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Abstract. Sensor-mission assignment involves the allocation of sensor and other
information-providing resources to missions in order to cover the information
needs of the individual tasks in each mission. This is an important problem in
the intelligence, surveillance, and reconnaissance (ISR) domain, where sensors
are typically over-subscribed, and task requirements change dynamically. This
paper approaches the sensor-mission assignment problem from a Semantic Web
perspective: the core of the approach is a set of ontologies describing mission
tasks, sensors, and deployment platforms. Semantic reasoning is used to recom-
mend collections of types of sensors and platforms that are known to be “fit-
for-purpose” for a particular task, during the mission planning process. These
recommended solutions are used to constrain a search for available instances of
sensors and platforms that can be allocated at mission execution-time to the rel-
evant tasks. An interface to the physical sensor environment allows the instances
to be configured to operate as a coherent whole and deliver the necessary data to
users. Feedback loops exist throughout, allowing re-planning of the sensor-task
fitness, reallocation of instances, and reconfiguration of the sensor network.

1 Introduction
Sensor-mission assignment involves the allocation of sensors and other information-
providing resources to missions in order to cover the information needs of the individual
tasks in each mission. This is an important problem in the intelligence, surveillance,
and reconnaissance (ISR) domain, for a variety of reasons.1 Firstly, the informational
demands placed on available sensors and other ISR resources typically exceeds their
supply in terms of inventory: commanders tend to want more than the available assets
can provide, so careful allocation and resource sharing is usually necessary. Secondly,
the deployment environment is chaotic and subject to frequent changes: mission plans
must evolve to cope with unforeseen events, leading to changes in the tasks required
and hence the ISR needs. Any solution to the sensor-mission assignment problem must
therefore support a high degree of agility in terms of identifying alternative resources
and re-assigning or re-purposing resources to tasks.

This paper approaches the sensor-mission assignment problem from a Semantic
Web perspective: the core of the approach is a set of ontologies describing mission

1 For background on this problem from a military perspective, see for example
http://www.dtic.mil/doctrine/jel/new pubs/jp2 01print.pdf, pages III–10–11.
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Fig. 1: Overall picture of the sensor-task assignment process

tasks, sensors, and deployment platforms. Figure 1 shows how the various aspects of
our approach fit together. Working from the mission planners’ ISR requirements (what
capabilities are needed, in what environment, and with what quality-of-information),
semantic reasoning is used to recommend collections of types of sensors and platforms
that are known to be “fit-for-purpose” for a particular task. The reasoner is able to take
account of logistical information concerning the potential availability of assets (includ-
ing their location, types, and operational status). Then, these recommended solutions
are used to constrain a search for available instances of sensors and platforms that can
be allocated at mission execution-time to the relevant tasks. This stage takes account
of data on the operational status of the various assets in the field (for example, if they
degrade in some way, perhaps due to damage). An interface to the physical sensor en-
vironment then allows the instances to be configured to operate as a coherent whole
and deliver the necessary data to users. Feedback loops exist throughout, allowing re-
planning of the sensor-task fitness, re-allocation of instances, and re-configuration of
the operational sensor network.

Our overall goals are to provide three elements of an integrated solution to the
sensor-mission assignment problem:

– A framework that offers a “top-to-bottom” solution to the problem of deploying
sensors to meet the information needs of tasks in a mission context. At the core is
a set of modular ontologies covering task requirements, sensor capabilities, and a
structured framework to associate tasks with sensors.

– A combination of reasoning at mission-planning time, and optimisation algorithms
at mission execution-time: the reasoner recommends a collection of sensor types



which cover the needs of the mission, while the optimisation algorithms select the
best collections of instances of those sensor types.

– Support to dynamically configure a deployment of selected sensor instances by
means of a sensor infrastructure (the Sensor Fabric), which handles subscription to
physical-world sensors, routing, information fusion, and delivery of information to
users.

In this paper, we focus mainly on the first of these elements, the ontology-centric frame-
work. Although the second and third elements are not the primary focus of this paper,
we will describe the relationship between the ontology-centric framework and the other
elements, and summarise the status of our overall integrated approach.

Figure 2 provides an overview of our con-
ceptual architecture. At its core is a set of in-
terlinked ISR ontologies, together with a rea-
soner that performs sensor-task fitting. The
interlinked ontologies define various dimen-
sions of the ISR domain, including the infor-
mation requirements of mission tasks, and de-
scriptions of various aspects of sensors and
sensor platforms. These build on existing on-
tologies, schemas, and catalogues of tasks,
sensors, etc where appropriate, including at-
tributes exposed by the Sensor Fabric, which
provides an interface to the deployed sensor
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Fig. 2: Conceptual architecture
environment, allowing sensor selection, data routing, fusion and filtering. The Missions
and Means Framework (MMF) ontology supports the sensor-task fitting reasoner by ar-
ticulating the relationships between task requirements and sensor/platform capabilities.
The reasoner is able to recommend collections of sensor types to cover mission require-
ments: this is done at mission-planning time, and allows for user intervention in the
selection process. The selected collections of sensor types are made available at mis-
sion execution-time to the sensor-task allocation algorithms, which attempt to assign
sets of sensor instances in a near-optimal manner. The delivery layer is tightly cou-
pled with the fabric, and allows users to subscribe dynamically to the sensor instances
assigned by the sensor-task allocation algorithms.

The paper is organised as follows: Section 2 describes the various ontologies we
have developed to model the relationships between tasks and assets in the ISR domain.
Section 3 describes the reasoning procedure for sensor-task fitting. Section 4 describes
the sensor-task allocation framework, and explains how it complements the work done
by the reasoner. Section 5 examines the status of our implementation based on the
Sensor Fabric. Finally, Section 6 summarises and concludes the paper.

2 Ontologies for assessing the fitness-for-purpose of sensors to tasks
We advocate the use of semantic matchmaking [1] to address the assessment of the
fitness-for-purpose of alternative means to accomplish a given ISR task, which in turn
will support the effective allocation of assets to multiple competing tasks. This approach
relies on the use of ontologies as an expressive and logically-sound way to represent
knowledge and reason with it. More specifically, our approach uses ontologies in the
following activities:



– specifying the requirements of a task, in terms of the ISR capabilities needed;
– specifying the capabilities provided by ISR assets (sensors and sensor platforms);
– comparing the specification of a task against the specification of available assets to

assess their fitness-for-purpose.

2.1 Missions and Means Framework Ontology
Although it is possi-

ble to imagine a single
all-encompassing “ISR
ontology”, we adhere to
the Semantic Web vi-
sion of multiple inter-
linking ontologies cov-
ering different aspects of
the domain: sensors, plat-
forms, tasks, etc. This
allows us to build on
substantial pre-existing
work but, as we will see,
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Fig. 3: Mission and Means Framework
leave us with the problem of relating sensors/platforms to tasks. To fill this gap, we pro-
vide an ontology based on the Missions and Means Framework (MMF) [2], which is
essentially a collection of concepts and properties to reason about the capabilities re-
quired to accomplish a mission it (e.g. mission, task, capability, asset, etc.). MMF was
developed by the US Army Research Laboratory to provide a model for explicitly spec-
ifying a military mission and quantitatively evaluating the utility of alternative means
to accomplish it. Ours is the first attempt to define an ontology based on the frame-
work; using MMF allows us to benefit from its familiarity to users. The way MMF
describes the linking between missions and means — shown in Figure 3 — naturally
fits the notion of matchmaking: on the one hand, we have missions breaking down into
operations, and operations into tasks, where each task may require different capabilities
to be accomplished; on the other hand, we have the capabilities provided by assets as a
result of aggregating the capabilities of its constituent systems and subsystems.

Figure 4 sketches the main
concepts of our MMF ontology.
On the left hand side, we have
the concepts related to the mis-
sion: a mission comprises sev-
eral operations to be carried out,
and each operation breaks down
into a number of tasks that must
be accomplished. On the right
hand side we have concepts re-
lated to means: a sensor is a
system that can be attached to
a platform; inversely, a platform
can mount one or more systems;
both platforms and systems are
assets; assets provide capabili-
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Fig. 4: Main concepts and relations in the MMF ontology



ties; a capability can entail a number of more elementary capabilities and is required to
perform certain type of tasks; and inversely, a task is enabled by a number of capabil-
ities; some sensors can interfere with other sensors, so they cannot be used simultane-
ously; and finally, at some point, assets will be allocated to specific tasks that require
the capabilities provided by them.

Note that all concepts shown in Figure 4 are general MMF concepts with the ex-
ception of sensor, which we have introduced (as a refinement of the MMF core concept
system) in order to link the MMF ontology with the ISR domain specific ontologies.
This is because, while the MMF ontology describes the main concepts used in our
matchmaking framework — and is generic to military and military-style missions and
means in the widest sense — in order to describe specific instances of those concepts
we need domain-specific vocabulary discussed in the next section.

2.2 ISR Ontology
There is already a sizeable amount of work done in providing descriptive schemas and
ontologies for sensors, sensor platforms, and their properties, such as SensorML [3],
OntoSensor [4], CIMA [5], and the MMI Platforms ontology [6] among others. There
are also several well-known structured descriptions of tasks in the military missions
context, most notably the US Universal Joint Task List (UJTL)2, the CALL thesaurus3,
the US JC3IEDM model and the UK JETL/METL task lists. These existing representa-
tions provide partial coverage of what we need to model but, as they originate in either
the sensor/platform or task spaces, they lack knowledge of how capabilities provided
by the types of sensors/platforms may satisfy the capabilities required by tasks. Conse-
quently, our approach has been to reuse existing concept sets, and to extend these with
representations of capabilities.

During the knowledge analysis and acquisition stage we found a number of issues
that we have taken into account in our approach to the representation of the ISR domain,
including the following:

– The absence of standardised taxonomies, and the existence of alternative, some-
times inconsistent, classifications for the same concepts.

– Existing attempts to conceptualize the domain are based on different dimensions,
and more usually, several dimensions are mixed. For example, UAV (Unmanned
Air Vehicle) classifications tend to mix dimensions such as size or weight (e.g. Mi-
croUAV vs MiniUAV), performance (e.g. Medium Altitude vs High Altitude), task
type (Maritime Reconnaissance, Wide Area Surveillance, etc.), or ad-hoc features
such as their landing and take off capabilities.

– There are fuzzy concepts that are difficult to classify as a single category. For exam-
ple, LIDAR (LIght Detection and Ranging) is a type of sensor that has properties
of both optical sensors and radars.

– Concepts that are supposed to refer to the same aspect of the domain are described
at different abstraction levels. Closely related to this issue is the tension between
considering a concept as primitive, or as a composition of more basic elements; for
example, a reconnaissance capability might be seen as implying a combination of
mobility and sensing capabilities.

2 See http://orlando.drc.com/semanticweb/daml/ontology/condition/ujtl/condition-ont for an
existing UJTL-based ontology.

3 http://call.army.mil/thesaurus



In order to deal with the challenges introduced above, we propose a compositional
and multidimensional approach to conceptualize the ISR domain. Such an approach is
well suited to Description Logics (DL) [7] languages such as OWL DL. One of the most
powerful features of DLs is their ability to define classes in terms of sufficient and nec-
essary conditions. New concepts can be defined by specifying property restrictions and
relations on existing concepts. As an example, consider the following DL definitions
for some concepts relating to aerial sensor platforms:

– Aircraft ≡ (Platform u ∃ hasRealm.Atmosphere)
– UnmannedVehicle ≡ (Platform u ∃ hasQuality.Without-crew-mobility)
– UAV ≡ (Aircraft u UnmannedVehicle)
– CombatUAV ≡ (UAV u ∃ providesCapability.Firepower)
– MALE ≡ (UAV u ∃ providesCapability.MediumAltitude u ∃ providesCapabil-

ity.LongEndurance)
– EnduranceUAV v ¬ (SmallUAV t TacticalUAV).

By using OWL DL, we can apply off-the-self reasoners to infer new classifications
based on concept definitions, which is very appropriate because different classifications
are useful for different purposes. For example at some point one might be interested in
selecting a platform in terms of the type of tasks that it can perform (reconnaissance,
surveillance, battle damage assessment, etc), but in other circumstances one might be
interested in selecting a platform according to its takeoff and landing capabilities (cata-
pult, runaway, VTOL, etc). Some of these dimensions are:

– For platforms: mobility, realm, performance (range, endurance, altitude, speed,
etc.), application or mission type (surveillance, reconnaissance, target acquisition,
etc.), firepower, landing and takeoff, communications, vulnerability and survivabil-
ity, availability.

– For sensors: phenomena detected (type and spectrum), performance (resolution,
sample rate, etc), weather/terrain/contamination influence, vulnerability, interfer-
ences with other sensors.

(a) Platforms (b) Sensors (c) ISR tasks (d) Intelligence

Fig. 5: Sample of concept taxonomies relevant to the ISR domain

Figure 5 shows a sample of some of the taxonomies we have developed for the ISR
ontology. Platforms (a) and sensors (b) are used to characterize ISR assets; the former
draws on concepts from OntoSensor and CIMA, the latter from the MMI Platforms



ontology (as referenced at the start of this section). Note that a member may belong to
multiple classes in different branches of the tree, as far as it complies with the class defi-
nition; for example, PredatorB is asserted to be a subclass of MALE (Medium Altitude
Long Endurance) UAV, but it is also classified as a subclass of CombatUAV because it
is a UAV that provides Firepower capability, as stated in the definition of CombatUAV
above. ISR tasks (c) represent the main requirements used to select a type of platform,
while intelligence disciplines (d) are used to select sensor types supporting the pro-
duction of specific types of intelligence (e.g. optical sensors support the production of
IMINT (Imagery Intelligence)). Both (c) and (d) are drawn mainly from the ISR-related
sections of the CALL thesaurus, though (c) also draws upon UJTL.

We use different properties to relate sensors and platforms to the capabilities they
provide. There is a main object property called providesCapability, that takes instances
of Asset as its domain, and has instances of Capability as its range. In addition we have
properties that are subtypes of the providesCapability property, such as hasRange,
hasCoverage, etc. Some of these properties are used to represent capabilities that are
represented as partition values, like the UAVRange class, which is partitioned into three
classes: CloseRange, ShortRange, and LongRange. We have included also a num-
ber of data-type properties that are essentially used to characterised numeric attributes
of an asset, such as for example the ceiling, endurance, mission radius and speed of an
aircraft.

Figure 6 shows class examples of both a sensor and a platform, as shown in the
Protégé Ontology Editor4. On the right hand-side of the figure we see the description of
the FLIR (forward looking infrared) sensor class, which is a subclass of IR (infrared).
FLIR sensors are able to detect thermal energy, which gives them the ability to oper-
ate night and day, have foliage penetration (FOPEN) capability, provide high-quality
identification of targets, fair resolution and good coverage. On the left-hand side we see
the description of the PredatorB platform class, which is a subclass of MALE UAV.
The PredatorB can carry several types of sensors, including optical sensors (FLIR),
synthetic aperture radar (SAR), laser designator and range finder (LDRF), and Signals
Intelligence (SIGINT) sensors. Some capabilities are inherited from superclasses (e.g.
MediumAltitude is inherited from MALE), while others are specifically asserted (e.g.
FirePower).

3 Semantic matchmaking of sensors and tasks
The use of semantically-rich specifications enable the use of specific forms of match-
making that are not available when using a syntactic approach, such as the use of sub-
sumption (e.g. [1, 8]) and logical satisfaction (e.g. [9]). Figure 7 shows very basic exam-
ples of the subsumption-based matching relations we have considered, using examples
from the ISR domain. Q denotes a query which specifies some intelligence require-
ments to be met, and S1 through S5 denote the specification of ISR assets (sensors and
sensor platforms) to be matched against Q.

In particular, our example query poses two requirements to be met: provide infrared
(IR) vision, and be able to carry out a night reconnaissance task. From left to right we
see first the specification of the query Q, then we see the specification of several assets
with different types of matching. Following [1], we list them below in decreasing order
of matching strength:

4 http://protege.stanford.edu/



Fig. 6: Examples of ISR classes: PredatorB platform and FLIR sensor

1. Exact: holds when the query Q is equivalent to the specification S: S ≡ Q. In the
example, S1 describes an asset that provides IR vision and is designed to perform
night reconnaissance tasks, just as stated in Q, so S1 and Q are equivalent.

2. Plugin: holds when S is subsumed by Q: S v Q. In the example, the asset de-
scribed by S2 refers to a cooled FLIR, which is a specific type of IR camera, and
provides night reconnaissance, so S2 is subsumed by Q. (Note that exact matches
are a special case of plugin, where S ≡ Q.)

3. Subsumes: holds when Q is subsumed by S: Q v S. In the example, S3 refers to
an asset providing night vision capability, which is a more general concept than IR
vision, and it provides also night reconnaissance, so Q is subsumed by S3.

4. Overlaps: holds when the conjunction ofQ and S is not empty:QuS 6= ⊥, in other
words,QuS is satisfiable. In our example, S4 describes an asset that provides night
reconnaissance as required by Q, but the first requirement is not satisfied, since it
carries a type of radar (SAR) instead of an IR camera, and these two concepts are
disjoint.

5. Disjoint(S4, Q): holds when the conjunction of Q and S is empty: Q u S = ⊥,
in other words, Q u S is unsatisfiable. In the example, S5 describes an asset that
provides TV video and is suited to perform day reconnaissance tasks; radar imagery
is disjoint with IR vision, day reconnaissance is disjoint with night reconnaissance,
so there is no intersection between Q and S5.

A matchmaking application is not entirely characterised by the basic semantic re-
lations that can be established among concepts. An important issue of a matchmaking
application is the distinction between the attribute-level and the component-level: a
component may be described by different attributes, and so different matching schemas
could be applied to each attribute depending on the particular meaning or role it plays
within the component.

In our application, we have identified two main classes of components to be matched
against the ISR requirements of a task, each one characterised by different attributes that
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deserve a separate treatment. Note that the kind of capability requirements relevant to
selecting a specific kind of sensor are quite different from the requirements that are rel-
evant to select a platform. For example, in order to assess the utility of different sensors
it is very important to consider the kind
of intelligence to be produced (IMINT,
ACINT, SIGINT, etc.), since each type
of sensor provide information that sup-
ports a different kind of intelligence (e.g.
infrared cameras support IMINT, while
acoustic sensors support ACINT). In ad-
dition, to select a specific platform (e.g.
UAV) for a reconnaissance mission there
are other factors to consider, such as the
range to the targets of interest, the pres-
ence or absence of enemy anti-air assets,
and so on. Moreover, UAVs are limited in
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Fig. 8: Abstract matching architecture

the weight and type of sensors they can carry, and the performance of some sensors may
be influenced by conditions that depend on the platform they are attached to, such as
the altitude. Therefore, one cannot select sensors and platforms independently; instead,
the interaction between these kinds of components must also be taken into account.

To address the issues introduced above, we propose an abstract architecture shown
in Figure 8. This architecture has three main components:

– Task: defines the goals to be achieved and the capabilities required to accomplish
those goals. In addition, a task may have environmental conditions (weather, ter-
rain, enemy, etc) attached that are expected to impact the performance of a task.

– Sensor: these are the assets that collect the information required to satisfy the intel-
ligence requirements of a mission. However, sensors do not operate as independent
entities, as they have to be attached to systems that provide them with energy, pro-
tection, mobility, etc.

– Platform: these are the systems to which sensors are attached so as to get energy,
protection, mobility, communication, etc. Platforms include both static and mobile
systems operating on land, sea and air.

The three components involved and the dependencies between them result in the
following three matching relations:

– Task-Sensor matching: a sensor class S matches a task T , match(T, S), if S pro-
vides the information-collecting capabilities satisfying T ’s ISR requirements.



– Task-Platform matching: a platform class P matches a task T , match(T, P ), if P
provides the kind of ISR-supporting capabilities (mobility, survivability, communi-
cation) required to perform T .

– Platform-Sensor matching: a sensor S matches a platform P , match(P, S), if S
can be carried by and is compatible with the characteristics of P .
In order to satisfy the ISR requirements of a task one needs to select (at least) both

a platform and a combination of sensors such that our three matching relations are
simultaneously satisfied.

In some situations, all requirements can be satisfied by a single platform mount-
ing one or multiple sensors: given a task T specifying a set of requirements RT =
{R1, ..., Rn}, a single solution for T is a platform configuration Π = 〈P,S〉, where
P is a type of platform, and S = {S1, ..., Sm} is a set of sensor types that can be
mounted in P simultaneously (there are no interferences among them). A platform con-
figuration is a valid solution if the combined capabilities of P and S satisfyRT , where
satisfaction is computed as a plugin (or exact) match, that is:

〈P,S〉 ∈ V(T )⇐⇒ ∀Ri ∈ RT : (P v ∃C.Ri) t (Si ∈ S v ∃C.Ri)

where V(T ) = {Π1, ...,Πn} is the set of valid solutions for task T , and C denotes the
object property providesCapability. Any subproperty of providesCapability is thus
applicable in the former definition.

For example, given a set of requirements RT = {MaritimeSurveillance, IMINT,
DayAndNight} a valid solution will be 〈FireScout, {IRCamera}〉, since FireScout
is a class of UAV that provides the capability MaritimeSurveillance (exact match),
and IRCamera is a class of sensor that supports the production of IRINT, which is
subsumed by IMINT (plugin match), and provides DayAndNight operation capability.

In many cases, a task involving several requirements can not be achieved by a sin-
gle platform, but it can be achieved by a combination of different platforms. In general,
a combination of different assets will increase the utility of the information obtained
from a single asset, or be the same. To address the general case, we enumerate all
valid multiple-platform multiple-sensor solutions: each solution may comprise multi-
ple platforms, and each platform may mount several sensors. A solution is valid if the
combined capabilities of all the assets (platforms and sensors) included in the solution
together satisfy the requirements. We model this as an instance of the set cover problem,
where sets comprise the combined capabilities provided by a single platform configu-
ration 〈P,S〉, and set elements are capabilities; the goal is to find a small family of sets
that covers the set of requirements (also a set of capabilities).

After finding the valid solutions, we drop those solutions that are not minimal, i.e.,
those containing more platforms than necessary. The result is a set of valid solutions
V(T ) = {V1, ..., Vn}, where each solution is a set of platform configurations, Vi =
{Πi

1, . . . ,Π
i
m}. We call the overall procedure the Set Cover Matchmaker (SCM).

SCM is a brute force algorithm, limiting the number of assets per package to avoid
excessive computation.

Finally, we have introduced a mechanism to sort the set of solutions according to nu-
meric criteria, such as the economic cost. For example, with the following task require-
ments: RT = {ConstantSurveillance, IRINT, SIGINT}, SCM obtains the following
ranking of solutions, with cheaper solutions ranked first.

– V1 = {〈PredatorB, {IRCamera, SIGINTSensor}〉}



– V2 = {〈E-Hunter, {IRCamera}〉, 〈I-GNAT, {SIGINTSensor}〉}
– V3 = {〈GlobalHawk, {IRCamera}〉, 〈I-GNAT, {SIGINTSensor}〉}

In this example, the first solution involves a single platform carrying two types of
sensor, IR and SIGINT, and two solutions involving two platforms. The most expensive
one is the one with the GlobalHawk, since that platform alone costs twice as much as
any of the other platforms in the example. Other valid solutions are excluded from the
final output because they are not minimal; for example {〈GlobalHawk,{IRCamera}〉,
〈Predator,{SIGINTSensor}〉} is a valid solution, but we can remove the GlobalHawk
and use only the PredatorB, which is actually our first solution.

SCM is implemented using the Jena5 and Pellet6 packages to process and reason
with our OWL DL MMF and ISR ontologies7.

4 Optimal allocation of sensors to competing tasks
After the reasoning process has determined which types of sensors and platforms are
appropriate for which tasks, the next step is to allocate instances of the assets to tasks.
Resources are constrained by available inventory, so it may not be possible to satisfy all
tasks, even within the various possible solutions determined by the fitness-for-purpose
reasoning. At this stage, tasks are potentially in competition for resources. Since the
tasks may vary in difficulty and importance, two kinds of decisions must be made.
First, which tasks shall be attempted and which shall be abandoned? Second, for each
attempted task, which resources should be assigned to it? Hence, algorithms to effi-
ciently allocate assets are necessary.

However, the application of these algorithms in practice needs utility functions that
attach a value to each pair 〈task, resource〉, so that the overall utility of different alloca-
tions of resources can be compared to decide which one is best. In our view, the utility
functions should aggregate a number of qualitative and quantitative factors.

There are a number of proposals to apply quantitative metrics to assess the utility
of alternative ISR assets, such as the Sensor Mix Model (SMM) [10], that takes into
account numeric attributes such as the dwelling time (time on station), the area to be
covered, the sweep width of the sensors mounted on the platform, etc. However, we
have no knowledge of previous proposals to take into account qualitative capabilities,
such as the ones represented in our ISR ontology (e.g. all-weather operation, day and
night, foliage penetration, moving target detection capability, etc).

By introducing qualitative capabilities to the description of ISR resources and tasks,
we are considerably extending the range of scenarios that can be modeled using purely
numeric models. Existing frameworks are typically focused on a single resource type, or
predefined resource packages, while in our approach we can find new resource packages
on demand by dynamically reasoning about their different capabilities.

In our approach, we use the matchmaker before allocating resources so as to filter
out solutions that are not fit-for-purpose because of their qualitative properties; in other
words, we discard those solutions that are expected to be useless, and by doing so, we
reduce the search space while running the allocation algorithms. Note that the majority
of the qualitative attributes we have identified as relevant to the problem depend on the
abstract asset types, that is, the classes of sensors and platforms available, while most

5 http://jena.sourceforge.net/
6 http://pellet.owldl.com/
7 Available from http://www.csd.abdn.ac.uk/research/ita/sam/webpages/home.php



of the numeric attributes depend on actual instances of those classes deployed in the
field (typically there will be several instances of the same asset class involved in a given
situation).

In the rest of this section we briefly describe one of the models we have considered
to enable the application of resource-allocation algorithm for multiple competing tasks:
Semi-Matching with Demands (SMD) [11, 12]. This model is based on the use of
additive utility values for each pair asset-task, and different priorities and demands for
each task, all of these being numeric attributes.
Problem instance: A weighted bipartite graph G = 〈A, T , P,D,E〉, where A =
{A1, ..., An} is a collection of assets, T = {T1, ..., Tm} is a collection of tasks,
P = {p1, ..., pm} is a collection of task profit values, D = {d1, ..., dm} is a col-
lection of task demands, and E = {eij : i ∈ [1, n], j ∈ [1,m]} is a collection of
non-negative weights for the edges A× T .

Goal: Find a semi-matching F ⊆ A × T (no two chosen edges share the same asset)
maximizing the sum of the profits pj of the satisfied tasks, where Tj is satisfied if
its total utility reaches its demand, i.e.,

∑
(Ai,Tj)∈F eij ≥ dj .

We note that the SMD problem as defined above is quite abstract. That means that
the variables used may have different meanings and interpretations. The utility values
eij can be calculated using different metrics and functions. The profits represent the
contribution of every task to the global utility obtained from all tasks as a whole. The
idea here is to give tasks different degrees of importance depending on their overall
context. For example, if a task is critical for the success of other tasks, then the first
task will have higher importance, and will be assigned a high profit value. Finally,
demands represent a numeric notion of the amount of resources required by a task,
and its particular interpretation is closely related to the metric used to calculate utility
values; for example, if we use SMM demands will represent the area to be covered.

In order to integrate the SMD model and the fitting reasoner, we have so far consid-
ered only single-platform configurations. More precisely, the application of the model
assumes:
1. Every asset Ai ∈ A is assumed to be an instantiation of a single platform con-

figuration Π = 〈P,S〉, which cannot be re-configured on demand to satisfy the
requirements of a specific task.

2. For every asset-task pair (Ai, Tj), if Ai is an instantiation of a platform configura-
tion (Π ∈ V (Tj)), then we apply a utility metric like SMM to obtain a particular
utility value eij ; otherwise eij is assumed to be zero and it is ignored by the alloca-
tion algorithms.
It is in this way that we can obtain an SMD problem instance and thereby take ad-

vantage of existing allocation algorithms. In ongoing research, we plan to extend SMD
and its assignment algorithms to the more general setting of multi-platform solutions, as
those resulting from the application of SCM. We emphasize that two separate computa-
tional problems must be solved. The first is to determine which possible combinations
of assets are sufficiently fit-for-purpose for every different task, according to the classes
of sensors and platforms available in the theater of operations. The second is to find a
global assignment of particular instances of those assets, based on their actual utility
values.

The challenge in the second problem is to maximize the global mission success
given limited access to resources. Indeed, the SMD formulation is known to be NP-
hard, as well as NP-hard to approximate in the most general setting [11]. Under the



assumption that the degree d of the problem instance (the maximum number of assets
within range of any task) is limited, however, a simple greedy algorithm can guarantee
a d-approximate solution. An alternative, knapsack-like formulation, SUM, has been
described in [13].

5 Fabric for sensor deployment and delivery
We are currently working on the problem of deploying selected sensor instances on the
network, so that they operate as a coherent system that can deliver the required infor-
mation to users. Our main focus at present is to interface the fitting and allocation com-
ponents with a particular sensor infrastructure — the Sensor Fabric — a prototype im-
plementation of which has been built using commercial off-the-shelf components [14].
While the main aim of the fabric is to research and apply algorithms for the retrieval
and dissemination of task-specific information across sensor networks, it provides three
main components that complement the fitting and allocation work previous described:

1. Sensor Catalogue: provides a global inventory/registry of sensor instances, describ-
ing all known assets and their availability. It manages the visibility of, and access
to, sensor data feeds. The Sensor Catalogue is used to select the sensors required to
fulfill the requirements of a specific task.

2. Topology Manager: manages the network topology and inter-node communication,
describing all known network nodes and their availability. The Topology Manager
is used for node location and routing information.

3. Fabric Manager: responsible for the control (configuration and sensor-mission as-
signment) and monitoring of individual sensors and intermediate nodes, and es-
tablishing the communication channels between them. The Fabric Manager also
provides a container for running in-network information fusion and filtering algo-
rithms, and registering them as assets with the Sensor Catalogue.

Figure 9 sketches the Sensor Fabric
architecture and the three main services
provided: the Sensor Catalogue (SC), the
Topology Manager (TM), and the Fab-
ric Manager (FM). There is one instance
each of the Sensor Catalogue and Topol-
ogy Manager per Sensor Fabric, and one
instance of the Fabric Manager per node.
Sensor nodes publish data locally to a
topic in a global topic name space, and
similarly consumers subscribe locally to
the same global topic name. The Fab-
ric establishes the communication chan-
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Fig. 9: Overview of the Fabric

nel between the two automatically, and ensures that published messages are delivered
correctly. In this example data published from sensors S1, S2, and S3 on node E is
accessed by the client on node A as if it is local. The Fabric transparently delivers the
data across the network between the nodes, E to B to A.

We have defined interfaces that allow the fitting and allocation components to call
on the Sensor Catalogue to obtain several kinds of information, including: available
asset types (for fitting), available asset instances (for allocation), and current status of
assets (obtained from the Fabric Manager and providing, for example, data to be used as



part of the computation of a utility value). Then, an interface to the Topology Manager
allows us to specify how a set of selected instances needs to be configured to operate as
a coherent system to deliver data to a user.

Fig. 10: Tool for integrating the reasoner and the Sensor Fabric

Figure 10 is a screenshot of a software prototype we are developing to enable the
integration of the services provided by the reasoner and those provided by the Sensor
Fabric. This screenshot shows the main user interface, which enables the specification
of tasks, and supports users in the allocation of appropriate assets for their their tasks.
Each task is characterised by qualitative requirements used by the reasoner to discover
platforms that are fit-for-purpose. In addition, each task can define a geographic area of
interest where some information has to be collected. The left part of the interface shows
a map provided by Google Map Web services8, where the user can specify the area of
interest (overlapping rectangle) for a particular task. After selecting some requirements
for the task, the user can retrieve the assets available that satisfy them, together with
information on their availability and geographic location. In addition, the location of
the assets is depicted on the map. In the example, we can see that user needs Imagery
Intelligence (IMINT), which can be provided by three assets: one UAV of class Predator
(P1) and two UAVs of class PredatorB (P1 and P5). In addition, we can see that one
of the PredatorB platforms is not available, because it has crashed previously (P8).
Therefore, in this case the user can select either P1 or P5 to accomplish the task.
Multiple tasks can be defined, and then the assets committed to one task will not be
available to other tasks. The next step is to integrate the allocation algorithms so as to
maximize the global profit from multiple tasks.

6 Discussion and Conclusion
At present, we have initial implementations of the complete set of ontologies described
in Section 2, a prototype of the semantic reasoner that performs the sensor-task fitting,

8 http://code.google.com/apis/maps/



implementations of the SMD and SUM allocation algorithms outlined in Section 4, and
an initial integration with the Sensor Fabric as described in Section 5.

Evaluation is ongoing: the fitting and Fabric components have been demonstrated
and delivered to prospective US and UK users. Feedback on the overall approach has
been positive, in particular:

– Grounding the framework on the Missions and Means Framework gives prospective
users confidence in the overall fitting approach.

– The ability to draw on pre-existing sensor and task representations is seen as a key
advantage of the ontology-centric approach.

– The extensibility of the multi-dimensional approach is viewed as a highly desirable
and attractive element.

Moreover, the feedback obtained so far has highlighted a number of areas for further
work:

– Allowing the user to specify ISR requirements at a higher level; currently, the ISR
capabilities are framed too much in terms of intelligence types (IMINT, RADINT,
etc, as shown in Figure 5(d)), and it would be desirable for users to specify “what
they want” (e.g. detect vehicles at a particular location) rather than “how to get
it” (IMINT, RADINT, etc). We are therefore working on mapping from such high-
level information tasks to the kinds of intelligence suitable to satisfy them, as a step
prior to the current fitting.

– Allowing the user to get explanations of the solutions recommended by the fitting
process, and to explore “what if” alternatives.

– More detailed handling of deployable resources, to take better account of the cost of
getting resources into the desired area when making fitting and allocation decisions.

In addition to these points, work on the integration is continuing; our longer-term goal
is to use the fully-integrated set of components (sensor-task fitting, allocation, and de-
ployment) to experiment with strategies to achieve maximum responsiveness and agility
in assigning sensor assets to mission tasks in a distributed, dynamic, and multi-mission
environment. The immediate challenges for these aspects of our work are to:

– expand and deepen the ontologies by working with domain experts in ISR, contin-
uing to draw on pre-existing ontologies where possible;

– further develop the reasoning mechanisms used in the fitting process, including var-
ious approaches to non-exact matching allowing different ways to rank alternatives;

– fully integrate the fitting and allocation steps, including providing a richer treatment
of utility.
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Appendix - Glossary of acronyms
ACINT: Acoustic Intelligence
ISR: Intelligence, Surveillance and Reconnaissance
FOPEN: Foliage Penetration
HALE-UAV: High Altitude Long Endurance UAV
IMINT: Imagery Intelligence
LDRF: Laser Designator and Range Finder
MALE-UAV: Medium Altitude Long Endurance UAV
MMF: Missions and Means Framework
SCM: Set Cover Matchmaker
SIGINT: Signals Intelligence
SMM: Sensor Mix Model
UAV: Unmanned Aerial Vehicle
VTOL: Vertical Takeoff and Landing


