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Abstract. The original Semantic Web vision was explicit in the need for intel-
ligent autonomous agents that would represent users and help them navigate the
Semantic Web. We argue that an essential feature for such agents is the capabil-
ity to analyse data and learn. In this paper we outline the challenges and issues
surrounding the application of clustering algorithms to Semantic Web data. We
present several ways to extract instances from a large RDF graph and comput-
ing the distance between these. We evaluate our approaches on three different
data-sets, one representing a typical relational database to RDF conversion, one
based on data from a ontologically rich Semantic Web enabled application, and
one consisting of a crawl of FOAF documents; applying both supervised and un-
supervised evaluation metrics. Our evaluation did not support choosing a single
combination of instance extraction method and similarity metric as superior in
all cases, and as expected the behaviour depends greatly on the data being clus-
tered. Instead, we attempt to identify characteristics of data that make particular
methods more suitable.

1 Introduction

Currently on the Semantic Web there is an imbalance in the number of data-produces
compared to the number of consumers of RDF data. The original Semantic Web vi-
sion [1] envisaged intelligent autonomous agents that could navigate the Semantic Web
and perform information gathering tasks for their users, but such agents have not yet
been realised. We argue that autonomous Semantic Web agents need to be capable of
more sophisticated data-processing techniques than the deductive reasoning offered by
existing Semantic Web inference engines, and to be able to solve personal tasks for a
user on the heterogeneous and noisy Semantic Web an agent must be able to learn. We
have in previous work been exploring how traditional machine learning techniques may
be applied to Semantic Web data [2, 3] and in this paper we focus with the particulari-
ties arising from attempting to cluster Semantic Web data. Clustering is the process of
classifying similar object into groups, or more precisely, the partitioning of a data-set



into subsets called clusters. The process is applicable for a large range of problems, and
would make a valuable tool for an autonomous Semantic Web agent.

In this paper we identify two challenges that need to be tackled for applying tradi-
tional clustering mechanisms to Semantic Web resources: firstly, traditional clustering
methods are based on instances not on a large interconnected graph as described by
RDF; How do we extract a representation of an instance from such a RDF graph? Sec-
ondly, having extracted the instances, how do you computer the distance between two
such instances?

We discuss three approaches to instance extraction in Section 2.1 and three distance
measures in Section 2.2. We test our methods by using a simple Hierarchical Agglom-
erative Clustering (HAC) [4] algorithm. Although many more performant and modern
clustering algorithms exist, we are not primarily interested in absolute performance,
but rather the relative performance between our different approaches. HAC is stable,
generates clustering solutions with exclusive cluster membership and generally well
understood and is thus well suited for such an empirical comparison. The result of the
HAC algorithm is a tree of clusters, with the similarity between clusters increasing with
the depth of the tree. The tree can easily be cut to generate any number of separate
clusters by iteratively cutting the weakest link of the tree until the desired number of
clusters is reached.

We test our clustering techniques on three different RDF data-sets: the first con-
sisting of computer science papers from the Citeseer citation database1, where we gen-
erated RDF descriptions of each using the BibTeX description. The papers are cate-
gorised into 17 different subject areas of computing science, and exemplifies a typical
relational database to RDF conversion: the data is shallow, there is no real ontology and
most properties take literal values, and very few properties relating two resources. This
dataset has 4220 instances. The second dataset is a Personal Information Model (PIMO)
from a user of the Semantic Desktop system Gnowsis [5] – this data-set is based on a
well-defined and rich ontology and exemplifies a data-set built on Semantic Web best
practises. Both the ontology and the instances are partially generated by an end-user, but
using a sophisticated tool assuring that the data is consistent and semantically sound.
This dataset has 1809 instances in 48 classes. The third data-set is a crawl of FOAF
documents (Friend of a Friend2) consisting of 3755 person instances, this data-set is
identical to the one used in [2]. For the citeseer and PIMO datasets existing classifica-
tions of the instances are available, allowing a supervised evaluation. We present the
results of several common metrics for evaluating clustering solution in Section 3, and
Section 4 makes concluding remarks and outlines the future plans for this work.

2 Clustering RDF instances

When applying traditional clustering techniques to RDF data there are two issues that
require consideration:

1 Citeseer: http://citeseer.ist.psu.edu/, Our dataset can be downloaded from
http://www.csd.abdn.ac.uk/∼ggrimnes/swdataset.php

2 The FOAF Project, http://www.foaf-project.org/



1. Instance extraction – What exactly constitutes an individual in an RDF graph? The
main virtue of RDF is that all data be interconnected, and all relations can be repre-
sented and made explicit. However, this means that a rich data-set might just appear
as one large graph, rather than separate instances. By instance extraction we mean
the process of extracting the subgraph that is relevant to a single resource from
the full RDF graph. The possibilities range from considering only the immediate
attributes, to more sophisticated analysis of the whole graph, based on the graph
topology, ontological information or information-theory metrics.

2. Distance Measure – How is the distance between two RDF instances computed?
Assuming that the output from the instance extraction is a smaller RDF graph with
the resource as root node, how may one compare two such graphs? They might
partially overlap, or they may only have edges with common labels. Again the
alternatives range from naive approaches to methods based on graph-theory or the
ontological background information.

In addition to these two points, a Semantic Web capable of autonomous clustering
requires a method for determining the appropriate number of clusters for a data-set.
However, this problem is not unique to Semantic Web clustering nor is the process
changed significantly by the processing of RDF, and we will not discuss it further in
this paper.

2.1 Instance Extraction

The problem of instance extraction is best illustrated with an example. Consider the
example RDF graph shown on the left in Figure 1. We would like to extract the parts of
the graph relevant to the resource ex:bob. Bob is related to several other RDF resources
in this graph; he knows some other people, he works for a company and he is the author
of publications. Several of these other resources might constitute important parts of
what defines Bob as a person. The challenge is to find a reasonable subset of the graph
surround Bob, that still includes any important information without being too large. The
problem of extracting instance subgraphs is not exclusive to clustering. For instance, the
SPARQL specification3 includes the DESCRIBE directive which should return a single
result RDF graph containing RDF data about resources. However, the exact form of
this description is not specified in the current SPARQL specification, and should instead
be determined by the SPARQL query processor. Another area where these methods are
applicable is programming user-interfaces for RDF enabled applications, where it is
often required to extract an informative representation of a resource for presentation
to an end-user. We will discuss three domain-independent approaches that have been
implemented for this paper, and we will revisit the example graph for each one. In
addition we will discuss some possible domain-dependent methods that improve on the
domain-independent methods, but require additional semantic infra-structure support
that is currently unavailable on the Semantic Web.

Immediate Properties Our first and most direct approach for extracting instance
representations from RDF graphs is considering only the immediate properties of re-
sources. This method is illustrated on the right of Figure 1 where the extracted part of

3 The SPARQL Specification: http://www.w3.org/TR/rdf-sparql-query/
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Fig. 1. An Example RDF Graph and Naive Instance Extraction.

the graph around the ex:bob resource has been highlighted. This seems like an intuitive
approach if viewing RDF from an object-oriented programming perspective, it is simple
to implement and it runs very quickly. However, the approach has the obvious drawback
that much of the information that is relevant to the resource is lost, indeed large parts of
the graph may not be included in any instance graph.

Concise Bounded Description An improvement over simple immediate proper-
ties can be achieved by taking the types of nodes in the graph into account. Concise
Bounded Description (CBD)4 is one such improvement and is defined as a recursive
algorithm for extracting a subgraph around an RDF resource. Informally it is defined as
the resource itself, all it’s properties, and all the properties of any blank nodes connected
to it, formally the CBD of graph G is defined recursively as follows:

CBDG(x) = {< x, p, o > | < x, p, o >∈ G}
∪ {< s, p, o > | < s, p, o >∈ G

∧∃ s′, p′(< s′, p′, s >∈ CBDG(X) ∧ bn(s))}

where bn(x) is true if x is a blank node.
The CBD extraction from the example graph is shown on the left in Figure 2, where

the extracted graph is highlighted. Note how all info about :node15 and :node16 is
included, but no further triples from http://example.org/Company. An alternative CBD
definition also considers backward links, where triples having the resource in question
as an object are also included. CBD is a much better option than just considering the

4 Concise Bounded Description: http://www.w3.org/Submission/CBD/
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Fig. 2. CBD and DLT Instance Extraction Examples.

immediate properties of a resource, however it also has several disadvantages: since the
behaviour of CBD depends on the use of blank nodes in the data it is not strictly domain
independent. For instance, some applications discourage the use of blank nodes because
of the difficulty in implementing their semantics correctly, in this case CBD is no better
than immediate properties. Conversely, in data where no natural identifiers exist there
might be a large ratio of blank nodes to labelled resources, and the CBD might only be
bound by the size of the full graph.

Depth Limited Crawling An alternative to limiting the sub-graph by node-type is
to limit the sub-graph by depth and simply traverse the graph a certain number of steps
from the starting node. This has the advantage that it is stable over any input data mak-
ing it easier to limit the size of the subgraph. For our initial experiments with clustering
of FOAF data [2] we found that traversing two edges forward and one edge backwards
from the root node provides a good tradeoff between size and the information con-
tained in the subgraph, although this is clearly data-dependent and may need adjusting
for special cases. The sub-graph extracted from the example graph is shown on the right
in Figure 2. Note how this is the only method where also the publications that link to
Bob as the author are included.

Since the results of the instance extraction algorithms vary greatly depending on
the input data, we analyse the graphs extracted from our three data-sets. The mean and
standard deviation of the number of triples in the graphs extracted is shown in Table 1.
Note that the results for the Citeseer dataset are the same for all extraction methods,
the reason being that the only properties linking two resources in this dataset is rdf:type
relating publications to their class, and the classes have no further properties. All other
properties in this dataset are literal properties. Note also that the naı̈ve approach and



CBD is identical for the PIMO data-set, as the PIMO language disallows the use of
blank nodes, so CBD does not do any further traversal. The table also clearly illustrates
the weakness of CBD when dealing with large crawled data, since FOAF encourages
the use of blank nodes to represent people it is possible to traverse large parts of the
FOAF crawl through blank nodes alone. In fact, the largest sub-graph extracted from
the FOAF graph using CBD contained 20108 triples.

Dataset Naive CBD DLT

Citeseer 18.22 / 5.31 18.22 / 5.31 18.22 / 5.31
PIMO 6.84 / 1.49 6.84 / 1.49 828.04 / 5.12
FOAF 13.95 / 19.14 1299.26 / 2983.97 145.06 / 153.58

Table 1. Mean and standard deviation of size of extracted instance graphs.

2.2 Distance Measure

The choice of distance measure is the most important factor for a clustering setup, the
definition of what constitutes close or remote instances affects everything about the
behaviour of the clusterer. Commonly clustering has been performed on instance repre-
sented as numerical vectors and viewing the vectors as coordinates in an N-dimensional
space allows the use of geometric distance measures, such as Euclidean or Manhattan
distance.

However, transforming RDF instances represented as graphs into coordinates in a
Euclidean space is not trivial, and thus standard distance metrics do not readily apply
to RDF instances. In this section we present several methods for solving the problem of
finding the distance between pairs of RDF instances, each instance consisting of a root
node (the RDF resource) and a (sub)-graph considered relevant to this instance, known
as Rn and Gn respectively. We consider one distance measure inspired by traditional
feature vector based clustering, one based on the topology of the RDF graphs and one
based on the ontological background information available.

Feature Vector Based Distance Measures
As a base-line approach to an RDF similarity measure we wanted to adapt tradi-

tional vector-based similarity to comparing RDF instances. The first step is to transform
an RDF graph and root node pair into a feature vector representation. Since the method
should be compatible with all instance extraction methods outlined above we needed to
go beyond the obvious solution of mapping the direct RDF properties of the resource
to features in the vector. Instead we map paths in the RDF graph to features, and let
the value of the feature be a set of all the nodes reachable through that path. First we
defined the set of nodes reachable from a root-node:

reachable(X,G) = {n| < x, p, n >∈ G} ∪ {n′|n′ ∈ RG(n)} (1)



The feature vector for a single instance n is then defined as:

FV (n) = {shortestPath(Rn, x,Gn)|x ∈ reachable(Rn, Gn)} (2)

where shortestPath(R,X, G) is the shortest path from node R to node X in graph
G, and a path is defined as a list of edges to traverse (i.e. RDF properties). The feature
vector for a set of instances is simply the union of all the individual feature sets. Con-
sider again the example graph in Figure 1, the features for the instance ex:bob would be
as follows:

[ name, worksFor, knows, worksFor→businessArea, worksFor→locatedIn,

knows→name, knows→marriedTo, worksFor→locatedIn→locatedIn,

knows→marriedTo→name ]

Dataset Naive CBD DLT

Citeseer 1.00 / 0.98 2.00 / 1.02 2.0 / 1.20
PIMO 1.00 / 0.97 1.00 / 0.97 3.0 / 1.87
FOAF 1.00 / 1.00 26.00 / 19.40 3.0 / 1.90

Table 2. Longest and average path-lengths.

Note how the path worksFor→employs is not included as the same resource
( :node15) can be reacher by the shorter path of knows. As the feature vector can get
very long for complicated data-set it is often desirable to only include the most frequent
paths. In our experiments we used only the 1000 paths most frequently included when
considering all instances, i.e. we used the same feature vector of length 1000 for all
instances, but not all features have values for all instances. Table 2 shows the maximum
and average length for the feature vectors extracted from our three data-sets when us-
ing each of the three instance extraction methods above; once again the weakness of
CBD combined with FOAF is clear, but no other extraction method or dataset result
in prohibitively long vectors. As mentioned above, the values of each feature is the set
of RDF nodes reachable through that path5. It is necessary to use set-valued features
because each RDF property might be repeated several times. One could imagine that
cardinality constraints from an ontology could be used to restrict certain paths to single
valued features, however, such constraints are unlikely to remain unbroken on a noisy
heterogeneous Semantic Web, and we are primarily interested in methods that do not
depend on data correctly conforming to an ontology. Again, consider the example graph
from Figure 1, the values of the feature vector for the instance ex:bob would be:

5 Note that this is not quite as query intensive as it may seem, by collapsing the common sub-
paths in all paths to a tree, an efficient algorithm can be devised that makes only the minimal
set of queries.



[ {‘‘bob’’}, {ex:TheCompany}, { :node15}, {business:Telecoms}, {cities:London},

{‘‘Jane’’}, { :node16}, {countries:UK}, {‘‘Roger’’} ]

Note how in this basic examples every feature is a single valued set and no features
are missing. In a more complex scenario many of the feature-values might be the empty
set where the RDF properties in the path are not available. Computing the distance
between two feature vectors is then done using a straight-forward similarity measure
inspired by the Dice coefficient: The distance between instance X and Y over feature-
vector FV is defined as:

simFV (X,Y, FV ) =
1
|FV |

∑
f∈FV

2 ∗ |Xf ∩ Yf |
|Xf |+ |Yf |

(3)

where Xf and Yf is the set value of feature f for X and Y respectively. The simFV
takes a value between 0 and 1 where 1 means that the instances have exactly the same
properties and 0 means no shared properties.

Graph Based Distance Measures Montes-y-Gómez et. al developed a similarity
measures for comparing two conceptual graphs [6]. Conceptual graphs are a data-
structure commonly used for natural language processing. They consist of a network
of concept nodes, representing entities, attributes, or events and relation nodes between
them. The similarity metric incorporates a combination of two complementary sources
of similarity: the conceptual similarity and the relational similarity, i.e. the overlap of
nodes and the overlap of edges within the two graphs.

Conceptual graphs and RDF instances are structurally sufficiently similar that the
this similarity metric is also appropriate for comparing RDF graphs. For each instance
to be clustered the extracted sub-graph is used for the comparison and the root node is
ignored. Space reasons prevent us from presenting the details of the metric here, please
refer to Montes-y-Gómez et. al’s paper for the details and to our previous work for
details on applying this metric to RDF data [2].

Ontologically Based Distance Measures There have been several efforts for devel-
oping an ontology based similarity metric for RDF data. Most of these originate from
the fields of ontology mapping and are focussing on similarity between whole ontolo-
gies, or classes within. For instance, [7] compares two ontologies using an approach
based on conceptual graphs, and [8] presents a metric designed especially for OWL-
Lite. Maedche and Zacharias have developed a similarity metric explicitly for instance
data, but with heavy emphasis on the ontological background information [9] . Their
metric assumes the existence of a well-defined ontology and conforming instance data.
However, real Semantic Web data is often noisy and inconsistent and some minor ad-
justments to the algorithm are required to allow for handling of more realistic data. The
ontological similarity metric is a weighted combination of 3 dimensions of similarity:

simOnt(X, Y ) =
t× TS(X, Y ) + r ×RS(X, Y ) + a×AS(X, Y )

t + r + a
(4)

Where TS is the taxonomy similarity, RS the relational similarity, AS the attribute
similarity, and t, r, a the weights associated with each. The taxonomy similarity con-
siders only the class of the instances being compared and is determined by the amount



of overlap in the super-classes of each instance’s class. The attribute similarity focuses
on the attributes of the instances being compared, i.e. the properties that take literal val-
ues (known as data-type properties in OWL), and is based on using some type-specific
distance measure for comparing the literal values for matching predicates (i.e. Leven-
shtein edit distance for string literals and simple numeric difference for numbers, etc.)
Finally, the relational similarity is based on the relational properties of a resource, i.e.
the properties that link this resource to other resources (and not to literals). This is de-
fined recursively, so for finding the similarity between two linked resources the ontolog-
ical similarity measure is applied again. To make it possible to compute the similarity
measure the recursion is only followed until a certain depth, after which the relational
similarity is ignored and the combination of only attribute similarity and taxonomy sim-
ilarity is returned. For our experiments we stopped recursing after 3 levels. Again we
do not have the space to present the algorithm in full, and we will only briefly cover
our modifications that allowed us to relax some assumptions made about the input data
which are unlikely to hold true for real-life Semantic Web data, namely:

1. The ontologies must be strictly hierarchical, i.e. no multi-class inheritance.
2. Resources must be members of exactly one class.
3. Range and domain must be well defined for all properties.
4. Range and domain constraints must never violated.
5. There must be a clear distinction between datatyped properties and object proper-

ties, i.e. a property takes either literal objects or other resources.

Both point one and two are natural simplifying restrictions many applications chose
to enforce internally, although both multi-class inheritance and multiple types are sup-
ported by both RDFS and OWL. Point three is not required by RDF, but would be
a logical effect of using well-engineered ontologies. Point four is a valid assumption
if one assumes a semi-closed data-base view of the Semantic Web (i.e. the database-
semantic web view). Point five is another natural assumption to make since in OWL the
distinction is made between datatype properties and object properties (Maedche and
Zacharias call these attributes and relations). However, for RDFS based ontologies this
is not the case.

To enable simOnt to work with our data-sets we made the following modifications
to the algorithm:

1. For the definition of the taxonomy similarity we let SC(x) mean the set of super-
classes of ALL types of x.

2. We do not rely on range/domain alone for finding applicable literal-/relational prop-
erties, we also add the properties that are used with literals/resource in the data
available. This also solves the missing range/domain declaration problem.

Note that this distance measure does not make use of the extracted sub-graph, only
the ontological information associated with the root-node.

3 Comparison

Clustering is a task that is notoriously hard to evaluate. Recent overviews over available
methods can be found in [10]. Ultimately clustering is a data-analysis exercise, and



the true value of a clustering solution comes from understanding of the data gained by
a human data-analysist, but in this paper we are interested in automated methods for
checking the quality of a clustering solution. For two of our data-sets the preexisting
classifications may be used for evaluation, but since there is no way to train a clustering
algorithms to look for particular classification of the data, a supervised evaluation with
regard to this classification is not necessarily a good measure of the performance of the
clusterer. I.e. the clustering algorithm might have chosen to partition the data along an
axis different to partitioning in the given “correct” classification, meaning that although
the supervised quality measures might be very poor, the resulting clustering might be
an equally correct classification. In this paper we conduct a supervised evaluation for
the PIMO and citeseer using the following supervised quality metrics:

– Entropy — A supervised measure that looks at how the different classes are dis-
tributed within each cluster. If each cluster only contains instances from a single
class the entropy is zero. The entropy is trivially optimised by having a single clus-
ter containing all instances.

– Purity — A supervised measure that quantifies the degree of which a cluster con-
tains instances from only one class. As for entropy, this is trivially optimised by
having a single cluster containing all instances.

– F-Measure — The F-measure in information retrieval is an harmonic mean of pre-
cision and recall, and can also be used a supervised quality metric for clustering
[11]. For a perfect clustering solution with an F-Measure of one there must be a
cluster for each class, containing exactly the members of the corresponding class.
This is unlikely for an unguided clustering solution, and one can therefore not com-
pare F-measure values for clustering with what is considered a good performance
for classification algorithms.

– Hess Precision/Recall — Another view of precision and recall for clustering was
introduced in a recent PhD thesis by Andreas Hess [12] . Instead of considering
individual instances when defining precision and recall, Hess considers all pairs of
objects that were clustered. The pairs are then classified whether they occur in the
same class in the correct classification as in the clustering solution, and precision
and recall is then defined as normal for each pair. Hess observes that the precision
metric is biased towards small clusters and the recall towards large clusters.

For the FOAF and PIMO data-set we also carried out an unsupervised evaluation,
using the basic Sum of Squared Errors and Zamir’s Quality Metric (ZQM) [13], a
function aiming to represent a trade-off between small well-defined clusters and larger
mixed clusters.

3.1 Results

We evaluated all combinations of the instance extraction methods and similarity metric
presented above on the PIMO and Citeseer data-set. For both data-sets we specified the
number of clusters to generate based on the preexisting classification and calculated
the entropy, purity, F-measure and Hess’s pair-wise precision and recall based on this
classification. The results are shown in Table 3 and the F-Measure and Hess-Recall are



shown graphically in Figure 3 (for space reasons plots were only included for the most
interesting metrics).

For the FOAF and PIMO data-set we used the jump-method as described by Sugar
and James [14] to find a natural number of clusters for each data-set and user the un-
supervised evaluation metrics to analyse the resulting clusters. The number of clusters
found and evaluation metrics are shown in Table 4, the size of clusters found and the
ZQM are also shown graphically in Figure 4.

Data-set Extract. Sim. Entr. Purity F-Meas. Hess-P Hess-R

citeseer N/A ont 0.96 0.11 0.12 0.07 0.22
citeseer naive cg 0.94 0.12 0.13 0.07 0.36
citeseer dlt cg 0.94 0.12 0.13 0.07 0.38
citeseer cbd cg 0.94 0.13 0.13 0.07 0.53
citeseer dlt fv 0.97 0.09 0.12 0.07 0.78
citeseer naive fv 0.97 0.09 0.12 0.06 0.89
citeseer cbd fv 0.97 0.09 0.12 0.07 0.89
pimo ont ont 0.32 0.59 0.42 0.38 0.28
pimo naive cg 0.32 0.60 0.42 0.38 0.28
pimo dlt cg 0.31 0.60 0.44 0.40 0.29
pimo cbd cg 0.31 0.59 0.43 0.39 0.29
pimo dlt fv 0.30 0.62 0.44 0.40 0.31
pimo naive fv 0.33 0.59 0.42 0.39 0.33
pimo cbd fv 0.33 0.58 0.43 0.40 0.37

Table 3. Results for Supervised Evaluation of PIMO and Citeseer Data-sets.

Data-set Extract. Sim. SSE ZQM # Clusters.

pimo naive fv 61.74 0.06 101.
pimo naive cg 120.97 0.08 104.
pimo cbd fv 59.67 0.06 117.
pimo cbd cg 126.38 0.15 70.
pimo dlt fv 35.77 0.04 128.
pimo dlt cg 3.91 0.04 96.
pimo N/A ont 32.11 0.5 16.
foaf naive fv 47.09 0.06 120.
foaf naive cg 65.7 0.09 86.
foaf cbd fv 77.95 0.18 56.
foaf cbd cg 60.62 21.43 2.
foaf dlt fv 35.98 0.05 113.
foaf dlt cg 135.69 0.13 95.
foaf N/A ont 29.14 0.52 14.

Table 4. Results for Unsupervised Evaluation of FOAF and PIMO Data-sets.

Note first that recreating the preexisting classification is a very challenging prob-
lem, especially for the Citeseer dataset where the RDF representation of the papers is

6 Please note the non-zero origins of F-Measure graphs and different scale for the two Hess
Recall graphs.



 ont naive 
cg

dlt cg cbd 
cg

dlt fv naive 
fv

cbd fv
0.1

0.1

0.11

0.11

0.11

0.11

0.12

0.12

0.12

0.12

0.13

0.13

0.13

0.13

0.14

0.14

F-
M

e
a
su

re

 ont naive 
cg

dlt cg cbd cg dlt fv naive 
fv

cbd fv
0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

F-
M

e
a
su

re

 ont naive 
cg

dlt cg cbd 
cg

dlt fv naive 
fv

cbd fv
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

H
e
ss

 R
e
ca

ll

 ont naive 
cg

dlt cg cbd cg dlt fv naive 
fv

cbd fv
0

0.03

0.05

0.08

0.1

0.13

0.15

0.18

0.2

0.23

0.25

0.28

0.3

0.33

0.35

0.38

H
e
ss

 R
e
ca

ll

Fig. 3. F-Measure and Hess-Recall results for the Citeseer (left) and PIMO (right) data-sets.6

very simple and the information is not really sufficient for recreating the subject-area
classification. Note also that it might also be possible to achieve overall better results
using a more sophisticated clustering algorithm than HAC, but as mentioned previously,
this was not the focus of this work.

Looking first at the unsupervised results, observer that for the PIMO data-set the
number of clusters detected are far higher than the number of classes in the existing clas-
sification (The PIMO data-set has 48 classes). This holds for all methods apart from the
ontological similarity measure. This can be explained by the idiosyncratic Person class
in the PIMO data-set, containing 387 instances. We believe that further sub-divisions
of the instances of this class are possible, making a larger number of clusters more nat-
ural for the PIMO dataset. Something that is not clear from the result table or graphs
is that although many clusters are generated, many of them are singleton clusters, this
holds even for the supervised clustering results where the right number of clusters is
specified. The feature-vector distance measure was especially prone to creating a small
number of large clusters, for the Citeseer dataset all experiments with the feature-vector
distance metric the largest clusters contained over 85% of the instances and only 2 or 3
clusters had more than a single instance. For the PIMO dataset every method generated
one large cluster with roughly half of the instances, caused again by the abnormal Per-
son class, the PIMO instances in this class are automatically generated from the user’s
address-book, and these all have identical structure.
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Fig. 4. Sum of Square Error and Zamir Quality Measure FOAF and PIMO data-sets.

For the FOAF data-set the number of clusters detected varies widely between the
different methods. The two values that stand out are for the run using CBD and the
conceptual graph similarity measure, which is extremely low, only two clusters were
found. As mentioned before, the FOAF data-set exposes a problem with CBD due to the
large number of blank-nodes and for some instances very large sub-graph are extracted.
In combination with CG these huge instance graphs cause very unusual results. For the
feature vector similarity metric the problem is not so severe, as the large instance graphs
will only contribute a few features, and these are likely to be excluded from the 1500
most common features used in the end.

Considering the supervised results, we know that the PIMO dataset has many more
classes than the Citeseer dataset (48 to 17), but fewer instances (1809 to 4220) and this
is clearly reflected in the scores for entropy and purity, the PIMO clustering solutions
has many classes that contain only a single instance which gives a high purity score,
whereas for the Citeseer data-set each cluster is likely to have a mix of instances and the
entropy is therefore high. Note also that for the Citeseer data-set the choice of instance
extraction mechanism is largely irrelevant because the data is so shallow (there are no
sub-graphs deeper than a single level).

Looking at the graphs in Figure 3 we can see that surprisingly the feature-vector
method achieved high Hess-Recall scores for both data-sets, however, this is a side-
effect of the large clusters created by this method and is consistent with Hess’ obser-



vation. Looking at the F-measure for the feature-vector it is consistently low for the
Citeseer data-set, but performs rather well for the PIMO data-set, referring back to Ta-
ble 2 we can see that the Citeseer data-set is just not rich enough to allow for paths of
any length and any real distinction between the instances is lost.

The ontological similarity measure performs consistently well in these experiments,
but not significantly better than the others. It does however seem to result in a much
lower number of clusters being generated, which also results in a higher ZQM score
due to the part of ZQM favouring a small number of well-defined clusters. The onto-
logical similarity measure is theoretically well founded and makes the most use of the
semantics out of the similarity measures presented here, and we had therefore expected
it to perform better, but it may be that our data-set have insufficient ontological data to
really make the most of this metric. However, it must be noted that the run-time perfor-
mance of this metric is much worse than the two other metrics that were investigated;
the recursive nature often makes it necessary to compute the similarity between a much
larger number of nodes than the instances that are going to be clustered in the first
place: For instance, clustering a small set of only 8 FOAF person nodes, described by
only 469 triples, 178 nodes were visited. On larger graphs this number can grow very
quickly. On the other hand, an advantage of the ontological similarity measure is that
extraction of instance-graphs from the large RDF graph is not required, removing one
layer of complexity from the clustering process.

In summary, the results do not support a clear conclusion of what is the best combi-
nation of extraction method and distance metric, and the best performing combination
varies for each data-set. The DLT extraction method may be the best choice for a data-
independent extraction method, as although it may occasionally excluded parts of the
data-graph is has no obvious weakness like CBD has for FOAF. For similarity mea-
sure the ontological similarity does well for unsupervised clustering, generating a small
number of well-defined clusters, but at the cost of a longer running-time. For super-
vised clustering it performs worse since not enough clusters are generated to mirror the
preexisting classification.

4 Conclusion and Future Work

In this paper we have identified two important challenges for performing clustering of
Semantic Web data, firstly extracting instance from a large RDF graph and secondly
computing the distance between these instances. We evaluated our approaches using
three datasets representing typical data one might find on the Semantic Web. Our evalu-
ation did not yield one combination of instance extraction method and distance measure
that outperforms the others, but highlights a strong dependency on the structure of the
data for choosing the optimal methods.

An additional method of instance extraction we would like to investage is the cre-
ation of a hybrid method for instance extraction, combining CBD and depth-limited
traversal, where one always traverses the graph a certain minimum number of steps re-
gardless of the node-type, then follow only blank-nodes up to a certain maximum level.
Another approach would be to consider the frequency of the predicates when crawl-



ing, for instance an algorithm could be conceived that would only include triples not
included in any other immediate sub-graph.

With regard to the evaluation, it is clearly very difficult to do a domain-independent
evaluation like we attempted here. Although many metrics are available, the supervised
metrics may not measure the quality we are interested in, and the unsupervised metrics
are often biased towards one particular shape of clusters, i.e. either many small clusters
or few large ones. A more interesting evaluation method we would like to explore is to
use classification algorithms to learn a classifier for each of the identified clusters, and
the clustering quality becomes the accuracy of the classifiers learned.

Finally, we believe that we have shown that clustering of RDF resources is an inter-
esting area, where many questions remain unanswered. Our long-term goal is to create
a tool-box of learning techniques that an autonomous Semantic Web Agent may use
to understand the world; and we believe clustering could form a central tool for such
an agent. Further investigation is needed to determine how shallow data-analysis could
help an agent chose the optimal instance extraction methods, distance metrics and clus-
tering algorithms.
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