because “better covered” by sensors, while instead those 
sensors might be busy or preempted to serve other more important tasks. 
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Figure 5: Sensor Assignment to Missions iPad app 
 
 
Figure 5 shows two screens from the iPad app: the task list is on the left, and the 
locations of tasks are shown as circular regions on the map. The list of tasks is obtained 
by querying the Registry on a local Fabric node, and contextualised by the area of interest, 
which is by default determined by the iPad’s location (via GPS) but can be set manually 
also. After defining the radius of the area of interest of the task, the user is then allowed 
to move the task to the desired location on the map by dragging the center of the area of 
interest defined. Defining areas as circular is a limitation, but it would be straightforward 
to implement more complex shapes. The interface also allows the user to set the task type, 
task priority and expected duration of the task. The user interface is designed for a 
logged-in user who belongs to a single coalition partner, and is able to see a list of tasks 
(and their details) belonging to other coalition partners according to pre-defined access 
policies. Access policies1 are rule-based, and can take account of factors including the 
user's coalition partner membership, their rank, membership of a particular group within 
the coalition, and also the partner ownership, rank, and group associated with the task.  
 
The task list is searchable using the box on the top-left allowing users to filter the 
displayed list by intelligence capability or type of detectable thing. More detail can be 
obtained by selecting an individual task, which results in display like the one shown on 



the right of the figure. Assuming the task has assigned sensors, the display presents a 
summary of the task and the assigned asset bundle. With this amount of detail, the user 
can understand how the task is currently being resourced. Inclusion of the NIIRS rating is 
intended to give an indication of the quality of the data the asset bundle can collect. We 
are considering other ways to convey quality information, as it may not be reasonable to 
assume users are familiar with the NIIRS scale. The task priority is an indication of how 
“stable” the task is, as lower priority tasks are more prone to being pre-empted if assets 
are too scarce to cover all tasks. Information on the task owner and other users who have 
joined the task is intended to have a “social” effect, as the logged-in user is likely to 
know other users in the region. 
 
Based on this detailed task assignment information, the user may use the buttons on the 
bottom left to choose to join or edit the existing task. This entails a more efficient use of 
network resources: avoiding the creation of a new task reduces the competition among 
them for sensing resources (where it might not be possible to support every task in the 
case of limited resources). In some cases, a user’s information requirements may be 
satisfiable by pre-existing tasks which are already being served by allocated bundles and 
therefore there is no need to preempt resources from other tasks.  
 
The iPad app was demonstrated to ISR specialists from the US Department of Defense, 
UK Ministry of Defence, and NATO communities in September and October 2011. Users 
were appreciative of how the app achieves separation between what information the user 
requires, and how this information can be obtained by various kinds of sensing asset. The 
demos also elicited positive comments regarding the usability and simplicity of the 
mobile version in terms of how one can request complex information through a simple 
task creation form. Moreover it was appreciated that low-level details of both sensors and 
tasks (e.g. particular sensor capabilities required to satisfy a task) can remain hidden to a 
user therefore making the system accessible also to non-expert users. 
 
 
Conclusion & Future Work 
 
In this paper, we described a knowledge-driven approach to ISR asset assignment using 
ontologies, allocation algorithms, and a service-oriented architecture, accessible from 
mobile devices. Going forward, we are experimenting with richer ways of interacting 
with users by means of natural language interfaces, and using the approach to assign pre-
collected information sources and streams in addition to sensing assets. Other related 
ongoing work addresses consideration of network (e.g. bandwidth) constraints in 
allocating asset bundles, and trust and information obfuscation issues in relation to ISR 
asset sharing among members of heterogeneous coalition teams. 
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