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ABSTRACT
Sensor networks are driven by the activities of their deployed
environment and they have the potential to use data that
has previously been sensed in order to classify current sensed
data. In this paper, we propose the Knowledge-Based Hier-
archical Architecture for Sensing (K-HAS), an architecture
for Wireless Sensor Networks (WSNs) that uses different
tiers within a network to classify sensed data. K-HAS uses
three tiers for in-network classification: the lower tier ac-
tively senses the data and packages it with relevant meta-
data, the middle tier processes the data using a knowledge
base of previously classified sensed data and the the upper
tier provides storage for all data, a global overview of the
network and allows users to access, and modify classifica-
tions in order to improve future classifications. Initial ex-
periments on the performance of the individual components
of K-HAS have proven successful and a prototype network is
planned for deployment in the Kinabatangan Wildlife Sanc-
tuary, Malaysia.

1. INTRODUCTION
Wireless sensor networks (WSNs) allow for wireless commu-
nications between embedded devices that can be deployed
for long periods in harsh environments. Because of their
flexibility, WSNs are applicable to a wide variety of domains
and a lot of research has been done to determine the best
topology for a network, or the best routing protocol. Much
of this research is aimed to solve a specific problem and can
be difficult to translate to other scenarios.

There is already substantial research on the the various rout-
ing protocols that have been developed for WSNs. [3] and
[2] survey routing protocols highlighting the constraints of
deploying a WSN, such as battery life, transmission medium

or coverage, and how each protocol addresses changes in the
topology of a network as well as aiming to be as energy
efficient as possible.

In this paper, we explore the higher level architecture of
a sensor network and propose the Knowledge Based Hier-
archical Architecture for Sensing (K-HAS), an architecture
designed to utilise the knowledge related to its environment
in order to classify sensed data. We define sensed data as
data that originates from a node that is related to what that
node has been tasked to sense.

There has been research into sensor networks that use context-
awareness in order to improve the quality of the sensed data,
as well as the lifetime of the network. In [23], sensors have
been used to monitor the movements of patients and adapt
their power usage based on the behaviour of the patient.

K-HAS aims to extend context-awareness in order to use
the knowledge of its environment to classify the sensed data.
We call a sensor’s knowledge of its environment local knowl-
edge, which we define as: knowledge of an area that can be
gained from experience or experiments within that area [8].
An example of local knowledge is: a biologist knowing that a
particular species is only active in a certain area of an other-
wise uninhabited forest. If this knowledge is encoded onto a
sensor then that node could preliminarily classify that data
before it reaches the base station. We present our prototype
network as a vision-based WSN but the design of K-HAS is
such that it is suited to any type of WSN.

The rest of this paper is structured as follows: Section 2 pro-
vides an overview of our testbed for K-HAS. Section 3 de-
scribes the design principles and background research. Sec-
tion 4 introduces the K-HAS architecture. Section 5 high-
lights an example scenario for K-HAS and Section 6 provides
a preliminary evaluation of our architecture. Section 7 cov-
ers some of the related work while Section 8 concludes our
findings and highlights any future work.



2. DANAU GIRANG RESEARCH AREA
Cardiff University’s School of Biosciences is working with
the Malaysian Sabah Wildlife Department to provide a field
centre, called Danau Girang, within the Lower Kinabatan-
gan Wildlife Sanctuary, shown in Figure 1. Danau Girang
is used by researchers at Cardiff University, as well as other
institutions.

Figure 1: Map of Danau Girang Field Centre

There are long term PhD students that stay in the field cen-
tre for extended periods and shorter term Masters schemes
that allow for projects that last around 6 months. Danau
Girang also offers field courses that allow students to ex-
perience practical field work and carry out small research
projects.

22 motion-sensitive wildlife cameras have been set up along
the Kinabatangan River, as well as up to 1km deep into the
forest, for the Kinabatangan Carnivore Programme which
aims to look at the presence of carnivores in a corridor of
forest between the Kinabatangan River and palm oil plan-
tations, as well as an isolated lot of forest. The images from
these cameras are used in a variety of the research that is
undertaken at Danau Girang.

The cameras are triggered by infrared sensors and images
are then stored on a memory card. Students at the field
centre then go out to one half of the deployed cameras every
2 weeks in order to change the batteries and retrieve the SD
cards. Because of the large area that the cameras are in, it
is not feasible to collect the SD cards of all the cameras in
one day, so the task is split into two. Images are transferred
onto a netbook and processed manually, by the students.

When cameras are first deployed they are able to last for
more than four weeks on a single charge but the humidity
does affect the battery life within a short period of time and
this is reduced to around two weeks. This could be due to
the fact that the internals of the camera are exposed every
two weeks and that the charging method for the batteries is
not efficient, as it is limited by the fact that the field centre
does not provide 24 hour power.

Due to the dynamic nature of the rainforest the cameras
can be triggered often. The majority of the pictures taken
are ‘false triggers’. We define false triggers as movement,
not caused by wildlife, that triggers the motion sensor in

a camera. This can be caused by the movement of the sun
throughout the day, reflections on water or insects inside the
camera.

In a period of 2 weeks more than 1,000 images can be taken,
in extreme cases. Manually collecting and processing the
images taken is time consuming for the researchers and af-
fects research projects. Figure 2 shows the main building at
Danau Girang, where images that have been collected from
cameras are stored on a netbook, into folders sorted by the
camera. These are then processed by research students in
the computer labs in the building. This involves manually
looking at each image and extracting images that are rele-
vant to projects ongoing at Danau Girang. A single camera
can yield more than 300 images in a space of two weeks,
depending on activity in its location. The volume of images
that need to be processed is a complex task for a researcher
to accomplish, making it easy to miss some important im-
ages. It is also difficult for researchers to be aware of all
projects at Danau Girang.

Figure 2: The Main Building at Danau Girang

Investors in projects at Danau Girang often require images
from the camera traps and it is currently a lengthy process
to provide them. When a request is made by a third party,
a USB drive is bought in the nearby town of Sandakan and
returned to Danau Girang. The drive is then loaded with the
relevant images and put on a coach to return it to Sandakan,
where it is posted to the requester. This process can take
weeks and is clearly not the most efficient way to share a
large number of images.

K-HAS has been developed in order to automate the collec-
tion and processing of sensed data, using the local knowledge
of the environment where the network is deployed to aid au-
tomatic classification. Danau Girang is the testbed for the
viability of this architecture.

3. DESIGN AND BACKGROUND
WSNs have constraints such as: power availability, storage,
transmission range and processing capabilities [22], and the
design of a network needs to consider these constraints when
selecting the nodes suitable for the intended purpose.

When researching the choice of nodes for a test deployment
in Danau Girang, we encountered several limitations that
restrict our options for hardware, and the communication



protocols. Thick vegetation in the rainforest causes signif-
icant signal loss (Section 6.2) and means that traditional
communication protocols, such as Wi-Fi, prove to be un-
suitable. A study in [7] showed that sensors deployed in the
rainforest can experience signal loss of up to 78% when using
Wi-Fi as the communication medium.

Thick vegetation and the rainforest canopy do not just affect
wireless transmissions; the amount of sunlight that reaches
the rainforest floor is also limited. This means that solar
panels are unable to provide a constant source of power,
limiting us to sensors that are capable of running, without
maintenance, on battery power for a significant amount of
time.

From our research, we discovered large variations between
the features available on sensor nodes. Some are designed
to last for long periods on a single charge, but have very
little processing power, such as SunSpot motes [20]. Other
sensors are capable of running desktop grade software but
are limited to battery life of only a few hours,for example
the IGEPv2 [18].

Such large variations in nodes make some more suited to par-
ticular WSN deployments than others. From this, we have
identified three categories of nodes. A node can be classified
based on its processing capabilities and is thus suitable for
WSNs with different purposes.

To classify these nodes, we must first present the definitions
of data and metadata. In [4] data is defined as the illus-
tration of information in a formally organised way to be
interpreted and processed in order to accomplish computing
tasks, such as an image. Subsequently, [6] defines meta-
data as ‘data about data’ or, more generally, metadata can
be thought of as providing context for data, such as image
properties (size, date created etc.).

The categories that we have defined are focused toward
knowledge-based processing capabilities and are shown be-
low:

• Data Collection Nodes: These are nodes with a
static knowledge base, encoded at the time of deploy-
ment. The knowledge base holds information relevant
to itself, such as: projects it is involved in, the direc-
tion it is facing and its location.

A Data Collection Node does not process the data that
it senses but it can package sensed data with informa-
tion from its own knowledge base and any metadata
that is of note, such as the time the image was taken.

Upon receiving sensed data from its attached sensors,
a Data Collection node packages the data and forwards
that information to its specified Data Processing node,
known as its master. Data Collection nodes are also
responsible for routing data collected by other Data
Collection nodes to their specified masters. If the mas-
ter node is unavailable, then it is sent to the next Data
Processing node that is available.

• Data Processing Nodes: Data Processing nodes act
as an interface between Data Aggregation nodes and

Data Collection nodes. They contain a dynamic, par-
tially global knowledge base. The knowledge base on
Data Processing nodes consists of all the knowledge
pertaining to the area of the network that it serves,
such as: the number of nodes deployed in the area, all
classifications made and the classified data itself.

Each Data Processing node serves a subset of the net-
work and is responsible for processing the data to pro-
vide a classification. In our prototype, a classification
is of images, but classifications can be made for any
sensed data. The metadata is used to attempt an ini-
tial classification, if this does not prove to be successful
then the data itself is processed. Processing the data
itself is resource heavy and slower than using the meta-
data for a classification, so it is performed only if the
data cannot be classified by other means.

The results of the classifications are stored on the node
and used in future classifications. Processed data, and
the original data, is forwarded to the Data Aggrega-
tion node. If a user changes the classification on the
Data Aggregation node, this change is mirrored to the
respective Data Processing node. Only classifications
are stored on the node and all other data is forwarded
to the Data Aggregation node.

• Data Aggregation Nodes: Data Aggregation nodes
are responsible for storing all sensed data and their as-
sociated classifications. A global overview of the net-
work is stored in a dynamic knowledge base, containing
information such as: all classifications made, the loca-
tion of all deployed nodes and the time period since
sensed data was last received. Acting as a gateway to
the network, humans use these nodes to view sensed
data and modify the classifications.

These nodes process data with human interaction and
are responsible for the most accurate classifications of
sensed data, using the knowledge of the user and global
knowledge to make more informed classifications. In
a typical WSN, only one Data Aggregation node is
required, acting as the base station.

4. K-HAS ARCHITECTURE
K-HAS is split into three tiers, each tier has different re-
sponsibilities for handling sensed data. Figure 3 outlines
the design for our architecture. The arrows depict the flow
of knowledge to and from the nodes, with the lower tier only
holding static knowledge bases, this means that their knowl-
edge bases are not updated when the node is deployed but
the information held in their knowledge base can be used
to update the knowledge base of nodes in the middle tier.
The number of nodes shown are not fixed and, for example:
a network that implements K-HAS can have multiple Data
Aggregation nodes, or a single Data Processing node.

The upper tier contains the Data Aggregation nodes and
the sensor middleware, responsible for aggregating all sensed
data from the network and holding all knowledge related to
the network. The middle tier consists of Data Processing
nodes. Sensors route data to the middle tier for classifica-
tion. This process requires local knowledge in order to assist
with the classification of sensed data. The lower tier are the
Data Collection nodes, tasked with routing the sensed data



Figure 3: High level architecture for K-HAS

to the middle tier and acting as intermediate storage. These
tiers are explained in greater detail below.

4.1 Lower Tier - Sensing
The lower tier of the network consists of Data Collection
nodes. These nodes are primarily tasked with sensing their
environment, but also with routing the sensed to the middle
tier, as well as basic preprocessing of sensed data, through
the use of file metadata, such as creation time and size.

These nodes have extremely basic processing power and lim-
ited storage so they are only capable of reading basic file
metadata and sending files. Due to the reduced capabilities,
Data Collection nodes do benefit from long battery life and
they can run uninterrupted for several months at a time.

Data Collection nodes contain a static knowledge base that
is encoded onto the node at the time it is deployed. The
knowledge base contains basic information, such as: the
area the sensor is deployed, common activity in that area,
projects that the sensor is involved with and times that they
may be most active. With the extracted knowledge from the
knowledge base, it is possible to attempt to classify the data;
although this step is not required, it can help streamline the
classification process in the middle tier.

4.2 Middle Tier - Processing
The middle tier acts as an interface between the lower sens-
ing tier and the upper tier, consisting of Data Processing
nodes. The nodes in this tier act as sinks, receiving all data
from sensors and processing it before it is sent to the base
station. This reduces the flow of raw data to the upper tier
and allows users to ‘subscribe’ to specific classifications of
sensed data. For example: a biologist within Danau Girang
could subscribe to custom alerts for pictures of crocodiles,
while a lecturer at Cardiff University could subscribe to
email updates for pictures of all carnivores.

The middle tier requires a dynamic knowledge base that is
updated by both the base station and the Data Processing
node(s). Nodes used in the processing tier are capable of
sensing their environment but are tasked with the primary
purpose of processing sensed data.

Images taken by digital devices contain additional metadata,
known as: ExChangeable Image Format (EXIF) tags. These
tags contain extra information about the image, for example:
exposure time, compression, moon phase and GPS data (if
available). Different camera models use different EXIF tags
but tags are interchangeable and can be read universally.

Figure 4: EXIF tags from a Reconyx Wildlife Cam-
era

Figure 4 shows the output from the wildlife cameras used
at Danau Girang, containing more information than some
other cameras provide. EXIF tags allows for local and global
knowledge to be combined in order to classify an image. For
example, the moon phase is global knowledge but, coupled
with the local knowledge of the direction that the source
camera is facing and what animals would be active in that
area of the rainforest at that time of the month, a Data Pro-
cessing node would be able to classify the image without any
image processing, or narrow down the possibilities of what
the image may contain. If a classification cannot be gained
from the metadata of the image, or previous classifications
from the same camera, then image processing techniques are
applied to the image. The cameras used at Danau Girang
are motion sensitive and take 3 images, milliseconds apart,
upon each trigger. If a match cannot be made, the set of
images, as well as the extracted region of interest (ROI) is
sent to the base station to be classified by a professional. In
the worst case: that EXIF tags nor image processing can
classify the image, then the image is marked as empty and
sent to the base station as a false trigger.

Due to high processing demand, large amounts of sensed
data and the use of software in multiple programming lan-
guages, a Data Aggregation node is used. The biggest lim-
itation is the power consumption so nodes in the middle
tier require a consistent power source such as solar power.
Although the rainforest canopy has been mentioned as a
limitation, the placement of nodes in the middle tier are not
restricted to the location of cameras, thus allowing them to
be placed in areas of direct sunlight.



4.3 Upper Tier - Aggregation and Access
The Data Aggregation nodes provide a gateway to the WSN
through the internet, allowing global access. Most important
is the need to store all sensed data, along with any classifica-
tion metadata. One of our primary goals for the upper tier is
to use software that requires no technical knowledge to use
but allows an administrative overview, as well as the abil-
ity to dynamically adapt to changes in the network. Users
with different requirements in the network can subscribe to
particular streams of sensed data, such as images of carni-
vores or images of crocodiles in a defined region, and they
are alerted via their chosen method, e.g email. The Data
Aggregation node allows users to view all sensed data from
all deployed nodes, and their associated classifications. A
global knowledge base is also held that stores information
such as: the period that all the nodes have been deployed,
the location of all nodes and any classifications that users
have subscribed to be alerted about.

A local web server is used on the Data Aggregation node
to allow multiple concurrent connections. The server pro-
vides access to all sensed data as well as the location of all
deployed nodes and any knowledge pertaining to the nodes,
for example, a node that has not sent any images for three
days could be marked with a warning symbol as it may have
run out of battery or filled its memory card. When data is
received that does not have a classification, users can clas-
sify the data and the classification is mirrored back to the
respective Data Processing node in the middle tier. This al-
lows the user’s classification to be used when similar sensed
data is processed.

If a user’s classification conflicts with the classifications made
by Data Processing nodes then the node’s classification is
stored but the user’s classification is used. This is because
we believe that the knowledge of experts in the domain that
a WSN is tasked to sense is more accurate than the sen-
sors knowledge. When a user modifies a classification, the
change is made on: the base station’s database, all Data
Processing nodes. These updates allow the classifier, used
primarily on the Data Processing nodes, to learn from pre-
vious classifications and make more informed classifications
in the future.

Each Data Aggregation node would typically be used as a
Base Station and, as such, we would expect more powerful
hardware to be used that would not provide limited storage.
However, Data Aggregation nodes also provide the option
to mirror their database to an external online service that is
relevant to the sensed data, for example our prototype net-
work is image-based so we use Flickr [16]. This is beneficial
for networks that may not always have internet access or to
provide external access to users that may not be based where
the network is deployed, such as part-time researchers.

Although many comparisons can be made between a Base
Station and a Data Aggregation node, such as providing a
local store for all sensed data and allowing an administra-
tive overview of the whole network. However, multiple Data
Aggregation nodes does not mean that they will all hold the
same data, as they can each be used for different purposes.
For example, using Danau Girang as an example, if two Data
Aggregation nodes are used then one could be used for im-

ages that have been classified with hunters in and the other
would hold all other data.

4.4 Network Topology
K-HAS has been designed to be used in a hybrid tree mesh
topology. Data Collection nodes and Data Processing nodes
form a mesh network relative to the locations of the deployed
cameras, with the tree topology formed by the Data Pro-
cessing node(s). In our prototype deployment, every Data
Collection node is connected directly to a camera and a set
of images is routed through the Data Collection nodes to
a single Data Processing node (Section 3). Data Process-
ing nodes are tasked with serving a particular region of the
network and they build a knowledge base for that subset.
Data Processing nodes are connected to the Data Aggrega-
tion node via a Wi-Fi connection and the Data Aggregation
node is connected to the internet through Danau Girang’s
satellite internet connection.

In our prototype, the upper tier’s internet connection allows
for sensed data to be uploaded, for external access when
the base station may not have connectivity, as well as serv-
ing as a remote backup. In our scenario, this provides the
ability for researchers to work remotely, being alerted when
images meet a predefined classification while not requiring
researchers to be resident at Danau Girang. There is also
the benefit of using the expert knowledge of these external
researchers, rather than relying on the researchers at Danau
Girang to confirm the classifications of the hundreds of im-
ages received each week.

5. EXAMPLE SCENARIO
To illustrate how the prototype functions, we describe a
walkthrough of our prototype network in action, outlining
the process undertaken when an image is taken at a camera
to the image reaching the base station.

5.1 Sensing
A macaque moves in front of Camera 3, deployed 500m in-
land from the Kinabatangan River and triggers the motion
sensor. A burst of three images are taken and saved to the
SD card. The Data Collection node attached to the camera
detects the images on the SD card and adds metadata to the
image. Data Collection nodes hold a static knowledge base,
created at the time of deployment, containing information
relevant to its tasked purpose.

The knowledge base on the triggered Data Collection node
denotes that the projects it is involved with are the detection
of crocodiles and the detection of carnivores along forest
corridors. It is also encoded that it is facing the river, as
well as what its latitude and longitude are. This metadata
is added to the three images and routed through the network
to the middle tier.

5.2 Processing
The set of images and metadata are received by the Data
Processing node and the EXIF tags of the image are in-
spected. Figure 4 shows how the EXIF data for the im-
age may look. Using these tags and knowledge about the
previous classifications from Camera 3 a classification is at-
tempted.



Figure 5: Original image taken by a Reconyx
Wildlife Camera in Danau Girang

Figure 6: Image with background removed and
largest ROI extracted

Camera 3’s past 15 images have been false triggers and the
EXIF tags only show that the image was taken during the
day, so the moon phase is not relevant. Because the images
cannot be classified through the metadata, they need to be
processed. The Data Processing node builds a background
model from the 3 images and attempts to detect relevant
objects in the foreground, the first image in the set, unpro-
cessed, looks like Figure 5.

We use a computer vision package, called the Open Source
Computer Vision library (OpenCV) [19], to build a back-
ground model from the images taken by that camera and
attempt to identify objects in the foreground. These are
then extracted and the largest ROI is used as the image con-
tents. The ROI is compared with previously classified ROIs
stored on the node and a match is made where possible. The
largest ROI is saved separately, shown in Figure 6, and the
metadata that originated from Camera 3 is then checked.
The metadata shows that Camera 3 is tasked with the de-
tection of carnivores so the Data Processing node searches
the database of previous classifications for ROIs that match
the ROI extracted from the image set.

An exact match is not found but a match is found similar to
that of the flat-headed cat. The set of images, metadata and

the extracted ROI are classified as a flat-headed cat and sent
to the upper tier. The ROI is saved to the Data Processing
node, with the associated classification.

5.3 Base Station
In our prototype network, we are using a sensor middleware,
called Global Sensor Networks (GSN) [1], that abstracts the
physical connection of all sensors through the use of ’virtual
sensors’. GSN is a java based, open source middleware that
is designed to simplify the control of a heterogeneous sensor
network. When new sensors are added to the network, as
long as the underlying support is in the middleware, the
sensor can be added using an XML file.

Figure 7: Example of a Virtual Sensor XML file

Figure 7 shows an example file of a virtual sensor in GSN
that periodically polls a directory for images matching a
specified file mask; the processing class defines the class used
to process the received data and the output structure ex-
plains the structure of the data, in this case: a string and
two integers. From this, a sampling rate is set and the di-
rectory to monitor is added. All of the actual code used is
abstracted from the user but easily accessible. To perform
any of the processing, the Java classes, defined in the XML
file, are used and can be modified. The data that is received
in the specified structure is saved into a table, of the same
name as the virtual sensor.

GSN comes with support for a wide variety of sensors and
any that are not supported can be added through the Java
classes. A Java web server with a google maps based inter-
face to show all deployed nodes and the most recent sensed
data. Users can also access and download data from one
sensor, or many sensors that match a specified query. GSN,
running on the Data Aggregation node, receives the images
from the Data Processing node through the virtual stream
of Camera 3. The images are saved to the database and re-
searchers that have subscribed to images of flat-headed cats
are notified.

Researchers then access the base station and inspect the re-
ceived images, choosing to reject or accept the classification.
In this case the researcher would see Figure 6 and it would
be clear that the classification is incorrect. The researcher
corrects the classification to a macaque and this would be
changed within GSN’s database. When internet access is
available the sensed data stored on the base station, is mir-
rored to an online image sharing service in order to allow



users, who do not have direct access to the WSN, to view
and classify data. In our network, the data is viewable by
all but only approved users are able to modify any of the
data. Changes made on the photo sharing service are also
mirrored back to the base station.

Once a researcher has confirmed, or updated, a classification,
and when the base station has internet access, the images are
then uploaded to allow global access, with the new classifi-
cation. The change is then mirrored to the Data Processing
nodes, updating their database with the new classification.
When a Data Processing node receives a similar image, the
node compares it with the ROI and classifies it as a macaque.

6. ARCHITECTURE EVALUATION
The experiments in this section have been run to show the
viability of the tiers within the K-HAS architecture, as well
as the network topology itself. They have been run using
the hybrid tree/mesh architecture, explained in Section 4.4
as this is the topology used in Danau Girang.

6.1 Sensed Data Processing
During a typical three month deployment along the Kin-
abatangan River more than 40,000 images can be taken. A
large proportion of these images can be classed as false trig-
gers.

Section 4.2 explains that, using OpenCV, we have imple-
mented a programme that evaluated images taken by the
wildlife cameras, between the period of November 2010 and
March 2011. During this time 40,123 images were taken. Us-
ing the images, taken in sets of 3, and separating the images
taken by specific cameras, we build a Gaussian background
model and used that to detect animals in the foreground,
classifying the detected foreground as the ROI, and extract-
ing it.

As mentioned in Section 5, Figure 5 shows an image taken
by a wildlife camera. The dynamic background and light
levels should be noted here. This image is number 1, in a
set of 3, a background model is built from these images and
added to the pre-existing background model built by that
camera. The foreground of the image is then extracted and
ROIs, larger than a threshold, are identified. The largest
ROI is then extracted from the image and saved separately.

From our visit to Danau Girang in June 2011, we collected
images from two different three month deployments, in two
different lots in Danau Girang, giving us just over 70,000
of images to test our approach. The images are sorted by
the camera and the date of collection. We process every 3
images as one set, building a background model of all three
images.

We manually process all of the images initially, marking im-
ages that are empty as false triggers. We then process the
images, using our application, and a resulting processed im-
age is created from every set of 3 images. If nothing is
detected in a set then no image is created and that set is
logged as empty.

There are four classifications that can be made with images
sets:

True positive: An ROI is extracted that contains the ani-
mal in the set.

False positive: An ROI is extracted that contains nothing
of interest.

True negative: A false trigger is correctly identified and no
ROI is extracted.

False negative: An image with interesting contents is clas-
sified as a false trigger and no ROI is extracted.

The processed images are then compared with our manual
findings. The accuracy of our application is calculated by
the following equation:

Accuracy = (Tp + Tn)/TotalSets (1)

Where Tp is the number of true positive sets extracted and
Tn is the number of true negative sets.

Table 1 shows experiments run on a camera deployed in
Danau Girang for a three month deployment, our initial run
was on a subset of 879 images, or 293 sets, taken over the
course of three weeks. Out of the 293 sets, we have extracted
54 sets that were true positives and 38 false negatives. This
means that in this subset 92 images were of interest and 54
were classified correctly. If we were simply evaluating how
effective our approach is at detecting interesting images in
this set, we would get an accuracy of 58%. However, 199
true negatives were correctly identified and only 2 sets had
an ROI extracted when there was nothing interesting in the
set. This gives us an accuracy of 86%.

These preliminary results show that our method is effective
at detecting false positives but is less effective at detecting
false negatives. It appears that these misclassifications pri-
marily come from black and white images taken at night,
images where minimal movement of the animal has caused
a trigger and images where an animal has caused a trigger
but it has been too fast moving to be in the second two
images.

After a longer deployment, we would be able to build up a
more substantial background model to account for some of
the animals being less dynamic in images and we expect this
to decrease our error rate thus reducing the number of false
negatives. While false negatives do mean that an image with
interesting contents is missed, these should be expected in
the initial runnings of our approach. Data Processing nodes
send all the data of an image set to the Data Aggregation
node, all three initial images and the classification (if any),
and the input of researchers

6.2 Range of Wi-Fi
Studies have been done on how vegetation and humidity can
affect the performance of wireless signals in the rainforest.
In [7], tests in dense rain-forests have shown signal degrada-
tion of up to 78%, in wireless transceivers using the 2.4GHz
frequency band. In order to test for ourselves, we ran ex-
periments on the impact of forest environments on 802.11g
Wi-Fi, in the UK and Malaysia.



True Positive True Negative False Positive False Negative Total Image Sets Accuracy %
54 199 2 38 293 86.34

Table 1: Table Name

Figure 8: IGEP v2 Data Processing Node

In our initial evaluations of K-HAS, we used Wi-Fi as the
communication medium between nodes because of its high
data rate and interoperability with other devices. Our pro-
totype implementation uses an IGEP v2 sensor, shown in
Figure 8, categorised as a Data Processing node with a 1GHz
single core ARM processor, 512MB RAM and Wi-Fi connec-
tivity. Again, solar power is required to ensure these boards
can run uninterrupted but they could remain active for just
under a day on battery power. These nodes are running a
lightweight Linux operating system, designed for the ARM
architecture.

The IGEP nodes we used did not have any additional hard-
ware and the nodes were tested without the use of an exter-
nal antenna. A Java application was written to periodically
scan for available networks and store those results in a text
file. One IGEP board was set as the base station and at-
tached to a tree, at the same height it would be if it was
attached to a camera, and another was walked to specified
points around the base station at defined locations. These
locations were chosen to include as many distances as pos-
sible and as many different forms of obstacle between the
searching node and the base station, such as: line of sight
(LOS), medium vegetation or thick trees.

This experiment was run in a wooded area in the UK and in
the rainforest at the Danau Girang field centre in Malaysia.
The specified maximum range of 802.11g is 120m. When
considering attenuation and obstacles we were expecting the
signal to be reduced by up to 50% in the UK. However, we
found that we received a maximum range of 30m, with LOS.
Figure 9 shows the results we experienced, while testing in
Cardiff, some of the drops in signal can be attributed to
dense foliage and readings that were not LOS, but a maxi-
mum range of 31m, with an SNR of 29.5 dBm, is consider-
ably less than we expected.

Figure 9: Signal-to-Noise Ratio for Wi-Fi in UK
Woodland

Figure 10: Signal-to-Noise Ratio for Wi-Fi in
Malaysian Rainforest

The graph does show a drop at 22m, this was due to the
dense foliage that restricted the LOS between the base sta-
tion and the receiving node, with five runs of this test we
observed the same results. The primary aim of this experi-
ment was to prove the viability of Wi-Fi and to to ensure our
application functioned as intended, which it did. Further ex-
periments could have been run to remove the anomaly but
the results of the experiments in Danau Girang were the
more important results.

Despite the poor range from the tests in the UK, it was
consistent with other studies reporting signal degradation of
up to 78% in areas with moderate foliage. We visited Danau
Girang in 2011 to gather the requirements of the network
and ensure the hardware is able to survive the humidity.
Range experiments were run in the rainforest to see if a
more humid environment impacts range any further, Figure
10 shows this.

Comparing figures 9 and 10 shows that the maximum dis-
tance to receive a signal is approximately the same in Malaysia
as it is in the UK. There are more signal drops but this



seems to be due to denser foliage, blocking the line of sight.
However, it does suggest that the humid environment of the
rainforest does not have a significant impact on the received
signal. It is clear that the denser rainforest does impact
the signal-to-noise ratio in a much shorter distance from the
base station but a link is still made, allowing for a successful
transmission of data.

Due to the poor results of these experiments we researched
alternative methods to increase the range without impact-
ing the environment the network is to be deployed in. We
considered using intermediate Data Collection nodes, not
attached to cameras, to account for the lack of range but,
because some cameras can be up to 1km apart, we would
need more than 30 nodes to create a connection between
two locations.

We also researched wireless technologies that are more com-
mon in sensor networks. This does mean that the data rate
is not as high as Wi-Fi and error correction in packet streams
is not always as robust, but it is more suited to sensor net-
works, using less power and providing longer range.

Finally, we considered using the researchers or animals at
Danau Girang, as ‘data mules’, creating temporary links
between nodes while they are in the forest. However, the trip
to Danau Girang yielded the information that researchers
generally do not cover those distances in the forest and data
delivery would be sporadic.

Although the range of Wi-Fi is poor, for our requirements,
in both Malaysia and the UK, it has shown that the results
we experience in the UK are very similar to the results in
Malaysia. This means that tests we run in the UK should
be indicative of what we can expect in Danau Girang.

Due to the poor range results of Wi-Fi, we created a second
prototype of the network, using Digmimesh as the commu-
nication medium. Digimesh is a proprietary wireless proto-
col, based on the 802.15.4 standard and designed for devices
with limited power. Using the same frequency as Wi-Fi,
Digimesh has been reported to provide 7km of range, with
a data rate of 250kbps.

In our prototype implementation, we are using Waspmote
sensor boards [9], a general purpose Data Collection node
that is capable of transmitting through various communica-
tion mediums. Our Waspmotes are provided with Digimesh
modules and a 2GB SD card to store sensed data.

When testing the range of the waspmotes, we followed a
similar method to that which is outlined in Section 6.2, al-
though we used Waspmote sensor boards, equipped with
802.15.4 Digimesh modules. These modules allow for native
support of mesh networking that is more advanced than that
of Digimesh on its own.

One board is static in a location and running a C++ appli-
cation to poll for nodes in the network, once one is found it
sends a message to the node every 10 seconds. The second
board is set to scan the network and receive packets as soon
as a base node is found, this node is then moved to different
locations.

The receiving node prints out variables related to the re-
ceived packet, such as: RSSI, source MAC address and
packet ID. However, not all packets are received so the RSSI
can display 0 if there are errors reading or if packet collision
occurs. We found this to affect the results and have just
used the two nodes to identify the maximum distance they
can be apart, while maintaining a stable connection.

The initial results for the range tests have proven positive
and it does seem to be a viable solution to account for the
lack of range, when using Wi-Fi. As the frequency is the
same as 802.11g, thus licensing it for worldwide use, we are
expecting similar results for range in Malaysia but we will
need to carry out more extensive tests, at Danau Girang, in
June.

Thus far, these experiments have only been run in a mod-
erately vegetated area in the UK which yielded 497m of
range. Limitations with buildings preventing us from test-
ing any further but the signal strength still proved to be
strong. Although these are positive results, more detailed
experiments in Malaysia are required to justify Digimesh as
a viable communication method.

7. RELATED WORK
There has been a lot of work in the use of WSNs for habi-
tat monitoring but there is a subset of this research that is
most relevant to our work. One of the more notable is the
Instant Wild project, a network of 50 cameras in various
locations around the world [17], tasked with taking pictures
when motion is detected and uploading them to the Instant
Wild servers. The aim of Instant Wild is to crowd-source
sensed data, providing a public web interface to all of the
images taken by 50 cameras. Users of the website can view
recent images, and thumbnails of possible animals that may
be in the image. Clicking on these thumbnails counts as a
vote and all of these votes are shown, taking the majority
vote as the general consensus of the image contents.

The deployment of sensors on Great Duck Island [13] for
habitat monitoring has proven successful and a simple ar-
chitecture for clusters of sensors to collect data about the
island and its inhabitants outlines how sensed data is made
globally accessible. The readings from these sensors are sent
to a gateway, which then forwards all information to the base
station, where it is stored. A remote link to the base sta-
tion allows external access and providing remote users with
sensed data for processing.

There has been research in using local knowledge to aid the
deployment of sensors in harsh environments, [14] uses the
local knowledge of the conditions of the environment for the
nodes to modify the cases and to coat the sensors themselves
before they are deployed in a harsh, glacial environment.

Local knowledge of the topology of a WSN has also been
used to improve the efficiency of routing in a network, a
framework is introduced in [12] that uses locations of nearby
nodes to make energy efficient decisions on routing packets
to improve the performance of a network, while not affecting
the battery life.

The Digimesh protocol is becoming increasingly popular in



WSNs, due to its flexible support for mesh networking. One
such example is a WSN that requires long range and long
term deployment with little human maintenance to detect
forest fires [5].

Context Aware Systems (CAS) use multiple sources of in-
formation to understand a situation, this generally involves
a user and his, or her, environment. In [21], the authors
explore how WSNs can be the source of information for a
CAS. This allows the handling of multiple sources from a
heterogeneous network by the sensor middleware, passing
on processed data to the CAS. The main aim of this is to
allow a single CAS to be applicable to a number of domains
instead of being bespoke for a set of requirements in a par-
ticular domain.

BScope is an architecture for WSNs that uses an inference
engine to apply contextual information to sensed data [11],
this is presented for the use in assisted living environments,
using sensors to understand the movements of elderly people
within their homes. Contextual information is also used in
BScope to perform consistency checks that the network is
performing to its required specifications and checks for node
failures, poor links between nodes or any outlying errors.

Our research into applying knowledge bases to images is not
the only research that has married image processing with
other sources of knowledge. Higher level semantics in Con-
tent Based Image Retrieval (CBIR) are explored in [10] and
the authors have classified this work into five categories. An
example of these categories is the use of textual or visual
sources on the internet. This approach is similar to ours but
simply involves using a larger, less specific knowledge base to
retrieve images with content that matches a specified query.

Cyclops is a bespoke Data Processing node that has been
developed to take images and perform processing to detect
objects or gesture recognition. The performance of the Cy-
clops node is shown in [15] and it is highlighted that these
nodes can be combined with other nodes in heterogeneous
WSNs.

8. CONCLUSION
This paper proposes K-HAS, an architecture for wireless sen-
sor networks to enable in-network processing for the classi-
fication of sensed data. Initial experiments have shown that
Digimesh is a suitable long range protocol for the transmis-
sion of sensing data. The processing of sensed data on Data
Aggregation nodes has proven to be accurate in extracting
relevant sections from images.

One of our primary aims when designing K-HAS was to
create an architecture for a sensor network that does not
require technical expertise to deploy or maintain. In the
case of Danau Girang, this means that a computer scientist
would not be required to be on-site at all times and the
network could be maintained by the existing researchers at
the field centre. We have created a web interface that runs
with our chosen sensor middleware, allowing users to change
the position of cameras and access sensed data from the
database, without the need to have knowledge of SQL.

Ascertaining the distinction between the various capabilities

of sensors, we have defined three categories that can be used
to aid the decision of which sensors are suitable for WSNs
tasked with a particular purpose. Using these categories,
we have created a three tier architecture to allow sensors to
apply knowledge of their environment, in order to classify
the data before it reaches the base station.

We have proposed a middle tier, with nodes that serve a
subset of the network, tasked with using local knowledge to
pre-process sensed data, before it reaches the base station.
Our proposed upper tier allows a Data Aggregation node to
act as more than just a data store, providing custom alerts
for different users of the network, dependent on the data
they require, and allowing global access to the sensed data.

Preliminary tests, on hardware, software and communica-
tion protocols, have proven to be positive but further testing
will be required to test the full functionality of K-HAS.

K-HAS provides a knowledge base layer on top of a sensor
middleware to classify aggregated sensed data at the base
station. Currently, the three tiers outlined have been devel-
oped, and tested individually. We plan to finish development
on the Base Tier to integrate GSN with the knowledge base
to provide classifications at the upper tier.

K-HAS is intended to be generic for any WSN, regardless
of domain, location or the type of data it has been tasked
to sense. We use Danau Girang as an example as it is our
current testbed for our prototype network.

At present, the images are being processed in sets of 3 as
they arrive, independent of other sets, we plan to modify our
processing implementation to store a background model of
all the images from a particular camera and create a compar-
ison between the model and the image sets that arrive. We
hope that this will reduce the amount of interesting images
classed as false triggers but the dynamicity of the rainforest
makes the background of camera images change dramati-
cally during a 3 month deployment.

We plan on testing K-HAS with various topologies to test its
performance overall and maximise the performance of each
tier. Adding wirelessly capable cameras could mean that
one Data Collection node would be able to handle images
taken by multiple cameras. An example of this could be two
cameras, located opposite each other, deployed on a path.
Our current topology requires two Data Collection nodes,
one for each camera, but a only one would be required if the
cameras were wireless communication-enabled. This would
also assist in extracting local knowledge from images and
to confirm classifications, without the need for a researcher,
simply by checking if the two cameras triggered at the same
time and comparing the classifications of the two image sets
on the Data Processing nodes.

A visit to Danau Girang is planned for 2012 to test the
wireless range of Digimesh in the rainforest and to run more
tests on the individual components of K-HAS. This visit will
also allow us to use the knowledge of researchers resident at
Danau Girang to classify a large set of images to run more
extensive tests on our image processing approach. During
this visit, we expect to deploy a small scale test network,



involving one or two wildlife cameras. This will run for the
duration of our visit and, if it proves to be stable, we plan
to leave a long term deployment, with remote access. This
allows us to test the tiers of K-HAS as well as allowing us
to build a knowledge base from the classification of images,
made by researchers, that can be used as training data.

Interest has also been shown by the Sabah Wildlife Depart-
ment at the possible use of this network to detect hunters
as well as animals, tasking the network with two purposes.
This would require using the Wildlife Department as a sec-
ond base station and sending all images that contain hu-
mans to that base station and all others would be routed
to Danau Girang. We would expect this ‘filtering’ of sensed
data would be made at the middle tier.
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