
Better Knowledge Management Through
Knowledge Engineer ing:

A Case Study in Dr illing Optimisation

Alun Preece, Alan Flett*, Derek Sleeman
Department of Computing Science

University of Aberdeen
Aberdeen, UK

David Curry, Nigel Meany, Phil Perry
Baker Hughes OASIS

Aberdeen, UK

Abstract: In recent years the term knowledge management has been used
to describe the efforts of organisations to capture, store, and deploy
knowledge. Most current knowledge management activities rely on
database and web technology; currently, few organisations have a
systematic process for capturing knowledge, as distinct from data. The
paper presents a case study in which knowledge engineering practices are
being used to support knowledge management by a drilling optimisation
group within a large service company. The three facets of the knowledge
management task are illustrated: (1) Knowledge is captured by a
knowledge acquisition process in which a conceptual model of aspects of
the company’s business domain is used to guide the capture of cases. (2)
Knowledge is stored using a knowledge representation language to codify
the structured knowledge in a number of knowledge bases, which together
comprise a knowledge repository. (3) Knowledge is deployed by running
the knowledge bases within a knowledge server, accessible by on the
company intranet.

1 Introduction
In recent years the term knowledge management has been used to describe the
efforts of organisations to capture, store, and deploy knowledge [1, 2, 3].
Organisations are interested in acquiring knowledge from valued individuals, and
analysing business activities to learn the lessons from successes and failures; such
captured knowledge then needs to be made available throughout the organisation in
a timely fashion. Most knowledge management activities are a combination of
business processes and information technology [4]. As currently practised,
knowledge management” is a broad-based activity:
• Document management systems allow workers to find existing documents

relevant to the task-at-hand. Essentially these are multi-source
search/information retrieval systems, tied into an organisations intranet

* Author’s current affiliation: Interprice Technologies, Berlin, Germany.

(possibly extending to the public internet). A number of commercial products
such as those of Autonomy and Verity are available.

• Discussion forum systems promote dissemination of knowledge within
communities of practice. Workers subscribe to forums relevant to their
interests, exchanging questions and answers, lessons learned, announcements,
and industry gossip. Such systems are easily implementable with freely-
available web software, in addition to commercial products.

• Capability management systems allow an organisation to “know who knows
what” [5]. Essentially, they can be thought of as databases of suitably-
structured CVs, and as such are implementable with off-the-shelf database
software. The goal is to put people together by matching someone’s need for
expertise with someone else’s listed skills.

• Lessons-learned knowledge base systems are designed to allow workers to tap
into past experience, by storing that experience in the form of structured cases.
These systems support sophisticated queries, typically supporting “ fuzzy”
retrieval of “similar” cases. While simple systems can be built using
conventional database software, special-purpose case-based reasoning or
knowledge-based system software is needed for full functionality.

In terms of technology, most current knowledge management activities rely on
database and internet systems: if knowledge is stored explicitly at all, it is typically
stored in databases either as simple tables (for example, in relational databases) or
semi-structured text (for example, in Lotus Notes). There is little use of
sophisticated knowledge representation systems such as Classic, Loom, or G2.
Also, few organisations have a systematic process for capturing knowledge, as
distinct from their conventional information-capture procedures.

This paper argues that technology and processes from the knowledge
engineering field are significantly under-utilised in current knowledge management
practice, despite recent efforts to promote their use [8]. Specifically, this paper
focuses on:
1. use of knowledge acquisition processes to capture structured knowledge in a

systematic way;
2. use of knowledge representation technology to store the knowledge,

preserving important relationships that are far richer than is possible in
conventional databases.

In support of this viewpoint, the paper presents a case study in which knowledge
engineering practice is being used to support knowledge management by a drilling
optimisation group within a large service company in the oil and gas industry. The
three facets of the knowledge management task (capture, storage, and deployment)
are illustrated: (1) Knowledge capture is performed by a systematic knowledge
acquisition process in which a conceptual model of aspects of the company's
business domain is used to guide the capture of cases and rules. (2) Knowledge
storage is performed by using a knowledge representation language to codify the
structured knowledge in a number of knowledge bases, which together comprise a
knowledge repository. (3) Knowledge deployment is performed by running the
knowledge bases within a knowledge server, accessible by standard web browsers
on the company intranet, and capable of answering far more complex queries than
is possible using conventional database systems.

The paper is organised as follows: Section 2 examines the relevant technology
and processes from knowledge engineering; Section 3 introduces the application
domain of the case study; Section 4 looks at the implemented system in detail;
Section 5 examines the implemented system; and Section 6 concludes.

2 Applying Knowledge Engineer ing to Knowledge
Management

In the 1990s, knowledge engineering emerged as a mature field, distinct from but
closely related to software engineering [3, 6]. Chief among the distinct aspects are:
• A range of techniques for knowledge elicitation and modelling.
• A collection of formalisms for representing knowledge.
• A toolkit of mechanisms for implementing automated reasoning.

The knowledge engineering process in outline is as follows [3, 7]:
1. Requirements analysis: identify the scope of the knowledge-based system,

typically in terms of the competency it will be expected to have (for example,
kinds of queries it will be able to answer).

2. Conceptual modelling: based on the scope defined in (1), create a glossary of
terminology (concepts) for the application domain and define
interrelationships between the terms, and constraints on their usage. An
explicit conceptual model of this kind is commonly called an ontology.

3. Knowledge base construction: using the conceptual model/ontology from (2)
as a collection of knowledge containers (or schemata), populate the knowledge
base with instances of domain knowledge (often in the form of rules, facts,
cases, or constraints).

4. Operationalisation and validation: operationalise the knowledge base from
(3) using automated reasoning mechanisms, and validate its competence
against the requirements from (1). If satisfactory, release the system;
otherwise, repeat (1-4) until satisfactory.

5. Refinement and maintenance: after delivery, the system will continue to
evolve, as knowledge changes; this will involve repeating of (1-4) throughout
the life of the system.

Any knowledge management system that involves the explicit representation of
knowledge is amenable to development using at least part of the above process. In
fact, it can be argued that it is always worth applying at least part of this process
when undertaking any knowledge management activity that involves the explicit
representation of knowledge. For example:
• Document management systems: as a minimum, apply (1) at the outset to

ensure competency criteria are defined. This will ensure at least that the right
tool is selected; it may reveal a need for a more structured approach.

• Discussion forums: as a minimum, apply (1-2) to ensure that the scope of the
system is well-understood, and that the forums are organised so as to
effectively support existing (or desired) communities of practice.

• Capability management systems: as above, apply (1-2) to define the
metaknowledge that will serve as knowledge containers/schemata to capture
workers’ capabilities; then, the “CV database” is populated in step (3).

• Lessons-learned knowledge base systems: these are knowledge-based
systems, and should follow the entire 5-stage process.

It is particularly important to employ knowledge engineering techniques when an
organisation seeks to employ a range of knowledge management approaches. This
is becoming common in larger organisations: such organisations are already
comfortable with a multiplicity of information systems, typically tied into an
intranet, and see a multifaceted knowledge management system as normal. For
example, such a knowledge management system may include a capability
management system, discussion forums, a document management system, and
several lessons-learned knowledge bases. In such cases, the key challenge becomes
that of knowledge integration: linking together the various sources at the level of
knowledge content.

In this context, the knowledge engineering process is used to define an
organisational knowledge model, or knowledge map [9], which becomes the set of
relationships that are used to bind together the multifaceted knowledge
management system at the level of knowledge content. (The actual software-level
bindings can be implemented by hyperlinking, remote procedure calling, or any
one of a host of distributed computing techniques.) Therefore, even when an
organisation embarks on its first, single-facet knowledge management project, it is
very likely to be a worthwhile investment to follow steps (1-2) of the knowledge
engineering process to define an initial knowledge map.

3 Case Study: Dr illing Optimisation Domain
Baker Hughes OASIS is an engineering services subsidiary company of Baker
Hughes Incorporated, providing drilling process expertise to a worldwide client
base in the oil and gas industry. In particular, Baker Hughes OASIS specialise in
drilling performance optimisation, which is a knowledge-rich service involving
identifying, understanding, and overcoming barriers to improved drilling
performance. Drilling performance optimisation engineers need a specialised set of
skills, drawn from a variety of disciplines including mechanical engineering,
geology, and physics. As a relatively new service, there is a limited community of
skilled optimisation engineers, and those within Baker Hughes OASIS are
dispersed worldwide.

For these reasons, drilling performance optimisation represents an ideal
application domain for knowledge management. Having recognised this in the
early 1990s, Baker Hughes OASIS have developed a multifaceted knowledge
management approach, which currently includes the following systems
components:
• Drilling Performance Guidelines: a semi-structured document base

implemented using Lotus Notes/Domino [16].
• OASIS University: on-line training system for optimisation engineers, also

implemented in Lotus Notes/Domino.
• Drill Bit Advisor: a rule-based expert system implemented in LISP/CLOS

using a custom graphical rule representation [10].

• Drilling Knowledge Store: a technical lessons-learned knowledge base,
described further below.

All of these components are inter-linked. For example, a conclusion
(recommendation) made by the Drill Bit Advisor is commonly linked via a URL to
a Drilling Performance Guideline in the Lotus Notes/Domino system.

The Drilling Knowledge Store is one of the newest components of Baker
Hughes OASIS’ knowledge management strategy, and has been designed as an
open repository of case-based drilling knowledge. Accessed through a Lotus
Domino server, its features include:
• A structured search tool that allows users to query the knowledge store for

lessons learned in environments similar to a specified environment of interest.
• Forms for entry of new knowledge to promote easy entry of new cases, which

are submitted to reviewers for audit and approval before being made available
to other users.

• Links to the Drilling Performance Guidelines system to avoid knowledge
duplication and ease updating/maintenance.

The Drilling Knowledge Store builds on a knowledge map developed using the
standard knowledge engineering process described in the previous section, and
incorporates a Drilling Knowledge Repository, which is a case-base of documented
experience of optimisation engineers. The work was carried out in collaboration
with the University of Aberdeen, managed as a Teaching Company Scheme. The
development stages are detailed below.

3.1 Requirements Analysis

A series of initial interviews was conducted with a number of optimisation
engineers to explore the scope of the Drilling Knowledge Repository. The key
finding was that the system would need to be highly open: because drilling
optimisation is a relatively new specialism, knowledge in the domain is evolving,
so the system would have to be designed to cope with the likely kinds of change. In
particular:
• any knowledge containers/schemata would have to be highly extensible (new

concepts and relationships may be discovered in the future);
• instances would frequently be added (new cases will grow in proportion to the

growth in the drilling optimisation business);
• instances may be reclassified, especially as outdated knowledge is

“decommissioned” .

3.2 Conceptual Modelling

An initial glossary of terms was drawn-up following the first round of
interviewing. The transcripts of the interviews were analysed using the PC-PACK
[8] knowledge acquisition software toolkit in an attempt to derive a set of concepts.
However, the tool was not found to be sufficiently flexible in dealing with concepts
where the “defining” words are not adjacent in a piece of text, and are interspersed
with words from other concepts. PC-PACK and similar textual mark-up systems
allow the user to indicate only that single words correspond to concepts, attributes,
and values. In practice, it is often the case that such entities are defined by a
number of words and that these are not necessarily adjacent. For example, the text

“a bus system that links all the suburbs to the centre and to each other” contains the
concept comprehensive-city-bus-network, but also contains parts of the concept city
(suburb and centre).

In view of these limitations of the tool, a manual concept-mapping approach
was used instead [11]. The conceptual modelling activity focussed on two areas:
• Defining the concepts associated with the drilling environment, including

extensive definitions of geological concepts (leading to the creation of an
ontology for representing the rock formations that constitute a drilling task)
and concepts associated with the drilling activity (chiefly drill bits, fluids, and
related apparatus).

• Defining the “knowledge management” concepts that would allow the capture
of useful instances of optimisation engineers’ experience (most obviously, the
concept of a “case”).

Relatively early on, it became desirable to formalise these concepts in order to
manage them within a software environment. The Loom knowledge representation
system [12] and its associated Ontosaurus browser/editor was chosen for the
following reasons:
• Loom is one of the most flexible, least constraining knowledge representation

systems currently available.
• Loom’s operational mechanisms (chiefly the classification engine) allowed the

knowledge engineering team to test the integrity of the conceptual model
during its development.

• Ontosaurus provides a web front-end to Loom knowledge bases, allowing
multiple users to inspect, query, and modify the knowledge base on a network,
using a standard web browser.

3.3 Knowledge Base Construction

By the time a reasonably-complete conceptual model had been defined, a number
of sample cases were already available, having been elicited from optimisation
engineers as a natural part of exploring the scope of the domain. When formalising
the conceptual model in Loom, the opportunity was taken to represent these cases
using the knowledge containers therein. However, systematic acquisition of cases
was carried out using a distinct approach.

Firstly, a small number of high-performing, expert optimisation engineers were
identified. Then, one-on-one, intensive knowledge acquisition campaigns were
conducted with these individuals. These campaigns were carefully designed to
ensure that the experts would contribute actively and positively (mindful of lessons
learned from negative experiences of knowledge acquisition during the hey-day of
expert systems in the 1980s). The knowledge acquired from each campaign was
formalised in Loom, but also written-up in a natural-language knowledge book
electronic document [13] that could be checked for accuracy by the expert, and
also disseminated on CD-ROM throughout the company as an easily-accessible,
early result of the OASIS group’s activity.

3.4 Operationalisation and Validation

The knowledge base was operationalised naturally by the choice of Loom as
representation language. Validation was performed at two levels:

• Indirect validation of the represented knowledge using the knowledge books.
• Direct validation of the represented knowledge using Loom’s inference

mechanisms.
Further indirect validation came through the development of drill bit selection rules
using some of the case-based knowledge acquired in these campaigns. These rules
were then validated using existing software in the Drill Bit Advisor expert system.

The next section examines the structure of the Loom Drilling Knowledge
Repository in more detail.

4 The Dr illing Knowledge Repository in Loom
Philosophically, the system is considered to be a “knowledge storage and retrieval
system” rather than a “knowledge-based system”. The reason for this is that knowledge-
based systems are strongly associated with tasks, whether those tasks are decision
support, automated decision-making, training, or whatever. It is well-known that the task
for which knowledge is to be used places a strong bias on the form of the knowledge
[14]. In this case, it was important that the implemented system be considered task-
neutral: it should serve purely as a repository for captured knowledge, without any risk
of biasing the form and content of the knowledge toward a particular future usage.

Nevertheless, the system does have at its core a set of automatic deductive facilities
(provided by Loom), which operate on the definitions given to the system by the
knowledge modeller. The important point, however, is that these inferences operate at
the conceptual model level, and not at any action level. That is, actions are left to
humans, and the system does not per se advise on any action the user should take. So,
for example, the system will recognise instances and classify them appropriately with
reference to the conceptual model, but this is purely for the purpose of retrieving those
instances and bringing them to the user’s attention.

There are two main parts to the Loom knowledge store; a conceptual model part, and
a database part. (This is analogous to a database with its schema and data parts.) The
conceptual part of the knowledge base is defined using concepts. There are binary
concepts (otherwise known as roles) and unary concepts (known simply as concepts).
The database part is populated with instances of the concepts in the conceptual part.

This section gives examples of the Loom constructs to illustrate the approach taken
in concrete terms. The intention here is to motivate the constructs so that a full
understanding of the representation language is not necessary (if the reader is unfamiliar
with Loom or similar languages, good introductions are given in [12, 15]).

4.1 Modelling Constructs for Drilling Engineers’ Experience

As the knowledge store is chiefly intended to capture experiential cases from drilling
engineers, the most important concept is the case.

 (defconcept CASE :is-primitive
 (:and (:exactly 1 formation-sequence)

(:all decision DECISION)
(:all observation OBSERVATION)))

A case usually describes a drill bit run - a continuous period of drilling with a single
drill bit. So, if an optimisation engineer experiences some bit run worthy of being
recorded in the knowledge store, then the rock formation sequence drilled should be
represented, as well as the decisions taken on how to drill that formation sequence, and
any associated observations. A decision can refer to a choice of drill bit, mud (drilling
fluid), flow rate, and so on. Alternatively, the case need not refer to an actual drill bit
run if the person entering it simply has an experience they wish to share.

A decision is presupposed to have several different dimensions. These include:
issues, actions, goals, an author, a spin, and reasoning. These dimensions are intended to
provide a balance between structured knowledge and free text. The structured
knowledge is to enable the formal representation and therefore support powerful
searches, while the free text supports semi-structured knowledge.

 (defconcept DECISION :is-primitive
 (:and (:exactly 1 action)

(:at-most 10 issue)
(:at-most 10 goal)
(:at-most 1 authors-reasoning)
(:at-most 1 companys-reasoning)
(:at-most 1 author)
(:at-most 1 spin)))

An issue is some informational context that the engineer was aware of when making the
decision. The issues in the current KB reflect quite strongly the Best Practice Drilling
database (held in Lotus Notes), and the link roles shown below are intended to reflect
this. These can be filled with links to other media, including the Notes database itself,
using URLs.

 (defconcept ISSUE :is-primitive
 (:and KNOWLEDGE_MANAGEMENT_CONCEPT

(:at-most 1 symptoms-and-diagnosis-link)
(:at-most 1 description-link)
(:at-most 1 parameters-link)
(:at-most 1 diagnostic-information-link)
(:at-most 1 planning-actions-link)
(:at-most 1 operating-practices-link)
(:at-most 1 examples-link)))

An action is the real-world consequent the engineer performed as part of the decision,
and includes both structured (categorical-outcome) and free text (textual-
outcome) outcomes.

 (defconcept ACTION :is-primitive
 (:and KNOWLEDGE_MANAGEMENT_CONCEPT

(:at-most 1 categorical-outcome)
(:at-most 1 textual-outcome)))

Two kinds of reasoning are captured for a decision: Author’s reasoning is a field of free-
text for explanations for example of why a certain drill bit was chosen. This is to allow
the possibility of incomplete, inaccurate, and even incoherent explanations for actions
being stored; after all, the main reasoning or determinism for the action is the other
structured information describing the circumstances in which the action was taken, such
as the formation sequence. Company’s reasoning is a field which expresses the
company’s commonly agreed upon beliefs for the decision in question.

4.2 Modelling Constructs for the Drilling Environment

The drilling environment is described chiefly in terms of conceptual rock sequences.
Representing these was achieved by defining an ontology of geological concepts,
including constraints. For instance, if the user wishes to specify the depth and/or length
of a particular section of lithology (a basic rock type, for example, sand, shale, etc) then
that section has to be represented as a formation. The super-structure larger than that is
the formation sequence, which can have one or more formations. Each formation can
have one or more lithologies. A formation is the conceptual modelling granularity at
which the users should be representing any part of the wells they feel should have
represented interval lengths and depths.

 (defconcept FORMATION_SEQUENCE :is-primitive
 (:and ROCK_CONCEPT

(:at-least 1 formation)))

 (defconcept FORMATION :is-primitive
 (:and ROCK_CONCEPT

(:at-least 1 lithology)))

To allow users to represent and query formation sequences in a flexible way, a number
of relations are defined in the ontology. For example, the relation comes-in-
somewhere-after relates two formations, the first of which comes in somewhere
after the other.

 (defrelation comes-in-somewhere-after
 :domain FORMATION_SEQUENCE
 :range FORMATION
 :characteristics (:multiple-valued :closed-world)
 :is (:satisfies (?formation-x ?formation-y)

 (:and
 (FORMATION ?formation-x)
 (FORMATION ?formation-y)
 (:or (comes-in-immediately-after

?formation-x ?formation-y)
(:exists (?formation-z)

 (:and
 (FORMATION ?formation-z)
 (comes-in-somewhere-after

?formation-x ?formation-z)
 (comes-in-somewhere-after ?formation-z

?formation-y)))))))

One important feature of lithologies in their hardness. While a lithology has, by
definition, one rock type (for example, shale), it can have more than one hardness (for
example, that shale may have 100m of very soft rock with 300m soft rock).

 (defrelation hardness
 :domain LITHOLOGY
 :range HARDNESS
 :characteristics (:closed-world :multiple-valued))

The ontology has a collection of functions that relate formation sequences,
constituent lithologies, and accumulated hardness, to support the modelling of drill
bit runs.

In addition to the generic geological concepts, the knowledge store has
representations of the concepts involved in drilling. For example, drill bit.

 (defconcept DRILL_BIT :is-primitive
 (:and DOWN-HOLE_EQUIPMENT_CONCEPT

(:exactly 1 bit-gauge)))

4.3 Querying the Knowledge Store

The function retrieve provides an interface to Loom’s deductive query facility, used
for retrieving instances from the knowledge base. Formation sequence queries are
among the most sophisticated forms of query that can be issued to the knowledge store.
The two concepts likely to be of interest are individual formations, and formation
sequence. Two common forms of query here are:
• Queries on an overall cumulative amount of a certain hardness of a certain lithology

over a formation sequence.
• Queries for formations that have amounts of certain lithologies of certain hardness.

The example query below looks for cases that have a formation sequence which has as
its constituents of its formation(s) greater than or equal to 1900 feet of very soft to soft
(including all subtypes of soft and very soft) shale (including all sub-types of shale).

 (retrieve ?case
 (:and
 (CASE ?case)
 (>= (sum (:collect ?lithology-amount-ft

 (:and
 (:exists (?formation-sequence ?formation

?lithology ?hardness)
(:and
 (formation-sequence ?case ?formation-sequence)
 (formation ?formation-sequence ?formation)
 (lithology ?formation ?lithology)
 (lithology-hardness-amount-ft ?lithology

?hardness ?lithology-amount-ft)
 (:or
 (VERY_SOFT ?hardness)
 (SOFT ?hardness))
 (SHALE ?lithology)
))))) 1900)))

Users are also likely to want to look for cases where specific goals (outcomes) were
achieved. The following example query retrieves cases that have a drill bit decision in
which one of its goals was good ROP (rate of penetration) with good bit cleaning.

 (retrieve ?case
 (:and
 (CASE ?case)
 (:exists (?decision)

 (decision ?case ?decision)
 (DRILL_BIT_PLANNING_DECISION ?decision)
 (goal ?decision GOOD_ROP_WITH_GOOD_BIT_CLEANING))))

4.4 Adding to the Knowledge Store

Recall that the knowledge store is comprised of a conceptual part and and a database
part. It is expected that the conceptual part is now stable, and it is rare that knowledge
will need to be added or modified. However, it is expected that additions to the database
part will be regular. The Loom operations used to update the database part of the
knowledge base are tell and about: tell is used to assert propositions and facts
about the world or domain; about references the instance to which those propositions
refer. The following example shows how a case instance may be entered. This example
case has one formation sequence name and zero or more decisions/observations.

 (tell (:about Case-Name
 CASE
 (formation-sequence Formation-Sequence-Name)
 (decision Decision-Name)
 (observation Observation-Name)))

5 Current Status and Future Plans

The Loom Drilling Knowledge Repository currently contains 1200 concepts and
240 relations, with further expansion planned. The knowledge store is accessible
on the company’s intranet using a standard web browser via the Ontosaurus system
- see Figure 1. While it is relatively straightforward to browse the case base and
ontology using Ontosaurus, there are a number of significant problems with the
current system:

� it is hard to run complex queries on the Loom knowledge store because
Ontosaurus supports only simple queries (retrieve cases with matching simple
role values);

� it is hard to add new cases because these require the user to have good
knowledge of Loom syntax, which is an unrealistic expectation for
optimisation engineers;

� limited capability for multi-user access (crude database locking and limited
concurrent access).

In addition to the above issues, it was desirable that the Drilling Knowledge
Repository have a familiar interface, preferably that of the existing systems
implemented using Lotus Notes/Domino. At the same time it was thought valuable
to link the knowledge represented in the Loom repository with information and
knowledge relating to the performance optimisation projects during the course of
which the stored knowledge was created. For these reasons, it was decided as an
interim solution to incorporate (partially) the Loom knowledge map and cases into
a Lotus Notes/Domino database of project-related knowledge, to provide structure
for technical lessons learnt on each project. A screenshot of the ported system
appears in Figure 2. The immediate benefits of this were:

� easy access to the most valuable knowledge in the knowledge store to all
optimisation engineers;

� linkage between optimisation-related knowledge and other knowledge from
the projects in which it was created;

� familiar interface, seamlessly integrated with other Notes/Domino knowledge
sources;

� Domino’s scalable architecture, with built-in support for concurrent access.

Figure 1: Loom Drilling Knowledge Repository Screenshot

Figure 2: Lotus Notes/Domino Drilling Knowledge Store Screenshot

The port of the Loom knowledge map and cases to Lotus Notes/Domino was
carried out manually. Moreover, the Notes knowledge schemata are nowhere near
as rich as those in the Loom system. As this is obviously not ideal, future work will
focus on providing an automatic conduit for knowledge exchange between the
Notes/Domino and Loom systems, allowing knowledge management engineers to

maintain the knowledge map through the Loom system, and optimisation engineers
to retrieve and enter cases via the Notes/Domino system.

6 Conclusions
This paper has argued that knowledge engineering techniques bring significant
benefits to knowledge management projects. The case study in drilling
optimisation reveals three major areas of specific benefit to the knowledge
management group at Baker Hughes OASIS:

� The use of a principled methodology for knowledge acquisition lead to
effective capture of valuable knowledge, and instilled in all staff concerned a
good degree of confidence in the process.

� The development of a common ontology as a result of the knowledge
modelling process had benefit not only for the specific task of acquiring
experiential cases from company experts, but also provided a knowledge map
with application to multiple company knowledge sources.1

	 While semi-structured knowledge books were used to provide feedback to
participating personnel, the formal representation of acquired knowledge in an
operationalisable form was very valuable for knowledge verification and
integrity checking.

In doing this work, we have detected two weaknesses in current knowledge
engineering techniques and technology. Firstly, as noted in Section 3.2, PC-PACK
and other textual mark-up systems do not cope adequately with concepts that are
defined by a number of non-adjacent words. Thus, we have identified the need for
a more flexible tool.

Secondly, it is very difficult to integrate expressive reasoning tools such as
Loom with intranet knowledge management environments like Lotus
Notes/Domino. It seems reasonable to conclude, therefore, that while knowledge
engineering processes are ready to bring significant benefits to knowledge
management projects, the knowledge engineering toolbox needs some
improvement.

Acknowledgements

The case study described in this paper was supported by Teaching Company
Scheme funding from the DTI and EPSRC. The Lotus Notes version of the Drilling
Knowledge Store was constructed largely by John Lawton and David Bowden of
Transition Associates, who also proposed and developed the OASIS University.
The authors would like to thank Tom Russ of ISI/University Southern California,
for advice and technical assistance regarding Loom and Ontosaurus.

This paper is published with the kind consent of the Hughes Christensen Company.

1 We have subsequently developed a knowledge acquisition tool that is driven by the nature of the
task and the ontology. We believe that this tool, COCKATOO [17] would be effective in acquiring
cases directly from domain experts.

References
1. Harvard Business Review on Knowledge Management, Harvard Business

School Press, 1998.
2. Liebowitz, J. and Wilcox, L. (1997) Knowledge Management and Its

Integrative Elements, CRC Press.
3. Schreiber, G., de Hoog, R., Akkermans, H., Anjewierden, A., Shadbolt, N. and

van de Velde, W. (2000) Knowledge Engineering and Management, MIT
Press.

4. Bukowitz, W. and Williams, R. (1999) Knowledge Management Fieldbook,
Prentice-Hall.

5. Stader, J. and Macintosh, A. (1999) Capability modelling and knowledge
management. In Applications and Innovations in Intelligent Systems VII,
Springer-Verlag, pp 33-50.

6. Motta, E. (1999) Reusable Components for Knowledge Modelling, IOS Press.
7. Russell, S. and Norvig, P. (1995) Artificial Intelligence, Prentice-Hall.
8. Milton, N., Shadbolt, N., Cottam, H. and Hammersley, M. (1999) Towards a

knowledge technology for knowledge management. International Journal of
Human-Computer Studies, 51:3 615-641.

9. Domingue, J. and Motta, E. (2000) Planet-Onto: from news publishing to
integrated knowledge management support. IEEE Intelligent Systems,
May/June, pp. 26-32.

10. Evans, J. M., Fear, M. J., and Meany, N. C., (1995) A new graphical
representation for rule definition and explanation in an expert system. In
Applications and Innovations in Intelligent Systems III, Springer-Verlag.

11. Kremer, R. (1997) Concept mapping tool to handle multiple formalisms, In
AAAI Spring Symposium on Artificial Intelligence in Knowledge Management,
AAAI Press.

12. MacGregor, R. (1991) The evolving technology of classification-based
knowledge representation systems. In Principles of Semantic Networks:
Explorations in the Representation of Knowledge, Morgan Kaufmann, pp 385-
400.

13. Ermine, J-L. (1998) Knowledge management in the Commissariat a l’Energie
Atomique. In PAKeM98 - Practical Application of Knowledge Management,
London.

14. Clancey, W. J. (1992) Model construction operators. Artificial Intelligence,
53:1-115.

15. Brachman, R. J., McGuinness, D. L. Patel-Schneider, P. F., Resnick, L. and
Borgida, A. (1991) Living with Classic: when and how to use a KL-ONE-like
language. In Principles of Semantic Networks: Explorations in the
Representation of Knowledge, Morgan Kaufmann, pp 401-456.

16. Curry, D. A., Singelstad, A. V., and Bowden, D. (1999) Drilling Performance
Guidelines - A tool for sharing drilling-related knowledge and experience",
SPE/IADC paper no 52804, SPE/IADC Drilling Conference, Amsterdam.

17. S White (2000) Enhancing Knowledge Acquisition with Constraint
Technology, PhD Thesis, The Department of Computing Science, University
of Aberdeen.

