

Agile Assignment of Sensing Assets to Mission

Tasks in a Coalition Context

Alun Preece, Cardiff University
Tim Norman, University of Aberdeen
Geeth de Mel, IBM US / Army Research Laboratory
Diego Pizzocaro, Cardiff University
Murat Sensoy, Ozyegin University / University of Aberdeen
Tien Pham, Army Research Laboratory

Abstract
A key problem in managing intelligence, surveillance and reconnaissance (ISR)
operations in a coalition context is assigning available sensing assets – of which there are
increasingly many – to mission tasks. High demands for information and relative scarcity
of available assets implies that assignments must be made taking into account all possible
ways of achieving an ISR task by different kinds of sensing. Moreover, the dynamic
nature of most ISR situations means that asset assignment must be done in a highly agile
manner. The problem is exacerbated in a coalition context because it is harder for users to
have an overview of all suitable assets across multiple coalition partners. In this paper,
we describe a knowledge-driven approach to ISR asset assignment using ontologies,
allocation algorithms, and a service-oriented architecture. An illustration of the use of the
system from a mobile device is presented.

Keywords: sensor assignment; sensor sharing; intelligence, surveillance,
reconnaissance; ontology; coalition

Introduction

In a coalition context, making the most effective use of intelligence, surveillance, and
reconnaissance (ISR) assets is a challenging problem1. There are typically multiple ways
to achieve an ISR task using sensor-provided data. For example, the NIIRS (National
Image Interpretability Rating Scales) framework characterises various kinds of ISR tasks
that can be achieved using visual sensing data of different types (visible, radar, infrared
and multispectral)2. An end-user, for example an ISR analyst, cannot be expected to have
specialist sensing knowledge: they need to be able to state their information needs in
terms of what they want (for example, tracking high value targets in an area) rather than
how those needs may be satisfied by sensor data. Assets are owned by different coalition
partners, who need to control how their assets are shared with other partners1. Therefore
the problem of identifying suitable ISR assets is difficult, without a great deal of
knowledge about sensing capabilities and availability of coalition assets. Because the
situation evolves rapidly, the asset-provisioning infrastructure that supports ISR

operations must be agile, being responsive to changes in users’ needs and the availability
of relevant assets.

A solution to the coalition ISR asset-task assignment problem needs a common
representation of tasks and assets, extensible to new kinds of task or asset. Tasks need to
be expressed at a high level, in terms of what the user wants. Efficient mechanisms are
needed for matching tasks to available assets, where all possible means of satisfying a
task are considered. As part of a solution to this problem, several works have proposed
the use of some form of knowledge base or mapping that relates sensor capabilities to
task requirements, to aid either automatic or semi-automatic identification of suitable
assets for tasks3,4,5. In our previous work6 we developed an approach to automatic asset-
task assignment founded on the Military Missions and Means Framework (MMF)7. We
created ontologies of task and asset types, and an automatic procedure for matching one
to the other, through the capabilities required on one and provided by the other. In this
paper, we describe the current status of this approach and its implementation using a
service-oriented architecture with mobile apps to serve users of the system.

An Ontological Approach to Asset-Task Matching

To derive our asset-task matching ontology, we formalized concepts and relationships
from the MMF documentation, tailored to the ISR domain, as shown in Figure 1.
Missions are comprised of operations which are in turn comprised of tasks. Tasks require
capabilities, which are provided by assets. Assets include platforms and systems; systems
– including sensors – are mounted on platforms. The relationship allocatedTo captures
that an asset is assigned to resource a particular task. The ontology is implemented in the
Web Ontology Language, OWL DL.

Figure 1: Missions and Means Framework ISR ontology

The current matching procedure using this ontology is based on the NIIRS framework.
NIIRS associates various kinds of ISR tasks with ratings for the various kinds of visual
sensing that can collect data sufficient to achieve the tasks. We formalized a collection of
statements derived from NIIRS and related literature in the form of a knowledge base
which, in abstract form, contains a set of intelligence clause tuples with six elements:
• an intelligence capability which is one of the three capabilities in NIIRS – detect,

distinguish, identify – or localize;
• a set of detectable things drawn from the NIIRS framework (for example, kinds of

vehicle or building);
• a set of more specific features of the detectable entities (for example, the roads or

guard posts of a base, or the runways of an airport);
• a context, defining the preconditions that must hold for the intelligence clause to apply

(for example, detection of a ship in the context of open water);
• the type of sensor-provided data which includes the NIIRS types – visible, radar,

infrared, multispectral – plus other types including acoustic and seismic; and
• a NIIRS rating on a scale of 0 to 9 (for example, visible-6 or radar-4).

A user expresses their task in terms of required intelligence capability and detectable as
above; for example, detect {tank} or distinguish {tank, jeep}. Required tasks feature
either a single detectable (for detect, identify and localize tasks) or a pair of detectables
(for distinguish tasks). The user also specifies the area of interest and other parameters
shown later in the paper in the context of our mobile app.

The capabilities required by a task are determined by matching the task’s intelligence
capability and detectable to the KB of intelligence clauses. Two kinds of inference are

Task Capability

Operation

Mission

Asset

Platform System

Sensor

comprises toAccomplish

comprises toAccomplish

toPerform

is-a

is-a

is-a

mounts

attachedTo

requires

providesallocatedTo

interferesWith

entails

used here: firstly, some types of task imply others (for example, the ability to identify
something implies also an ability to detect it); secondly, a hierarchy of detectables meant
that, for example, any clause involving detect and a kind of detectable is considered to
cover all more specialised kinds of that detectable also (so, for example, the task detect
{ car } covers specialised kinds of car: jeep, SUV, saloon, etc).

Sensors are allocated to tasks in terms of bundles (a task may require more than one
sensor, for example a pair for 2D-localisation of an object); a bundle type is a
combination of a platform type and a set of sensor types that can be mounted on that
platform type. The ontology contains the additional relationship interferesWith to cover
cases where types of sensor are incompatible. Bundle types are derived from deployable
configurations as discussed in the next section, which also take into account restrictions
on the number of sensors that can be mounted simultaneously on a platform. In terms of
our MMF ontology, a bundle type provides a set of capabilities that is the union of the
capabilities provided by either the platform type or a sensor type in the bundle type.

A bundle type matches a task type if the set of capabilities provided by the bundle type
contains the set of capabilities required by the task type. We say that a bundle type
minimally matches a task type when no sensor type can be removed from the bundle type
such that the matches relationship still holds.

Using these definitions, the matching procedure operates as follows:

1. A user creates a task, from which the system derives the corresponding required
intelligence capability and detectables.

2. The system determines all bundle types that minimally match the task.
3. The system determines all possible bundle instances that conform to each bundle

type in the required area of interest. A bundle instance is a deployable, configured
set of assets of the platform and sensor types defined by the bundle type. These
are determined by querying the coalition’s asset catalogue, governed by sharing
and deployment policies as described later. For example, a UAV would not be
selected for an area under a no-fly zone.

4. The system uses an allocation mechanism to choose the most appropriate bundle
instance to assign to the user’s task. Depending on the context of use, there will
be different ways to do this; one method is to use a distributed allocation protocol8
that attempts to maximise overall utility of assigned assets in the face of multiple
competing tasks. The protocol aims at maximising the utility provided to the most
important tasks, allowing for sensor assets to be reallocated to more important
newly created tasks (we refer to this as preemption). For this, it is necessary to
have an appropriate utility function to determine the “goodness” of assigning a
particular bundle instance to a given task. We give an example in the sidebar
“End-to-end asset-task allocation and information delivery”.

Our knowledge-based approach is intended to be extensible and maintainable. The core
sensor, platform and task ontologies are based on pre-existing models, chosen for their
relatively stable and accepted nature6. The ontologies are open to new asset, task, and
capability types – in fact, the NIIRS framework was added as an extension to the original

ontologies. Some types of platform are not yet incorporated into our system, for example
satellites, but they are covered by the ontologies on which our approach builds (e.g.
Ontosensor5), so adding them would be straightforward. In general, we would expect new
types of assets, tasks, and capabilities will appear only rarely. To make their assets
available to our system, a new coalition partner needs to create representations of their
asset instances in a shared asset catalogue; how this is done will depend on the
underlying middleware: we give an example of an approach using a service-oriented
architecture later in this paper. One area where future extension is planned is the
inclusion of humans as sensors.

Sidebar: End-to-end asset-task allocation and information delivery

Figure 2 shows an overview of our approach, with an example. The process operates
clockwise from the top left of the figure. The user specifies a task to localize SUVs in an
area of interest. The matching procedure uses the MMF ISR ontology and knowledge
base clauses to determine that this task can be achieved by assets with a Visible NIIRS
rating of 4 (or higher) or an Acoustic NIIRS rating of 6 (or higher). These ratings are
provided by the following bundle types respectively: a UAV platform with video camera
sensor, or an unattended ground system platform with an acoustic array sensor. (This
example is simplified: many more possibilities and more specific kinds of asset actually
exist for this task.) Bundle instances are now generated and ranked with a utility function
for the localization task. A bundle instance may contain more than one instantiation of
the bundle type, where more than one set of deployed assets is needed to achieve the task.
In our example, this results in the generation of three pairs of acoustic sensing bundles,
each containing two instances of the bundle type <UGS,AcousticArray> (at least two
assets are required for triangulation). For the bundle type <UAV,VideoCamera>, the
bundle generation process results in two visual sensing bundle instances composed of a
single UAV mounting a camera. In total, there are five candidate bundles. As a result of
the ranking process, one of the acoustic bundles is chosen and assigned to the task. We
envisage our approach being deployed in the context of a service-oriented architecture,
where sensors and processing services are “wrapped” as Web services, allowing highly
agile configuration of services to deliver information to a user – potentially to a mobile
device if the user is in the field – once assets are assigned.

Figure 2: Overview of the our ISR asset-task assignment approach

Extensible Matching Framework

To be useful in a coalition context, a asset-task assignment system needs to be extensible
and flexible, not only in terms of new ontological and KB elements (for example, to
incorporate new kinds of sensing assets and alternative formulations of ISR tasks), but
also in terms of extended matching schemes (including alternative allocation procedures).
This extensibility and flexibility is enabled by Ontological Logic Programming (OLP)9,
which combines Prolog with DL-based reasoning. An OLP program can dynamically
import various ontologies and use the terms (i.e., classes, properties, and individuals) in
these ontologies directly within an OLP program. The interpretation of the ontological
terms is delegated to an OWL DL reasoner during interpretation of the OLP program,
supporting operations including subsumption, satisfiability, consistency, class
equivalence, and class instance checking.

A fragment of our OLP implementation to compute deployable configurations (for use as
bundle types) is shown in Figure 3. The OLP program is a Prolog program, where
concepts and properties from the underlying ontologies are referenced directly. The MMF
ISR ontology (http://homepages.abdn.ac.uk/c.emele/pages/ita/index.php?page=resources)
is imported on the first line. The getConfigurations predicate computes deployable
configurations (bundle types) for a specific task. Each sensor must be carried by a

MMF#ontology#+#NIIRS#KB#

UGS#+#

Acous7c#

Array#

UAV#+#

Video#

Camera#

Bundle##

types#

Sensor#bundle#genera7on#

A2#A1#

A1# A3#

A2# A3#

SOA#for#informa7on#delivery#

#

#

U2#

U1#

U
7
lity

Hb
a
se
d
#a
sse

t#a
llo
ca
7
o
n
#

0.8$

0.6$

0.7$

0.5$

0.6$

Localize#

SUV#

Task#

Sensor#Web#service#

deployable platform that provides all of the operational requirements of the task (e.g.,
constant surveillance). If a sensor cannot be carried by a deployable platform, there is no
point in considering deployable configurations with that sensor type. Using this
knowledge, a tailored and efficient matchmaker can be employed. This matchmaker first
identifies the deployable platforms that meet the requirements of the task. Once many
possibilities are narrowed down by determining deployable platforms, the sensor types
that provide the intelligence capabilities required by the task are determined
incrementally so that those sensors can be mounted on the deployable platforms. In the
code, terms from the MMF ISR ontology have the prefix “istar:”. Most of these are
shown in Figure 1 (requireOperationalCapability can be considered a specialization of
requiresCapability).

%import http://…/ISTAR.owl
getConfigurations(T,[P|S]):-
 deployablePlatform(T,P),
 extendSolution(T,P,[],S).
deployablePlatform(T,P):-
 istar:`Platform'(P),
 not((istar:`requireOperationalCapability'(T,C),
 not(istar:`provideCapability'(P,C)))).
extendSolution(T,P,Prev,Next):-
 requireSensor(T,P,Prev,X),
 istar:`mounts'(P,X),
 A=[X|Prev],
 extendSolution(T,P,A,Next).
extendSolution(T,P,S,S):-
 not(requireCapability(T,P,S,_)).
requireSensor(T,P,S,X):-
 requireCapability(T,P,S,C),
 istar:`provideCapability'(X,C).
requireCapability(T,P,S,C):-
 istar:`requireCapability'(T,C),
 not(provideCapability(S,C)),
 not(provideCapability([P],C)).
provideCapability([Y|Tail],C):-
 istar:`provideCapability'(Y,C),!;
 provideCapability(Tail,C).

Figure 3: OLP program to compute deployable configurations

This method for computing deployable configurations is based on the idea that the search
space can be significantly reduced using domain knowledge. For this purpose,
dependencies between sensors and platforms are exploited. Using this principle, at each
iteration, the matchmaking algorithm rules out many combinations and significantly
reduces the time required to compute deployable configurations. We compared the
computational performance of the OLP program in Figure 3 with a set-covering
algorithm that exhaustively searches for deployable configurations. As the size of
deployable configurations increases, our experiments have shown the OLP-based
approach outperforms the exhaustive search approach significantly: time consumption of

the exhaustive search increases exponentially while that of the proposed approach is
linear9.

Asset-Task Matching in a Service-Oriented Architecture

To allow our approach to operate within a service-oriented architecture for sensor
information processing and delivery, we have deployed the asset-task matching
mechanism as a service within the ITA Fabric10. The Fabric provides a distributed
stream-oriented middleware layer that mitigates the complexity of managing message
flows between coalition partners and across disparate networks, while also encapsulating
network and security management for resource-constrained networks. The Fabric
implements a two-way messaging bus and a set of middleware services providing
connectivity between all network resources, to each other and to users. A typical Fabric
node consists of a message broker, an instance of the Fabric Manager, and an instance of
the Fabric Registry. The Fabric Manager manages all the communication channels
between nodes, the routing of messages between nodes, sensing resources and users.
Information about all nodes, routes and ISR resources is recorded in the Fabric Registry:
a database distributed across each of the Fabric nodes, recording resource types, physical
locations, operational characteristics, task commitments, and current operational
status/availability. The Registry implements the asset catalogue – one of the immediate
benefits of embedding our approach in the Fabric is the matching process can use the
Fabric Registry to limit the generation of bundle type to only those deployable
configurations where asset instances are available for assignment.

Integration of our approach in the ITA Fabric is shown in Figure 4. R1…R5 represent
sensing resources, and N1...N4 are fabric nodes. Because Fabric nodes are intended to be
highly lightweight, deployable on low-powered sensor platforms, it is infeasible to run
the computationally-expensive DL-based reasoning operations on a Fabric node. Instead,
the functionalities of our approach are divided into two separate components: the OLP
implementation of the reasoning procedure is deployed on a server, accessible via an API
defined a set of RESTful Web services, separate from the user-facing application that
allows users to submit tasks and receive recommendations. We refer to the reasoning API
as RaaS: Reasoning-as-a-Service.

Figure 4: Integration of our approach in the ITA Fabric

Asset-Task Matching via a Mobile Device

As a concept illustration of the use of our approach, we have created mobile apps for both
smartphone and tablet platforms. The most recent version is implemented as an iPad app.
The main features of this app are:
• Allow a user to create an ISR task in an area-of-interest, by means of a convenient

user interface, and submit the task for asset assignment.
• Allow a user to view all tasks with assigned assets in an area of interest (subject to

access policies).
• Allow the sharing of tasks among users (again, subject to access policies).
The motivation for task sharing was to reduce competition among tasks for resources, by
making it relatively easy for a user to share an existing task rather than to create a new
request for resources. The app is intended to give a user an overview of how well-covered
an area is in ISR terms, not just in terms of what tasks are currently being resourced, but
also the likely permanence of these tasks (by allowing the user to view details of the tasks
such as their ownership and priority). This is very different from simply showing the
current location of sensor assets deployed on the field; in fact, displaying such
information may be unfeasible due to visibility policies; for example, a coalition member
might not be allowed to see other partners’ sensor locations or exact resource types,
though they might have the rights to access the data collected. Moreover, displaying
locations of sensors on the field could also be misleading for a commander, who might
plan a mission in a certain area because “better covered” by sensors, while instead those
sensors might be busy or preempted to serve other more important tasks.

N1#

N2#

N3#

R1#

R2#

R3#

R4#

R5#

ITA Sensor
Fabric

N4#
Matchmaking#
Applica6ons#

RaaS#

Figure 5: Sensor Assignment to Missions iPad app

Figure 5 shows two screens from the iPad app: the task list is on the left, and the
locations of tasks are shown as circular regions on the map. The list of tasks is obtained
by querying the Registry on a local Fabric node, and contextualised by the area of interest,
which is by default determined by the iPad’s location (via GPS) but can be set manually
also. After defining the radius of the area of interest of the task, the user is then allowed
to move the task to the desired location on the map by dragging the center of the area of
interest defined. Defining areas as circular is a limitation, but it would be straightforward
to implement more complex shapes. The interface also allows the user to set the task type,
task priority and expected duration of the task. The user interface is designed for a
logged-in user who belongs to a single coalition partner, and is able to see a list of tasks
(and their details) belonging to other coalition partners according to pre-defined access
policies. Access policies1 are rule-based, and can take account of factors including the
user's coalition partner membership, their rank, membership of a particular group within
the coalition, and also the partner ownership, rank, and group associated with the task.

The task list is searchable using the box on the top-left allowing users to filter the
displayed list by intelligence capability or type of detectable thing. More detail can be
obtained by selecting an individual task, which results in display like the one shown on

the right of the figure. Assuming the task has assigned sensors, the display presents a
summary of the task and the assigned asset bundle. With this amount of detail, the user
can understand how the task is currently being resourced. Inclusion of the NIIRS rating is
intended to give an indication of the quality of the data the asset bundle can collect. We
are considering other ways to convey quality information, as it may not be reasonable to
assume users are familiar with the NIIRS scale. The task priority is an indication of how
“stable” the task is, as lower priority tasks are more prone to being pre-empted if assets
are too scarce to cover all tasks. Information on the task owner and other users who have
joined the task is intended to have a “social” effect, as the logged-in user is likely to
know other users in the region.

Based on this detailed task assignment information, the user may use the buttons on the
bottom left to choose to join or edit the existing task. This entails a more efficient use of
network resources: avoiding the creation of a new task reduces the competition among
them for sensing resources (where it might not be possible to support every task in the
case of limited resources). In some cases, a user’s information requirements may be
satisfiable by pre-existing tasks which are already being served by allocated bundles and
therefore there is no need to preempt resources from other tasks.

The iPad app was demonstrated to ISR specialists from the US Department of Defense,
UK Ministry of Defence, and NATO communities in September and October 2011. Users
were appreciative of how the app achieves separation between what information the user
requires, and how this information can be obtained by various kinds of sensing asset. The
demos also elicited positive comments regarding the usability and simplicity of the
mobile version in terms of how one can request complex information through a simple
task creation form. Moreover it was appreciated that low-level details of both sensors and
tasks (e.g. particular sensor capabilities required to satisfy a task) can remain hidden to a
user therefore making the system accessible also to non-expert users.

Conclusion & Future Work

In this paper, we described a knowledge-driven approach to ISR asset assignment using
ontologies, allocation algorithms, and a service-oriented architecture, accessible from
mobile devices. Going forward, we are experimenting with richer ways of interacting
with users by means of natural language interfaces, and using the approach to assign pre-
collected information sources and streams in addition to sensing assets. Other related
ongoing work addresses consideration of network (e.g. bandwidth) constraints in
allocating asset bundles, and trust and information obfuscation issues in relation to ISR
asset sharing among members of heterogeneous coalition teams.

Acknowledgment: This research was sponsored by the US Army Research Laboratory
and the UK Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either

expressed or implied, of the US Army Research Laboratory, the US Government, the UK
Ministry of Defence or the UK Government. The US and UK Governments are
authorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation hereon

References

1. T. Pham, G. Cirincione, D. Verma, and G. Pearson, “Intelligence, Surveillance, and
Reconnaisance Fusion for Coalition Operations,” in Proc 11th Int Conf on Information Fusion,
2008.

2. J.M. Irvine, “National Imagery Interpretability Rating Scales (NIIRS),” in Encyclopedia of Optical
Engineering, Marcel Dekker, 2003, pp. 1442–1456.

3. L. Lefort, C. Henson, and K. Taylor, Semantic Sensor Network XG Final Report, W3C, 2011;
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/.

4. T. Mullen, V. Avasarala, and D. L. Hall, “Customer-Driven Sensor Management,” IEEE
Intelligent Systems, vol. 21, no. 2, Mar/April 2006, pp. 41–49.

5. D. Russomanno, C. Kothari, and O. Thomas, “Building a Sensor Ontology: A Practical Approach
Leveraging ISO and OGC Models,” in Proc Int Conf on Artificial Intelligence, 2005, pp. 637–643.

6. M. Gomez, A. Preece, M. Johnson, G. de Mel, W. Vasconcelos, C. Gibson, A. Bar-Noy, K.
Borowiecki, T. La Porta, D. Pizzocaro, H. Rowaihy, G. Pearson, and T.~Pham, “An Ontology-
Centric Approach to Sensor-Mission Assignment,” in Proc 16th Int Conf on Knowledge
Engineering and Knowledge Management (EKAW), 2008, pp. 347–363.

7. J.H. Sheehan, P.H. Deitz, B.E. Bray, B.A. Harris, and A.B.H. Wong, “The Military Missions and
Means Framework,” in Proc Interservice/Industry Training and Simulation and Education
Conference, 2003, pp. 655–663.

8. D. Pizzocaro, A. Preece, F. Chen, T. La Porta, and A. Bar-Noy, “A Distributed Architecture for
Heterogeneous Multi Sensor-Task Allocation,” in Proc 7th IEEE International Conference on
Distributed Computing in Sensor Systems (DCOSS), 2011.

9. M. Sensoy, G. de Mel, W. Vasconcelos, and T.J. Norman, “Ontological Logic Programming,” in
Proc Int Conf on Web Intelligence, Mining and Semantics (WIMS), 2011.

10. J. Wright, C. Gibson, F. Bergamaschi, K. Marcus, R.Pressley, G.Verma, and G.Whipps, “A
Dynamic Infrastructure for Interconnecting Disparate ISR/ISTAR Assets (the ITA Sensor
Fabric),'' in Proc 12th Int Conf on Information Fusion, 2009.

