
Ontology Reconciliation

Adil Hameed, Alun Preece, and Derek Sleeman

University of Aberdeen, Department of Computing Science,
Aberdeen AB24 3UE, UK
{ahameed|apreece|dsleeman}@csd.abdn.ac.uk

Summary. Ontologies are being applied very successfully in supporting informa-
tion and knowledge exchange between people and organisations. However, for many
reasons, different people and organisations will tend to use different ontologies.
Therefore, in order to exchange information and knowledge, either everyone must
adopt the same ontology — an unlikely scenario — or it must be possible to rec-
oncile different ontologies. This chapter examines the issues and techniques in the
reconciliation of ontologies. First, it examines the reasons why people and organ-
isations will tend to use different ontologies, and why the pervasive adoption of
common ontologies is unlikely. It then reviews alternative architectures for multiple-
ontology systems on a large scale. A comparative analysis is provided of a number of
frameworks which analyse types of mismatches between ontologies. The process of
ontology reconciliation is outlined. Finally, some existing software tools that support
reconciliation are surveyed, and areas are identified where further work is necessary.

1 Introduction

Ontologies are a key component of any information architecture, being an
explicit specification of the conceptual model underpinning an information
domain [5]. Regardless of the information architect’s goal — whether it be,
for example, the definition of an enterprise data model, the design of an or-
ganisation’s Web site, or the creation of a corporate knowledge map — one of
the first tasks is to elucidate and specify the conceptual and relational struc-
tures in the domain. For an enterprise data model, the ontology will identify
aspects such as business processes, actors, and information objects [24]; for
a Web site, the ontology specifies information categories, topics, labels, link
types, and so on [21]; for a corporate knowledge map, the ontology defines
the areas of expertise within the organisation, useful for documenting best-
practices and experience, and also for “identifying who knows what” [20].

In providing a means of organising information and knowledge, ontologies
also facilitate its communication and interchange. While the communication

2 Adil Hameed et al.

and interchange of information and knowledge is not a necessary goal of creat-
ing an ontology — an individual may choose to create a “personal ontology”
to organise their own information and knowledge [8] — it is generally seen as
the most valuable use of ontology techniques [2]. However, as soon as ontolo-
gies are applied in supporting information and knowledge exchange between
people and organisations, a fundamental problem arises: for many reasons,
different people and organisations will tend to use different ontologies. There-
fore, in order to exchange information and knowledge, either everyone must
adopt the same ontology — an unlikely scenario — or it must be possible to
reconcile different ontologies.

This chapter examines the issues and techniques in the reconciliation of
ontologies. The next section examines the reasons why people and organisa-
tions will tend to use different ontologies, and why the pervasive adoption
of common ontologies is unlikely. Section 3 then compares alternative archi-
tectures for multiple-ontology systems on a large scale. Section 4 reviews a
number of frameworks which analyse types of mismatches between ontologies.
The process of ontology reconciliation is outlined in Section 5. Finally, some
existing software tools that support reconciliation (to at least some extent)
are surveyed in Section 6. Section 7 concludes, identifying some areas where
further work is necessary.

2 Living in a Multiple-Ontology World

The past decade has seen many long-term, large-scale efforts to develop stan-
dard, common ontologies to support information and knowledge sharing.
These include work on domain-independent so-called upper ontologies such
as Cyc [11] and SUO1, and domain-specific ontologies such as the Enterprise
Ontology [24] and the Engineering Mathematics ontology [5]. These efforts
are undoubtedly important, and have led to a substantial level of maturity
and agreement in the area of ontology technology and methodology.

Nevertheless, it is unrealistic to expect that in general all people and or-
ganisations developing information and knowledge application systems will
use a common, shared ontology. There are several reasons for this. Firstly, at
present there is often a competing choice of “common” ontology for a partic-
ular purpose. For example, Cyc and SUO offer alternative choices of upper
ontology, while the Enterprise Ontology and TOVE [3] offer alternative busi-
ness models. Even if, in the long run, particular ontologies become favoured,
de facto or de jure standards, by that time there will likely be many “legacy”
ontologies still in existence, which use an outmoded but still valid alternative.
There will then be a need to reconcile such legacy ontologies with the standard
common ontology.

A second reason for expecting continuing diversity in ontologies is that an
ontology is often aligned with a particular perspective on the world. Whether
1 http://suo.ieee.org/

Ontology Reconciliation 3

it is a “personal ontology”, designed to support an individual’s needs and
preferences, or an ontology created by a particular company to reflect that
company’s view on their industry, such ontologies will have biases and neces-
sarily subjective features. If that individual or company needs to interchange
information and knowledge with other individuals or organisations, there will
be a need to reconcile multiple ontologies. In an environment of industrial
knowledge management, it is easy to envisage a scenario where:

• individual workers need to reconcile their personal ontologies with the
common ontology of their department, division, or company as a whole;

• a company needs to reconcile its ontology with those of other partner
companies, or the industry as a whole.

Ontology reconciliation can therefore be at several levels: inter-personal, intra-
organisational, and inter-organisational.

A third reason why the need for ontology reconciliation is unlikely to be
eliminated is that, even if a single common standard ontology emerged that
everyone committed to, this “überontology” would still need to evolve over
time — conceptualisations of information and knowledge domains are not
static. There will then be different versions of the “standard” in existence
over time, and there will be a need to reconcile these different versions, to
allow migration of information and knowledge between the versions.

These arguments are underscored by recent experience of working with
information architecture for the World Wide Web. The Web is the largest
and most significant information system in history; part of the reason for its
success is that it is extremely tolerant of diversity in information modelling.
Different Web sites use different information architectures; it is easy for in-
dividual people and organisations to “do their own thing”, yet the Web as
a whole is still usable and useful. Recent work in the context of developing
a machine-processable, Semantic Web is acknowledging this diversity. The
emerging layers of the W3C’s architecture are incorporating support for a
multiple-ontology Semantic Web, for example:2

• the lowest layers are founded on distributed information architecture stan-
dards: URIs and XML namespaces for creating “object identifiers” that
can be defined with respect to a local ontology, yet referenced globally;

• the higher layers are tolerant of combining information from multiple on-
tologies (for example, RDF descriptions that refer to more than one RDF
Schema) and articulating the relationships between ontologies (for exam-
ple, OWL’s sameClassAs property).

In the context of the Web, experience suggests that ontologies will proliferate
and diverge — with the appearance of many personalised small-scale local
conceptualisations — rather than converging on a few, large-scale standards
under central control. The Semantic Web will work as a whole only if it is
possible to reconcile its diversity of ontologies.
2 http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

4 Adil Hameed et al.

3 Architecture

There exists a variety of alternative architectures for multiple-ontology sys-
tems, as shown in Figure 1. The simplest, “bottom up” approach, is merely
to map between individual ontologies as needed. This architecture is shown
in Figure 1(a). Here there is no attempt to identify common, standardised
ontologies. Not all ontologies will be reconciled; only where there is a re-
quirement to inter-relate particular individual ontologies. The advantages of
this approach are its simplicity and flexibility: no overall common ontology is
needed; there is great flexibility in being able to map only what’s required,
and mappings can be managed locally by the developers of specific individual
ontologies. The most obvious disadvantage are that there will be many sets
of mappings required when many ontologies need to be reconciled: O(n2) sets
of (bidirectional) mappings for n individual ontologies in the worst case. An-
other significant disadvantage is that there is no general organising principle
at work here: no attempt to identify common conceptualisations across the
individual ontologies in a “top-down” fashion. For both of these reasons, this
approach scales very poorly for large-scale ontology systems (of which the
largest is the Semantic Web).

In contrast to the “bottom-up” approach, Figure 1(b) illustrates the ap-
proach where a single common, standard ontology is used as a basis for rec-
onciling the individual ontologies. To map information and knowledge from
one individual ontology O1 to another individual ontology O2, two steps are
required: first, map from O1 to the common ontology, then from the common
ontology to O2. Avoiding the direct mappings between individual ontologies
cuts the number of sets of mappings down to just n (bidirectional) mappings
for n ontologies, a significant improvement on the “bottom-up” approach.
However, there will be a major cost in developing a common ontology with
sufficient power to map all the individual ontologies; in some cases, this may
not even be possible, so parts of some individual ontologies may still need to
be mapped directly. Moreover, some flexibility is lost, in that mappings are
no longer manageable locally, but only in relation to a centralised standard.

Figure 1(c) shows a variant of the common ontology approach, where
there are a number of common ontologies, forming clusters of inter-related
ontologies [26]. Each individual ontology maps to the common ontology for
its cluster, and the common ontologies are mapped to allow the exchange of
information and knowledge between the clusters. This is the most manage-
able, scalable approach in practice, as it combines the advantages of both the
previous approaches: there is still a reduced number of mappings, and a prin-
cipled approach to identifying common conceptualisations, as in Figure 1(b),
yet also there is greater flexibility in managing mappings in a localised con-
text, as in Figure 1(a). For these reasons, this third approach appears most
likely to succeed in the context of the Semantic Web.

Ontology Reconciliation 5

Fig. 1. Alternative ontology reconciliation architectures: ontologies are depicted as
nodes, (bidirectional) mappings as arcs; dark-shaded nodes are common ontologies;
light-shaded nodes are individual ontologies.

4 Ontology Mismatches

In order to reconcile ontologies, it is necessary to analyse the mismatches
between individual ontologies. Mismatches might be present at a conceptual
level, as well as at the terminological, taxonomical, definitional, and purely
syntactic levels. It is necessary to detect and resolve such discrepancies, es-
pecially among the differing semantics. Correspondences may have to be es-
tablished among the source ontologies, and overlapping concepts will need to
be identified: concepts that are similar in meaning but have different names
or structures, concepts that are unique to each of the sources [18]. This sec-
tion surveys ontological mismatches from the perspective of researchers and

6 Adil Hameed et al.

practitioners in three areas: knowledge representation [25], databases [27],
and knowledge elicitation [22]. In each case, examples of real ontological mis-
matches are given, drawn from an empirical study of mismatches among on-
tologies of four different experts in the domain of Personal Computer (PC)
advising [6]. In all the examples, terms in the different experts’ ontologies are
differentiated by prefixing them in a similar way to XML namespace prefixes;
for example, the term a:PC identifies the concept PC in the ontology of Ex-
pert A, and b:HardDisk identifies the concept HardDisk in the ontology of
Expert B.

4.1 Knowledge Representation Perspective

Visser et al [25] proposed a classification of ontology mismatches to explain
semantic heterogeneity in systems. They distinguish conceptualisation mis-
matches and explication mismatches as the two main categories, described as
follows:

Conceptualisation mismatches

These may arise between two or more conceptualisations of a domain. The
conceptualisations could differ in the ontological concepts distinguished or in
the way these concepts are related, as shown below:

• Class mismatches are concerned with classes and their subclasses distin-
guished in the conceptualisation:
– A categorisation mismatch occurs when two conceptualisations distin-

guish the same class, but divide this class into different subclasses.
Example:
c:Expert advises c:Staff ∪ c:Student
b:Expert advises b:User ∪ b:MemberOfStaff ∪ b:Department ∪
b:Supplier ∪ b:Expert
These conceptualisations differ because the experts have partitioned
the same class — as distinguished in their individual ontologies — into
different aggregates of subclasses. The symbol ∪ signifies the union of
the specified classes/concepts.

– An aggregation-level mismatch occurs if both conceptualisations recog-
nise the existence of a class, but define classes at different levels of
abstraction.
Example:
b:PC → b:Desktop ∪ b:Laptop
c:PC → c:Desktop ∪ c:Tower ∪ c:Portable ∪ c:Server
The experts have identified the same (or similar) classes but defined
them at dissimilar levels of abstraction. In particular, the second ex-
pert’s notion of a “PC” is broader than that of the first expert —
the second’s includes servers, whereas the first’s is restricted to users’

Ontology Reconciliation 7

workstations. In this example, the symbol → denotes the relation ‘is
defined by’.

• Relation mismatches are associated with the relations distinguished in the
conceptualisation. They concern, for instance, the hierarchical relations
between two classes or, the assignment of attributes to classes:
– A structure mismatch occurs when two conceptualisations perceive the

same set of classes but differ in the way these classes are structured via
relations.
Example:
c:PC isMadeOf c:Part ∪ c:Component
e:PC hasComponent e:Processor
Experts B and C have distinguished the same set of classes but dif-
fer in the way these classes are structured by means of the relations
that associate their concepts. The following descriptions also reveal a
difference in granularity of the domain semantics.

– An attribute-assignment mismatch occurs when two conceptualisations
differ in the way they assign an attribute to various classes.
Example:
b:PC has b:Disk, b:PC has b:Space
d:PC has d:Disk, d:Disk has d:Space
The ontologies differ in the way they assign an attribute to their re-
spective subclasses. While expert B has assigned two disjoint attributes
Disk and Space to the concept PC, expert D defined a hierarchical re-
lationship between similar concepts.

– An attribute-type mismatch occurs when two conceptualisations dis-
tinguish the same attribute, but differ in their assumed instantiations
(range of possible value assignments).

Explication mismatches

These are not defined on the conceptualisation of the domain but on the way
the conceptualisation is specified. They occur when two ontologies have differ-
ent definitions, yet some component of the definition is identical. Visser et al
distinguish three components of a definition: the term (T) used to denote
a concept, the definiens (D) that comprises the body of the definition, and
the underlying concept (C) being defined. Six different types have been spec-
ified, listed below. In the following examples, the → symbol denotes that the
definiens which follow the arrow ‘define’ the term on the left-hand side of the
description, and the ∧ operator is used to concatenate multiple definiens.

• Concept (C) mismatch: the definitions have the same terms and definiens,
but differ conceptually. So, while the represented definitions are apparently
identical, in fact they refer to different concepts.
Example:
b:MinSpec ← b:Requirement ∧ b:PC ∧ b:User

8 Adil Hameed et al.

(referring to a user’s hardware requirement)
d:MinSpec ← d:Requirement ∧ d:PC ∧ d:User
(referring to a system specification of software needed by user)
In this case, there are identical terms and definiens but each expert is refer-
ring to a quite different concept, revealed by the context of the definition
as explained in parentheses below.

• Concept & Definiens (CD) mismatch: the definitions share the same term,
but have different concepts and definiens. Apparently, different “things”
are being defined, though the terms coincide.
Example:
a:Spec ← a:Supplier ∧ a:StandardSpecsList
b:Spec ← b:Specifies ∧ b:StandardSpecsList
b:Spec ← b:Specifies ∧ b:Machine
b:Spec ← b:Description ∧ b:Machine ∧ b:User
c:Spec ← c:Requirement ∧ c:User
c:Spec ← c:Requirement ∧ c:Application
c:Spec ← c:Specification ∧ c:HardwareDevice
In these examples, an incidence of multiple descriptions for the same term
implies that the expert gave distinct definitions in different contexts.

• Definiens (D) mismatch: the definitions have the same concept and the
same term, but different definiens.
Example:
b:FastPC ← b:ProcessorSpeed ∧ b:MemoryAmount
c:FastPC ← c:CPUPentium4 ∧ c:RAM64MegaBytes

• Term (T) mismatch: the definitions share the same concept and the same
definiens, but use different terms.

• Concept & Term (CT) mismatch: the definitions have the same definiens,
but different concepts and terms. While the actual body of the definition
is the same in each case, suggesting the same “thing” is being defined, the
underlying concept and the term used for that concept is different.
Example:
b:AdviceToUser → b:Expert advises b:User about b:Spec
b:AdviceToSupplier → b:Expert advises b:Supplier about b:Spec
In Expert B’s ontology, the concept ‘advice’ refers to the provision of
a ‘spec’ (specification) to both ‘users’ and ‘suppliers’, albeit in different
contexts.
This is an instance of a discrepancy within Expert B’s ontology.

• Term & Definiens (TD) mismatch: the definitions have the same concept,
but dissimilar terms and definiens. This is essentially the exact opposite to
the C mismatch — the same concept is represented completely differently
in the two definitions.
Example:

Ontology Reconciliation 9

b:MinSpec ← b:ProcessorP3 ∧ b:Memory128MB
c:BasicPC ← c:CPUPentium ∧ c:RAM64MegaBytes
Although they use different terms and definiens, both experts are referring
to the same concept: a specification for an entry-level PC. This interpreta-
tion might be construed as subjective, but more domain-specific knowledge
would be required to explicate the subtleties in such concepts.

4.2 Database Perspective

Wiederhold [27] contends that “data obtained from remote and autonomous
sources will often not match in terms of naming, scope, granularity of ab-
stractions, temporal bases, and domain definitions.” Wiederhold’s perspec-
tive is especially applicable in the context of mapping between ontologies and
databases. His approach proposes the following types of data resource mis-
matches:

• Key difference: different naming for the same concept, for example syn-
onyms.
Example:
b:RMMidRangeSystemAcceleratorSpec2 (reference for customer)
b:GCAT03234 (reference for supplier & experts)

• Scope difference: distinct domains, or distinct coverage of domain mem-
bers.
Example:
b:Advice (advice given by expert B to users, etc)
a:Advice (technical advice sought by expert A from expert B)
a:Memory, d:Memory (referring to RAM)
b:Memory, c:Memory (referring to RAM and VRAM)

• Abstraction grain: varied granularity of detail among the definitions.
Example:
c:FasterMachine (referring to speed of computer)
b:FastestMachine (referring to speed of CPU)

• Temporal basis: mismatches concerning ‘time’, for example monthly versus
yearly income.

• Domain semantics (distinct domains, and the way they are modelled)
Example:
b:Budget (funds/financial outlay available to user)
b:Cost (price of machine quoted by the supplier)

• Value semantics : differences in the encoding of values.

Wiederhold states that in order to ‘compose’ large-scale software there has
to be agreement about the terms, since the underlying models depend on the
symbolic linkages among the components [28].

10 Adil Hameed et al.

4.3 Knowledge Elicitation Perspective

Shaw and Gaines [22] identified four distinct dimensions to map knowledge
elicitation problems that are likely to occur when several experts are involved
during the evolution of a knowledge-based system. Because experts ‘work’
with knowledge entities that comprise concepts and terms, ambiguities can
arise among the way concepts are agreed upon. From this perspective, there
are four possible cases:

• Conflict : the experts use the same term for different concepts.
Example:
c:MinimumSpecification: requirements of a certain hardware device
d:MinimumSpecification: minimum system requirements for satisfacto-
rily running a software package
a:Specifications: referring to suppliers’ specification lists
c:Specifications: referring to (i) requirements of certain applications;
(ii) user requirements; (iii) certain hardware devices (video cards and mon-
itors)

• Correspondence: the experts use different terms for the same concept.
Example:
b:Memory versus c:RAM
b:Processor versus c:CPU

• Contrast : the experts use different terms, and have different concepts.
Example:
c:Staff versus b:ApprovedSuppliers

• Consensus: the experts use the same term for the same concept. Example:
a:Monitor, b:Monitor, c:Monitor— all refer to video display unit/screen

In each case with the exception of the last, consensus, there is a dis-
crepancy. Shaw and Gaines developed a methodology and tools based on the
repertory grid technique for eliciting, recognising and resolving such differ-
ences [22].

4.4 Comparing the Three Perspectives

Table 1 draws comparisons between the three perspectives in subsections 4.1,
4.2, and 4.3. It shows that the knowledge representation perspective (subsec-
tion 4.1) is essentially a finer-grained breakdown of the knowledge elicitation
perspective (subsection 4.3), while the database perspective (subsection 4.2)
is in some sense orthogonal to both of the others.

Ontology Reconciliation 11

Knowledge elicitation Database Knowledge representation
Consensus (same name,
same concept)

No mismatch — not con-
sidered

No mismatch — not con-
sidered

Conflict (same name, dif-
ferent concepts)

Examples of scope differ-
ence, abstract grain, and
temporal basis given in sub-
section 4.2

Three cases:

• C mismatch
• CD mismatch
• D mismatch

Correspondance (different
names, same concept)

Examples of key difference
given in subsection 4.2

Three cases:

• T mismatch
• CT mismatch
• TD mismatch

Contrast (different names,
different concepts)

Examples of domain se-
mantics given in subsec-
tion 4.2

Not considered a mismatch

Table 1. Comparisons between mismatches identified in the knowledge elicita-
tion perspective (subsection 4.3), the knowledge representation perspective (sub-
section 4.1), and the database perspective (subsection 4.2). In column 1, we are
using the word “name” to refer to what is called “term” in column 3.

5 The Process of Ontology Reconciliation

Ontology reconciliation is generally a human-mediated process, although soft-
ware tools can help (see Section 6). This is because most of the decisions on
how to resolve the kinds of ontological mismatches surveyed in the previous
section require a human to identify that different symbols represent the same
concept, or that the same symbols represent different concepts. It is also a
human’s decision as to how to manage the reconciliation. There are three
possibilities: merging, aligning, or integrating.

• Merging is the act of building a new ontology by unifying several ontologies
into a single one [19, 23]. The ultimate goal is to create a single coherent
ontology that includes all information from all the sources [18]. The new
ontology is created from two or more existing ontologies with overlapping
parts, and can be either virtual or physical [9].

• Aligning is used when sources must be made consistent and coherent with
one another but kept separately [18]. It involves bringing two or more
ontologies into mutual agreement, making them consistent and coherent [1,
9]. A set of alignment statements are created during this process, which
collectively define the relationships between the original ontologies.

• Integrating entails building a new ontology by composing parts of other
available ontologies [19]. Like merging, this process results in a new ontol-
ogy. The difference between this approach and merging is that only parts

12 Adil Hameed et al.

of the original ontologies will be integrated — the goal is not to achieve a
complete merger.

Once a decison has been made on how to manage the reconciliation, the
next step is to identify mismatches between the candidate ontologies. As an
example, Figure 2 shows ontology fragments from one of the examples in
Section 4.1, together with a fragment of a common ontology. Figure 2(a) and
Figure 2(b) are drawn from human experts in the PC advising domain, while
Figure 2(c) is based on a PC technology reference textbook. In each case, a
fragment of the class hierarchy of types of computer is shown; super-classes
are decomposed into their sub-classes, where the super-class is defined as the
union of its respective subclasses.

Figure 3 and Figure 4 give the OWL definitions corresponding to the first
two ontologies in Figure 2 (for an introduction to OWL, see Chapter ??).
Figure 3 is Expert B’s ontology fragment, from Figure 2(a), and Figure 4 is
Expert C’s ontology fragment, from Figure 2(b).

There are several possible reconciliations between these ontology frag-
ments. Figure 5 shows one set of alignments, where classes in the two experts’
ontologies are equated with classes in the common ontology. In this reconcil-
iation, the second expert’s notion of a “PC” is considered broader than that
of the first expert — the second expert’s notion includes servers, whereas the
first expert’s notion is restricted to users’ workstations. If a decision had been
made to align the ontologies, then these class-equivalence relationships would
constitute the set of reconciliation statements.

Figure 6 shows some additional reconciliation statements expressed in
OWL, this time directly between the two individual ontology fragments from
Expert B and Expert C (the statements for the reconciliations between the
experts’ ontologies and the common ontology shown in Figure 5 would be
similar). Note how OWL’s sameClassAs property is used to express the class-
equivalence.

It is worth noting that, in a process of merging the two experts’ ontolo-
gies, the common ontology, in fact, can be seen as one possible result of such
a merger process, as it contains all of the information from the individual
experts’ ontologies.

6 Ontology Reconciliation Tools

A sizeable number of software tools has been developed to assist in the process
of reconciling ontologies, although few of these have moved beyond the status
of research prototypes. This section provides a short survey of a number of
the better-known tools, as an illustrative snapshot of this evolving activity.
Other notable tools include the Methontology project’s WebODE [4], Ontolog-

Ontology Reconciliation 13

Fig. 2. Fragments of three alternative PC ontologies: those of individual experts B
and C, and a common ontology for the PC domain. Each example shows super-
classes decomposed into sub-classes, where the super-class is always the union of its
subclasses.

ging/KAON [12], and ConcepTool [14]. A survey of ontology mapping tools
has been undertaken by the European OntoWeb network3

6.1 Chimæra

Chimæra was developed by McGuinness et al at the Knowledge Systems Lab-
oratory, Stanford University [13]. It is an interactive Web-based environment

3 See deliverables of the “Enterprise Standard Ontology Environments” SIG at:
http://www.ontoweb.org

14 Adil Hameed et al.

<!DOCTYPE rdf:RDF [

<!ENTITY reconto "http://www.csd.abdn.ac.uk/research/reconto">

]>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="&reconto;/samples/pc/expertb">

<owl:Class rdf:about="PC">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="Desktop"/>

<owl:Class rdf:about="Laptop"/>

</owl:unionOf>

</owl:Class>

</rdf:RDF>

Fig. 3. OWL version of Expert B’s ontology fragment, from Figure 2.

<!DOCTYPE rdf:RDF [

<!ENTITY reconto "http://www.csd.abdn.ac.uk/research/reconto">

]>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="&reconto;/samples/pc/expertc">

<owl:Class rdf:about="Machine">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="Desktop"/>

<owl:Class rdf:about="Tower"/>

<owl:Class rdf:about="Server"/>

<owl:Class rdf:about="Portable"/>

</owl:unionOf>

</owl:Class>

</rdf:RDF>

Fig. 4. OWL version of Expert C’s ontology fragment, from Figure 2.

for merging and testing ontologies, which allows the user to bring together
ontologies developed in different formalisms. The tool aims to support users
in creating and maintaining distributed ontologies on the web. Chimæra uses
the Ontolingua ontology editor, and is OKBC-compliant. Its Web-based user
interface is simply HTML, augmented with JavaScript.

The two major functions supported by Chimæra are merging multiple
ontologies, and evaluating ontologies with respect to their coverage and cor-

Ontology Reconciliation 15

Fig. 5. Possible alignments between the three PC ontology fragments from Figure 2,
showing classes in the two experts’ ontologies equated with classes in the common
ontology; the common ontology can be viewed as a merger of the two individual
experts’ ontologies.

rectness. Chimæra considers the task of merging to be one of combining two or
more ontologies that may use different vocabularies and may have overlapping
content. The task of evaluating single or multiple ontologies is addressed by
producing a test suite that evaluates (partial) correctness and completeness
of the ontologies. This involves finding and reporting provable inconsistencies,
possible inconsistencies, and areas of incomplete coverage. The tool has other
features like loading knowledge bases in differing formats, reorganising tax-
onomies, resolving name conflicts, browsing ontologies, editing terms, and so
on.

16 Adil Hameed et al.

<!DOCTYPE rdf:RDF [

<!ENTITY reconto "http://www.csd.abdn.ac.uk/research/reconto">

<!ENTITY expertb "/samples/pc/expertb#">

<!ENTITY expertc "/samples/pc/expertc#">

]>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="&reconto;/samples/pc/articulation">

<rdf:Description rdf:about="&reconto;&expertb;Desktop">

<owl:sameClassAs rdf:resource="&reconto;&expertc;Desktop"/>

</rdf:Description>

<rdf:Description rdf:about="&reconto;&expertb;Laptop">

<owl:sameClassAs rdf:resource="&reconto;&expertc;Portable"/>

</rdf:Description>

</rdf:RDF>

Fig. 6. OWL version of some alignments directly between Expert B’s ontology
fragment, and Expert C’s ontology fragment.

Users can request analysis or guidance during the merging process. The
tool will then point to the places in the ontology where attention is required.
In its suggestions, Chimæra mostly relies on which ontology the concepts came
from and, for classes, on their names. For example, it will point a user to a
class in the merged ontology that has two slots derived from different source
ontologies, or that has two sub-classes that originated in different ontologies.
Help offered during the merging process includes:

• Generation of a ‘name resolution’ list that helps the user in the merging
task by suggesting terms each of which is from a different ontology that
are candidates to be merged.

• Generation of a ‘taxonomy resolution’ list where the tool suggests taxon-
omy areas that are candidates for reorganization. A number of heuristic
strategies are used for finding such points for taxonomies. Currently, the
tool implements only partial support for the merging of class-subclass tax-
onomies.

In evaluating ontologies with respect to their coverage and correctness,
Chimæra provides simple checks for incompleteness, syntactic analysis, simple
taxonomic analysis, and some semantic evaluation.

Some limitations of Chimæra in its current form are that it leaves ontology
reconciliation decisions entirely to the user, and does not make any suggestions
itself. Also, use of Chimæra is hampered by very slow performance, a non-
intuitive user interface, and a steep learning curve. Some of these weaknesses

Ontology Reconciliation 17

stem from the tool’s Web-based architecture, which limits performance and
user interface sophistication.

Ongoing work on Chimæra includes extending reasoning capabilities, pro-
viding semantic analysis in the reconciliation process, offering greater exten-
sibility, and opening up the tool’s usability to non-experts.

6.2 ONION

The ONION (ONtology CompositION) system was developed by Mitra,
Wiederhold, and colleagues in the Stanford University Database Group [16].
The ONION project proposes a scalable and maintainable approach based on
interoperation of ontologies. The motivation for the work is to handle dis-
tributed queries crossing the boundaries of underlying information systems.
For this to be possible, the interoperation between the ontologies for the in-
dividual information systems need to be precisely defined.

The ONION approach includes an algebra for knowledge composition, fea-
turing operators such as union, intersection, and difference. Articulation of on-
tology interdependencies are expressed using this algebra. The articulations
essentially form a graph of ontology inter-relations, similar to the reconcilia-
tions illustrated earlier in Figure 5 (in the figure, the only articulation shown
is class-equivalence).

To assist in creating the articulations, the ONION tool takes two sets of
concepts and matches them using dictionaries (in particular, WordNet [15])
and information retrieval techniques (specifically, use of a corpus of docu-
ments). While the tool suggests possible articulations, it is left to the expert
to define their chosen articulations. Input to the articulation-generation tool
is in RDF, and the tool’s output is plain text.

6.3 OntoView

OntoView is a tool under development by Klein et al at the Vrije Univer-
sity, Amsterdam, and OntoText, Sofia [10]. OntoView offers Web-based on-
tology versioning. In its current form, the OntoView tool is a slightly enhanced
version of CVSWeb (Concurrent Versions System), an open-source network-
transparent version control system. At its core, the tool identifies changes
among different ontology versions. The comparison function is inspired by the
UNIX diff (difference) file-comparison utility. However, OntoView compares
ontologies at a structural level instead of line-level, showing which definitions
of ontological concepts or properties have changed.

The tool is currently being re-implemented on top of a custom-designed
ontology repository system. The OntoView project promises to provide a
transparent interface to arbitrary versions of ontologies. It is planned that
an internal specification of the relations between the different variants of on-
tologies will be built. This specification is based on the versions of ontologies
themselves, on explicit change specifications, and on additional human input.

18 Adil Hameed et al.

Users will be able to differentiate between ontologies at a conceptual level and
to export the differences as transformations or adaptations.

OntoView is still being developed; however, its current and proposed fea-
tures include:

• read in ontologies, ontology updates, adaptations and/or mappings
• view a specific version or variant of an ontology
• provide a unique and persistent identification of versions
• allow users to assign properties to differences (type, etc)
• automatically perform inconsistency checks of version combinations
• differentiate ontologies:

– show changed formal definitions
– show changed comments
– show type of change: conceptualisation or explication

• export translation/transformations/adaptations.

6.4 Prompt

The Prompt tool was developed by Noy and Musen within the Medical In-
formatics group at Stanford University [17]. Prompt offers a semi-automatic,
interactive ontology-merging tool, which guides a user through the merging
process, making suggestions, determining conflicts, and proposing resolution
strategies. Prompt is implemented as a plug-in to the Protégé-2000 integrated
knowledge-base editing environment. Protégé-2000 provides an extensible ar-
chitecture for the creation of customised knowledge-based tools, and is com-
pliant with the OKBC standard for frame-based KBs.4

The Prompt merging process aims to find ‘semantically-similar’ terms,
although it does this through syntactic analysis. Initial suggestions are based
on the lexical similarity of the frame names. The tool identifies candidates for
merging as pairs of ‘matching terms’ — terms from different source ontologies
representing similar concepts. Prompt suggests merging identical classes in
two ontologies, where these classes are denoted by lexically-identical tokens.
A graphical user interface helps users carry out interactive merging.

Prompt is intended to determine not only syntactic but also semantic
matches based on (i) the content and structure of the source ontologies (for
example, names of classes and slots, sub-classes, super-classes, domains and
ranges of slot values) and (ii) the user’s actions (that is, incorporating in its
analysis the knowledge about the similarities and differences that the user
has already identified). This algorithm relies on limited input from the user.
The user does not need to analyse the structure of the ontology deeply, just
to determine some pairs of terms that “look similar”. As such, Prompt will
only be useful in cases where the candidate ontologies already have close
similarities.
4 http://protege.stanford.edu

Ontology Reconciliation 19

An enhanced version of Prompt, Anchor-Prompt, promises a number of
extensions, including consideration of similarity between class hierarchies, and
the use of similarity scores in determining the potential match between classes.

7 Conclusion and Way Forward

As ontology usage becomes more prevalent, the need for ontology reconcili-
ation increases. This chapter has demonstrated that there is now a mature
understanding of the kinds of mismatches that occur between different on-
tologies. Examining a representative sample of the software tools currently
available to assist in the reconciliation process shows that, while a number
of promising tools are already available, these are largely in the form of lab-
oratory prototypes, and that more work is needed in this area. Moreover, it
is unlikely that one single tool will ever emerge that satisfactorily handles all
aspects of ontology reconciliation. For this reason, Hameed et al propose in [7]
the creation of a workbench within which a variety of tools can be harnessed
to assist ontology engineers in performing reconciliations. Figure 7 illustrates
this proposed system.

The proposed workbench will guide a user in selecting appropriate tools
for the kinds of mismatch identified, where a tool is selected on the basis of the
kinds of mismatch it tackles, and also the knowledge representation formalisms
on which it operates. Integrating the available — and newly emerging — tools
in such a coherent framework, in the context of a systematic approach to
identifying ontological mismatches, will be a significant step in managing the
ontology reconciliation problem.

References

1. Corcho, O, Gómez-Pérez, A (2001) Solving Integration Problems of E-
Commerce Standards and Initiatives through Ontological Mappings. IJCAI-01
Workshop on Ontologies and Information Sharing, pages 131–140

2. Fensel, D (2000) Ontologies: Silver Bullet for Knowledge Management and Elec-
tronic Commerce, Springer-Verlag

3. Fox, M, Gruninger, M (1998) Enterprise Modelling. AI Magazine, Fall, 109–121
4. Gómez-Pérez, A, Moreno, A, Pazos, J, Sierra-Alonso, A (2000) Knowledge

Maps: An essential technique for conceptualisation. Data and Knowledge En-
gineering, 33(2), 169–190

5. Gruber, T R (1993) A Translational Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 5, 199–220

6. Hameed, A, Sleeman, D H, Preece, A (2001) Detecting Mismatches in Experts’
Ontologies through Knowledge Elicitation. In Bramer, M, Coenen, F, Preece, A
(eds), Research and Development in Intelligent Systems XVIII, Springer-Verlag,
pages 9–22

20 Adil Hameed et al.

Fig. 7. Proposed workbench architecture for managing ontology reconciliations,
by harnessing existing — and new — tools. The shaded components are within
the scope of the current implementation; other components are planned for future
expansion.

7. Hameed, A, Sleeman, D H, Preece, A (2002) OntoManager: A Workbench Envi-
ronment to facilitate Ontology Management and Interoperability. In EON-2002:
EKAW-2002 Workshop on Evaluation of Ontology-based Tools

8. Huhns, M N, Stephens, L M (1999) Personal Ontologies. IEEE Internet Com-
puting, 3(2) 85–87

9. Klein, M (2001) Combining and relating ontologies: an analysis of problems and
solutions. IJCAI-01 Workshop on Ontologies and Information Sharing, pages
53–62

10. Klein, M, Kiryakov, W, Ognyanov, D, Fensel, D (2002) Ontology Versioning and
Change Detection on the Web. In 13th International Conference on Knowledge
Engineering and Knowledge Management (EKAW02), Sigüenza, Spain

Ontology Reconciliation 21

11. Lenat, D, Guha, R (1990) Building Large Knowledge-Based Systems, Addison
Wesley, Reading

12. A. Maedche, A, Motik, B, Stojanovic, L, Studer, R, Volz, R (2002) Managing
Multiple Ontologies and Ontology Evolution in Ontologging. In Proceedings
Conference on Intelligent Information Processing (IIP2002), Kluwer

13. McGuinness, D L, Fikes, R, Rice, J, Wilder, S (2000) An Environment for Merg-
ing and Testing Large Ontologies. In Cohn, A, Giunchiglia, F, and Selman, B
(eds), KR2000: Principles of Knowledge Representation and Reasoning, pages
483–493

14. Meisel H, Compatangelo, E (2002) EER-CONCEPTOOL: a “Reasonable” En-
vironment for Schema and Ontology Sharing. In Proc. of the 14th IEEE Inter-
national Conference on Tools with Artificial Intelligence (ICTAI2002), IEEE
Computer Society Press, pages 527–534

15. Miller, G A (1995) WordNet: a Lexical Database for English. Communications
of the ACM, 38(11), 39–41

16. Mitra, P, Kersten, M. Wiederhold, G (2000) Graph-Oriented Model for Artic-
ulation of Ontology Interdependencies. In Proceedings of the 7th Int. Conf. on
Extending Database Technology, Springer-Verlag

17. Noy, N F, Musen, M A (2001) Anchor-PROMPT: Using Non-Local Context for
Semantic Matching. In Workshop on Ontologies and Information Sharing at the
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-
2001), Seattle, USA

18. Noy, N F, Musen, M A (2000) PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. IJCAI-01 Workshop on Ontologies and In-
formation Sharing, pages 63–70

19. Pinto, H S, Martins, J P (2001) A Methodology for Ontology Integration. In
Proceedings of the First International Conference on Knowledge Capture (K-
CAP 2001), ACM Press

20. Preece, A, Sleeman, D H, Flett, A N, Curry, D, Meaney, N, Perry, P (2001) Bet-
ter Knowledge Management through Knowledge Engineering. IEEE Intelligent
Systems, 14(1), 26–36

21. Rosenfeld, L, Morville, P (2002) Information Architecture for the World Wide
Web, OReilly

22. Shaw, M L G, Gaines, B R (1989) Comparing Conceptual Structures: Consen-
sus, Conflict, Correspondence and Contrast. Knowledge Acquisition, 1(4), pp.
341–363

23. Stumme, G, Maedche, A (2001) Ontology Merging for Federated Ontologies on
the Semantic Web. IJCAI-01 Workshop on Ontologies and Information Shar-
ing, pages 91–99

24. Uschold, M, King, M, Moralee, S, Zorgios, Y (1998) The Enterprise Ontology.
Knowledge Engineering Review, 13.

25. Visser, P R S, Jones, D M, Bench-Capon, T J M, Shave, M J R (1997) An
Analysis of Ontology Mismatches; Heterogeneity vs. Interoperability. In AAAI
1997 Spring Symposium on Ontological Engineering, Stanford, USA.

26. Visser, P R S, Tamma, V A M (1999) An Experiment with Ontology-Based
Agent Clustering. In IJCAI-99 Workshop on Ontologies and Problem-Solving
Methods: Lessons Learned and Future Trends, Stockholm, Sweden.

27. Wiederhold, G (1992) Mediators in the Architecture of Future Information
Systems. IEEE Computer, March.

22 Adil Hameed et al.

28. Wiederhold, G (1994) An Algebra for Ontology Composition. In Proceedings of
1994 Monterey Workshop on Formal Methods, September.

