
1

The Development, Validation and Implementation

of Knowledge-Based Systems

Robert M. O'Keefe

Decision Sciences and Engineering Systems

School of Management, Rensselaer Polytechnic Institute

Troy, NY 12020, USA.

Computer Laboratory

University of Kent at Canterbury

Kent CT2 7NF, England, U.K.

Alun D. Preece

Department of Computing Science

University of Aberdeen, King's College

Aberdeen AB9 2UE, Scotland, U.K.

2

Abstract

It is now 10 years since Operational Research, and other groups that support management

decision making, seized upon Knowledge-based Systems (KBS) as an alternative set of

techniques and methods for building systems that support, augment or automate decision

making. Success, as with most information technologies, has been mixed. This paper briefly

reviews where KBS have been successful, and what benefits have been derived. It notes that

interest in KBS has been rekindled by the present interest in business process re-engineering.

Given the mature state of development tools, most KBS developers are now focusing on

methodological and life-cycle issues. The paper reviews progress in understanding and using

development methodologies, validation methods (now generally considered as crucial to

technical success) and implementation. Some ideas about where KBS "fits in" to the array of

tools, techniques and methodologies available to the modern analyst and system developer

are presented.

Keywords: knowledge-based systems, expert systems, decision support, system

development, validation, implementation.

3

1. Introduction

It is now ten years since the first author (O'Keefe, 1985) and others (Holroyd et al., 1985,

Kastner and Hong, 1984) introduced expert systems to the world of Operational Research

(OR). As an alternative way of doing modelling, building models with qualitative and

heuristic components as opposed to mathematical components, expert systems offered a

fresh avenue worth exploring. In a subsequent paper (O'Keefe, Belton and Ball, 1986),

reporting the experiences of a research project that attempted to use expert systems from an

OR perspective, one of us wrote:

"We hope that ultimately the development of expert systems will become an

established part of OR, perhaps as fundamental as linear programming,

simulation, statistics ... There is enough evidence to suggest that expert systems

provide a useful method of developing decision support systems for

management."

Like so many quotes seen with hindsight, this appears naive. Expert systems applications

have met with both success and failure. Impediments to success have been technological

(including difficult problems in acquiring, representing and validating knowledge) and

methodological (including difficulties in project management, promoting user acceptance,

and avoiding unrealistic user expectations). Since the mid-eighties, interest in expert systems

has visibly waned, and then somewhat recovered due to new technical approaches (e.g., case-

based reasoning and constraint-based reasoning) and association with some "hot" application

areas and management buzz-phrases (especially business process re-engineering and

knowledge-based software engineering).

At the end of this paper, we will (perhaps foolishly) reword and restate this quote, hoping

that it does not have to be revised again ten years hence! Prior to this, we briefly review

present expert systems practice. The review is unashamedly methodologically focused — it

4

assumes that technical tools are delivered by others, normally in the form of software, and

that the analyst is allowed to concentrate on development, validation and implementation of

the system. It is also very personal, reflecting our own experience and research. Before we

can discuss methodology, some review of terminology, the state of technology, and the key

application areas over the past ten years is presented.

2. Terminology

Defining an expert system is still as problematic as it was ten years ago. The preferred term

has become knowledge-based system (KBS), in part because so much of the knowledge that

goes into many KBS is not derived from an expert, but also because the phrase "expert

system" came to be over-associated with so-called "first generation" rule-based systems.

So, what is a KBS? To be called a KBS, we think three minimal conditions must be met. First,

there must be some explicit, identifiable knowledge base (KB); the developer should be able

to point to some text or objects and claim it to be the knowledge (note that, for this to be

possible, the KB must not be inter-mixed with control and reasoning procedures). Second, the

knowledge and reasoning processes should be in some part qualitative, that is, dealing with

semantic objects that require definition. Third, the KBS should perform at least some of its

inference based upon dynamic changes in knowledge; the execution order of the system

should not be defined solely by data, as with many algorithms.

This very loose definition does not say anything about technology, since it has become

apparent that KBS tools can be used to implement many types of programs, and a piece of

software is not a KBS just because it is developed using a KBS tool. For example, one can

construct a program using a rule-based programming language where (a) the knowledge and

control of execution is inter-mixed, (b) all the rules perform quantitative transformations, and

(c) the execution order of the rules is pre-determined. Such a program meets none of the

5

above minimal requirements, yet we have seen a number of pieces of rule-based software

that perform like this but are still called KBS. Many KBS may use rule-based programming,

but not every rule-based program is a KBS. Equally, it is possible to construct a KBS using a

conventional programming language such as C or C++.

3. Technology

The distinction of what is (or is not) a KBS has become blurred due to advances in the

technology and the marketing position of the technology providers. For example, when

AION and AI Corp (both providers of KBS shells) combined to form the company Trinzic,

the press release said nothing about "expert systems" or "KBS". One of the leading PC-based

KBS products, Level 5 Object, includes documentation that rarely mentions "knowledge", and

never mentions "expert". Similarly, the popular European product Crystal was originally

marketed as an "expert system building tool" but was later re-positioned as a rule-based

fourth-generation language.

This disassociation with the past is being driven by the requirement to provide generic

client/server tools for business applications. Level 5 Object, for example, is marketed as a

generic "intelligent" Windows development tool, providing SQL, hyper-media and graphics

support in addition to rule-based and object-oriented programming facilities. Complex

information and decision support systems are increasingly hybrid, employing relational

database technology, graphics, knowledge-based components, and quantitative models.

What label is attached to the system is generally a function of the visibility of the label in the

particular user organization. What used to be called DSS or KBS are now often called "work

group systems" or "executive support systems".

3.1 KBS Shells

6

What used to be referred to as KBS shells therefore tend to be more varied pieces of

client/server software. There has been a fall out in the market, to the extent that in the US the

PC-based market is dominated by M.4, Level 5 Object and ProKappa. In Europe, Crystal is

probably the only PC-based tool that has the market recognition of the American three. For

UNIX platforms, NEXPERT OBJECT is a clear market leader. For those needing IBM

mainframe and COBOL/CICS compatible shells, the AION Development System and KBMS,

from the companies that merged to form Trinzic, are still popular. (Integration with existing

data processing systems, particularly so called "legacy systems", has become easier to

accomplish. See Reynolds and Beck (1993) for an example of a KBS that is integrated with

COBOL, CICS and DB2.) For those wanting powerful, flexible LISP-based tools, then

Inference's ART and the tools from the Carnegie-Group are available. There are also a

number of specialized tools in areas such as real-time control, machine diagnosis, and help-

desk support.

Hayes-Roth and Jacobstein (1994) provide a recent review of KBS technology. The

combination of rule-based knowledge supported by hierarchically arranged objects and

mixed modes of inference has become standard. The use of meta-rules, which allow for the

control and ordering of rules, is also widespread. Support for the construction of hybrid

applications is provided in most tools by means of an integrated procedural or functional

language (often based on LISP or Prolog), and easy linkage to external modules written using

a general-purpose programming language (most often C/C++). Thus, KBS components can

readily be harnessed within heterogeneous and distributed software systems.

3.2 New Technologies

Artificial Intelligence (AI) is still generating new usable technologies, some of which take on

a life of their own. The machine learning community has contributed several techniques

7

which have proven effective in synthesising solutions in suitable domains. The best-known of

these is probably artificial neural networks (ANN); recently, however, inductive logic

programming has achieved notable success.

ANN allow for the construction of connectionist models that develop their own weights from

training sets. For a good example of an ANN application, see Tam's work (Tam, 1992, Tam

and Kiang, 1992) on the prediction of bank failures; this is a domain in which many have

tried to apply rule-based approaches, with very mixed results. Perhaps ANN can best be

viewed as alternatives to statistical approaches such as regression and discriminant analysis;

in general, ANN cannot be considered to be knowledge-based (unless one argues that all

knowledge can be reduced to weighted and dynamic links between synapses). However,

ANN can effectively be used in conjunction with a KBS in a hybrid system where, for

example, certain data used as input to the KBS are pre-classified by a front-end ANN.

Inductive logic programming is more akin to "traditional" KBS technology in that it deals

with symbolic knowledge (in the form of logical implications). It is used in domains where,

although experts can specify an approximate KB and background knowledge, they are

unable to produce a KB which correctly handles a sufficient set of cases. Therefore, the

approximate KB are given to an inductive learning system, together with the background

knowledge and representative set of example cases, and the learning system synthesises an

enhanced KB to classify the required cases. A major advantage over ANN is that the

synthesised KB is comprehensible to the experts. Inductive logic programming has been

applied with considerable success in domains such as drug design, protein structure

prediction, and satellite fault diagnosis (Muggleton, 1992); in one case an inductive logic

programming system made what was regarded as a genuine scientific discovery (Sternberg

at al., 1992).

In addition to techniques from machine learning, advances in knowledge representation and

search methods have opened-up new capabilities for KBS. Case-based reasoning (CBR) offers

8

a combination of intuitive knowledge representation and analogical-like reasoning, as

discussed below. Some of the recent advances in search techniques, especially constraint-

satisfaction problem-solving (CSP), can be viewed as alternative equation-solving

procedures, often direct alternatives to integer linear programming. We would argue that

genetic algorithms can be viewed similarly, since they are essentially concerned with the

generation and testing of successive, converging solutions.

CBR tools allow a developer to model a problem situation as (a) a set of previous case,

containing observed attributes and the outcome, (b) heuristics that match the present

problem to the closest case, and (c) heuristics that solve the problem based upon the best

match and the differences with the present problem. They appear to work well where a large

number of cases are collected, such as when solving technical problems through help desks.

Nguyen et al. (1993) is an interesting application, which also shows the links being made

with hyper-media and graphics.

4. Applications

Most discussions on KBS applications focus on the domains that KBS have been used in. It

appears that the application of KBS has mirrored overall investments in technology; since

80% of technology investment is in service industries, this is where the bulk of KBS

applications are seen. Hayes-Roth and Jacobstein (1994) review the domains of application at

the Innovative Applications of AI conference, finding that accounting, finance and other

services dominate.

Recent experience (O'Keefe and Rebne, 1993) suggests that a discussion based upon the tasks

that the KBS performs is more helpful than one based upon domains. The job of a KBS is to

replace or augment a decision making task, and success is often dependent upon

understanding of that task, its role in relation to other tasks, and its integration with other

9

tasks (both manual and automated). There is some evidence that task differences account for

differences in the way in which a KBS is managed and operated (O'Keefe et al, 1993).

There are five types of task that appear to be particularly successful. (Those with other

experiences could probably generate other tasks.) They are summarized in Table 1.

First, cumulative-hurdle decision making (O'Keefe and Rebne, 1993). This is where a number of

decisions are made linearly, but the problem may be solvable without overcoming every

decision making hurdle. A good example here (which has been a very successful area for

KBS) is loan approval. A KBS can handle the first hurdle — logical consistency of the loan

application, basic credit worthiness, etc. When a "reject" decision (or, perhaps, an obvious

"grant" decision) can not be made, the application can be passed over to an expert for further

review. This separation of routine and more complex decision making can be very beneficial

when the number of routine problems is a large proportion of the volume, say 80% or more,

and the cost of the complex decision making is expensive.

Second, advisory systems. These are systems which give simple advice to someone performing

a task, such as machine repair, collection of audit data, performing statistical experiments,

etc. They are typically applicable to any well defined task that requires the necessary

expertise, and usable by a number of different users. They are beneficial when knowledge

has to be distributed to professionals due to changes in the law, redesign of machinery, etc.

ExperTAX (Shpilberg and Graham, 1987) is probably the classic example.

Third, heuristic systems. They typically use heuristics to produce solutions that could be

generated from mathematical models, but not in a reasonable amount of time or in a robust

manner (e.g., infeasibility can not be easily identified). As might be expected, they tend to be

more quantitative than other KBS, and often appear in the same domains as OR models, for

example, production scheduling. Duchessi and O'Keefe (1990) presents a production

planning KBS where the equivalent ILP could not be solved efficiently. They are especially

10

successful in domains where imperfect, approximate solutions are of value. Unsurprisingly,

this is an area where methods such as ANN and genetic algorithms are having an impact.

Success has also been achieved using constraint-based reasoning to solve problems which can

be posed in terms of a set of variables and constaints: the problem is expressed in reasonably

high-level, declarative terms, and the general constraint-satisfaction mechanism searches for

solutions (Freuder & Mackworth, 1994).

Fourth, configuration systems. They take a requirement for a configured assembled product

(such as a computer, or an air conditioner) and generate the parts needed to configure the

product with associated assembly instructions. Following the success of XCON, many

engineering companies now have configuration systems, allowing them to offer ˆ la carte

manufacturing where the customer can define parts of what they are purchasing. The major

benefit of these systems is the ability to collapse the order processing cycle, such that an order

can be configured and specified for manufacturing within hours, rather than days or weeks.

KBS solutions to this kind of problem have been seen to be more reliable than manual

solutions (Giarratano and Riley, 1989).

Fifth, critiquing systems, sometimes called expert critics. These produce critiques of a design or

plan that has been produced by a user. They can either be activated by the user as required,

or can run in the background, effectively "looking over the shoulder", monitoring the user's

actions and suggesting changes when user actions appear to be different from what the critic

would do. Silverman and Mezher (1992) provide an introduction, an example, and discuss

some research needs. The benefit of these systems is that they can help less experienced users

produce better results, and perhaps provide a fail-safe mechanism that can interrupt very

poor quality actions.

4.1 Decision Support

11

What is remarkable about the above list, and successful applications of KBS in general, is that

decision support per se has not been a successful area. The image of an executive or

professional interacting with a knowledge-based DSS to solve problems has not been

realized. An executive may use an advisory system, but this only supports a task within the

whole decision making framework. Similarly, critiquing and heuristic systems are liable to be

part of larger information system (IS) efforts, subservient to (say) design with a CAD tool or

producing work schedules in an MRP system. (In fact, some CAD tools are rapidly including

advisory and critiquing components that support the design process; the resulting buzz-

phrase is "Intelligent CAD", or ICAD.)

The idea that KBS provide a different and better way to develop DSS is at best fanciful (e.g.,

El-Najdawi and Stylianou, 1993), at worst limiting (e.g., Edwards, 1992). This is for two very

important reasons. First, good DSS are intrinsically linked with the requirements of a single

or small group of decision makers, to the extent that the interface and design of the system is

tailored to their requirements. Taking advantage of codified knowledge requires that it be

distributed beyond its originator and original users (most obviously with advisory and

configuration systems). At best, the knowledge is automatically applied by software without

a user present (many cumulative-hurdle systems are implemented like this — the user only

sees problems the KBS can not solve).

Second, with most DSS the user has control over the decision making processes — what

information is gathered, how it is presented, the models used, etc. With KBS, this is naturally

under the control of the software. KBS that have tried to impose a decision structure on users

have often failed — users try to figure out a way around it, so that they can manage problems

and decisions as they desire, not as the software dictates. (For an example of this in the

context of a generic financial planning KBS, see Sviokla, 1990). A number of companies that

have tried to develop and sell generic knowledge-based DSS tools (such as Palladian

Software and their Advisor systems (Reitman, 1990)) are out of business.

12

4.2 Value in Tasks: Business Process Re-engineering and Knowledge-Based Software

Engineering

This focus on tasks and how they inter-relate has resulted in KBS becoming an important

enabling technology for business process re-engineering (BPR) and knowledge-based

software engineering (KBSE). The central realisation in BPR and KBSE is that the most

valuable knowledge possessed by an organization lies in key tasks and the processes that use

those tasks. This realisation is due to the value-added output derived from performing the

processes.

Davenport (1992) discusses a number of BPR projects that use KBS, and many AI conferences

presently include sessions on BPR. This link with BPR has given a considerable lift to interest

in KBS. Whether BPR is a fad or not is irrelevant; what is important is the realization that

(often small) amounts of knowledge can increase the speed, consistency and quality of

important business processes. (The fact that the phrase has captured the imagination of

management is also useful.) The same is true of KBSE, wherein the processes of building

software artefacts are defined by knowledge of tasks, which themselves use certain kinds of

knowledge (Lowry, 1992). The processes and tasks can be embodied in tools, such as Celite

Corporation and Andersen Consulting's KBDA (Burton, Swanson and Leonard, 1993), which

lend structure to the types of knowledge demanded by different applications. These tools

and types of knowledge are highly reusable.

BPR and KBSE demonstrate that application of KBS is no longer technology-driven, where

proponents hunt do-able applications irrespective of their importance to business.

5. Development Life Cycles

13

From the outset, KBS development has been associated with prototyping. In some

organizations systems are labelled as "KBS" just so that a less formal development

methodology can be used; prototyping seems to be acceptable for KBS, but not necessarily for

other systems.

There is still some confusion over what prototyping actually is, and the various forms it can

take. According to Jojo and O'Keefe (1994),

"rapid prototyping is usually applied when the developer discards earlier versions

of a prototype as it becomes obsolete and begins anew. In incremental prototyping,

the system is broken down into parts, each of which is prototyped and then

included one by one in the finished system. In evolutionary prototyping, the system

is refined over and over again until it satisfies the user's requirements."

Figure 1 shows a fairly typical prototyping oriented development methodology.

Most KBS prototyping is evolutionary — the developer chooses a software tool early in the

development process, and the system evolves over time. Knowledge and code may be

disposed of or re-coded, but the basic structure of the system and the chosen tool remain.

Despite concerns over the management of prototyping, the study in Jojo and O'Keefe (1994)

shows that some of these concerns are unwarranted. For example, under-design or limited

functionality are often remarked concerns, since the lack of iterations in the development

process may limit the ability of the developer to meet user requirements. However, Jojo and

O'Keefe (1994), investigating four systems developed at General Electric Industrial and

Power Systems, showed that over-design was prevalent — the prototyping tended to

iteratively cycle while the expert could generate new functionality or until the budget was

spent, irrespective of perceived requirements.

14

Research has shown that for data intensive applications, the combination of some

specification plus prototyping works better than prototyping alone. For example, Alavi and

Wetherbe (1991) report the results of an experiment where data modelling plus prototyping

produced better systems than prototyping alone. We have found similar results for KBS (Lee

and O'Keefe, 1994b). In an experimental study, the combination of object hierarchy diagrams,

object-based representation and subsequent prototyping was more robust than other

development methods, in the sense that functionality, usability and the internal quality of the

system were generally better than with other development approaches in the experiment.

However, rapid prototyping with just rule-based representation produced the best systems

from the perspective of functionality. Thus, rapid prototyping is probably still very useful

where quickly uncovering knowledge is important.

Despite the acceptance of prototyping development methods, at least for KBS, problems do

persist with large projects. Organizations typically require that sizeable projects staffed by

more than one developer have itemized budgets, time tables, and deliverables. There are

limited opportunities to obtain a budget of over, say, $50,000 and "run with it." To overcome

this, many now see prototyping of a first system as a precursor to a more formalized

development process that is initiated after the first system has been implemented and proved

some of the benefits that are obtainable from the KBS approach. Figure 2 shows a fairly

typical scenario — an idea for application leads to development of a relatively small KBS

(typically less than 500 rules and objects, running on a PC), which gets implemented and

used. Over time, one of three things happens:

1. The KBS is used exactly as intended performing or supporting a task, and provides a

small but valuable benefit. Interest in extending its use or functionality is limited,

although ongoing maintenance may demand expansion or revision akin to the 3rd

possibility below.

15

2. The KBS dies. This can happen early on due to unresolved technical or functionality

problems (e.g., interface problems, or inability to deal with important variations of the

task undertaken). Alternatively, it can happen after some period of use due to the task

becoming irrelevant, or nature of the task changing, such that the benefit of the KBS

becomes negligible.

3. The KBS is very successful, and there is a realization that its scope can be expanded and

generalized. For example, the small system that schedules one product can be generalized

to schedule many products; the loan approval system can be generalized to other

financial product areas.

When realization occurs, subsequent development is liable to be more formal, since the

generalized KBS will be a number of times larger than the first KBS. System maintenance is a

special case of this kind of generalization; for example, as the R1/XCON application achieved

initial success, the need for revision and expansion of the system lead to extensive re-

engineering of the KB (van de Brug, Bachant and McDermott, 1986). Often, integration with

data management facilities becomes vital when associated data management requirements

rise with large systems since the KBS may have to reside externally to where the task is

performed. (With small KBS, the KBS can reside locally, and some data requirements can be

met by local data entry.)

Due to the need to better integrate a larger system with existing data and software, and that

the problem will be better understood due to the initial system, generalized systems are often

developed with conventional software. C++ is a special favourite, since any developed

objects can be directly expressed in the object-oriented facilities of C++.

5.1 Generalization of Specific KBS

16

An interesting point here is that long term development of the type outlined in Figure 2 can

occur since the knowledge developed in the first small KBS can be either directly used in the

larger KBS, or generalized. The most obvious form of generalization is to add more

knowledge to the KB in order to broaden the problem-solving ability of the system in its

domain. Going further, the existing knowledge may be generalised to solve a broader class of

problems within the same domain. For example, a rule developed for scheduling of a specific

production line, e.g.

 if workload at cell number 14 exceeds present specified threshold

 then send no more work to this cell

might be generalizable to

 if workload at presently identified bottleneck cell exceeds

 present specified threshold for all type one manufacturing cells

 then send no more work to this cell

Thus, to the surprise of some commentators, some KBS have become more general and thus

more applicable than originally thought (Duchessi and O'Keefe, forthcoming). IBM's

Logistics Management System (Sullivan and Fordyce, 1990), which schedules work in semi-

conductor manufacturing, is a particularly good example. Originally developed for one

manufacturing line, it was generalized to every line in the plant, then to other plants, and is

now available as a generic tool.

Perhaps the most extreme form of generalization is that of abstracting out the task-related

knowledge to allow the system to be applied to new domains with the same tasks. There is a

long history of this in the KBS field: many of the earliest expert system shells came about as a

result of taking a successful task/inference structure and its associated knowledge

representation, "emptying out" the specific domain knowledge, and selling the result as a

17

generic shell. The classic example is EMYCIN ("Empty MYCIN") which, while often being

regarded as a general-purpose tool, can best be seen as a generalised task-mechanism for

classification applications. Many of the aforementioned specialized KBS tools for task-based

domains such as real-time control, machine diagnosis, and help-desk support have similar

origins to EMYCIN. We see that generalization, in addition to extending the life of a

particular successful KBS application, often results in new "spin off" products.

5.2 Knowledge Acquisition

At this juncture, it is useful to consider the role and placement of knowledge acquisition (KA)

in development. KA is not given much coverage here, mainly because it is probably the most

extensively researched and developed area of KBS development. Others have done better

justice to it than we can. Our experience suggests that KA is generally do-able, but can be

time consuming and frustrating. Interestingly, this is often due to the common problems

associated with interacting with busy people (such as trying to schedule interviews), rather

than any inherent difficulty in acquiring the knowledge. From the perspective here, we will

merely highlight a few issues.

In the early stages of development, the tendency is to focus on KA often to the exclusion of all

else. Acquiring rules (or whatever) seems to be tantalizingly productive, similar to

programming lines of code. But in the same way that generating code that does unnecessary

things is ultimately counter-productive, so is acquiring and codifying knowledge that will

not be used. Talking to experts or codifying written knowledge to the exclusion of talking to

potential users, understanding the task required of the KBS, and assessing its possible

contribution to the organization is not recommended. In our experience, the construction of a

satisfactory technological artefact with an acceptable quality of knowledge and reasoning

ability is merely one factor in ensuring the ultimate success of a KBS project (Preece, 1990).

During KA, it is important to consider the entire human-computer system, including its

18

organizational context, because this will usually have a great impact on the knowledge and

tasks which must be built-into the system (Wielinga, Schreiber and Breuker, 1992).

There is a growing move (at least in Europe) towards the use of knowledge modeling

methods to document and design KBS. KADS, resulting from an ESPRIT funded project, is

probably the best known methodology (for those unfamiliar with KADS, Kingston (1992)

gives a very neat account of the use of the basic ideas in a project). These have the advantage

of explicitly forcing the developer to model and document the KBS at the knowledge level,

rather than the implementation level. The resulting knowledge-level model (sometimes called a

"conceptual model", somewhat confusingly for those also familiar with Soft Systems

Methodology) is intended to allow analysis of the knowledge before a commitment is made

to a particular knowledge representation for implementation.

The KADS methodology provides a multi-layer model for knowledge-level modelling

(Wielinga, Schreiber and Breuker, 1992). The first layer, the domain layer, defines the static

objects (facts and relations) of the application domain. The second layer, the inference layer,

defines the primitive inference steps which can be performed on the objects in the domain

layer to derive new objects. The third layer, the task layer, defines how to put the primitive

inference steps together to solve problems1. KADS offers both informal and formal languages

with which to describe these layers; normally, they will be described informally at first, and

then formalised and refined into an implementation.

Given the comments above that some specification prior to prototyping appears to be

important, then use of knowledge modelling is advantageous. A disadvantage is the

overhead incurred in maintaining the knowledge model — this can slow development, and

may be time consuming when requirements are rapidly changing and the scope of KA

1Earlier descriptions of KADS identify a fourth layer, the strategy layer, which defines

knowledge for selecting between different tasks to solve a problem.

19

similarly shifting. There is recognition of this problem among proponents of the knowledge

modelling approach, some of whom are developing tools which assist in rapidly turning

KADS models into executable system prototypes (Anjeweirden, Wielemaker and Toussaint,

1992).

5.3 Formal Specification for KBS

One present view of KBS, which is gaining support, is that KBS development requires a large

dose of formal methods. A system should have formalized requirements, which lead to a

system specification, which can then be implemented using formal programming languages,

or proved using formal methods (Gamble, 1991; Gold and Plant, 1994). There are at least two

factors explaining the growth in interest in formal methods. The first is a "technology push":

use of various flavours of formal logic in both knowledge representation languages (most

obviously Prolog) and formal specification languages for conventional software (for example,

Z and VDM) suggests — perhaps seductively — a convergence of approaches. There is also

an "application pull": many of the advocates of formal approaches to KBS development are

concerned with the development of KBS in safety-critical domains, such as the aerospace and

nuclear industries.

There does seem to be a crucial difference between KBS and conventional software in this

respect, however. For conventional software, formal methods are used to create an initial

specification of requirements, which is then refined through successive levels of detail to an

implementation. Correctness of the implementation is ensured in a similar way to a

mathematical proof: the initial specification is taken as correct, and each refinement step

follows well-defined rules. The initial specification can be taken as correct because the users'

requirements are well-understood. This is often not true for KBS applications, however,

particularly those in domains lacking a formal foundational theory, such as the medical,

legal, and business domains. In these domains, a correct formal specification of the users'

20

requirements will most likely be very hard to create, and a complete specification may be

impossible to create (Bellman, 1990; Gamble, 1993).

Therefore, from the point of view of those working with business systems, increased

formality is not attractive (O'Keefe and O'Leary, 1993). KBS development is attractive to

many in business because of the lack of formality — the ability to investigate and change

requirements, and for these to evolve over time. Freezing the scope of a project too early can

result in disaster. With KBS, we are investigating problems and tasks that we do not

understand very well, at least at the outset. If we did understand them, we would not be

using KBS — likely we would be programming an algorithm, or using an off-the-shelf

solution.

6. Verification and Validation (V&V)

According to the old adage, "verification is building the system right, validation is building

the right system" (O'Keefe, Balci and Smith, 1987). Thus verification is aimed at eliminating

errors in the system, and is typically a software and programming task. Validation is more

concerned with the quality of the system; the extent to which it performs its task, the degree

of accuracy, and the observed robustness. Implicitly, verification is part of validation: a

system that is not "built right" is unlikely to be "the right system".

6.1 Verification of KBS

Verification of KBS has focused on attempts to demonstrate that a KBS has been built in

conformance with a number of well-defined properties, chiefly freedom from logical conflict,

redundancy, and deficiency (Preece, Shinghal and Batarekh, 1992). Conflict refers to the

ability of the system to arrive at logically-inconsistent conclusions from consistent input.

21

Redundancy refers to the presence within the system of logically-unnecessary structures

which never affect the relationship between the input and output of the system. Deficiency

refers to the absence of structures which should be present, logically, for the system to arrive

at conclusions for all valid input cases.

In practice, it is difficult to prove the absence of conflict, redundancy and deficiency in a KBS

built using the kind of tools described earlier. This is because, in order to provide the rich

functionality demanded by programmers, all current industrial-strength KBS tools offer

extra-logical features which defy a pure logical analysis. To work around this problem, KBS

verification tools look instead for anomalies, where an anomaly is an apparent instance of

conflict, redundancy, or deficiency, based upon a logical analysis of the KBS. Thus an

anomaly is a potential error — it may be an actual error that needs fixing, something that

causes efficiency or maintenance problems, or it may be harmless (or even intentional).

Anomaly detection procedures have focused on rules, since rules have dominated KBS

development, and there are a large number of categorized anomalies and some tools to detect

them (Preece, Shinghal and Batarekh, 1992; O'Keefe and O'Leary, 1993). Examples of the use

of one such tool on realistic KBS applications are provided in Preece and Shinghal (1994).

Recently, the notion of KBS verification has expanded to reflect the use of formal specification

languages (Treur and Wetter, 1993). As discussed earlier, these languages facilitate the

creation of formal descriptions of KBS, which are amenable to formal proof techniques, and

from which implementations can be derived that conform to the specifications. However,

because of the difficulty in creating such specifications for KBS with ill-defined user

requirements, this approach to verification has met with very limited success to date

(Gamble, 1993; Rushby and Whitehurst, 1989).

6.2 Validation of KBS

22

From the perspective of this paper, validation overshadows formal verification. In an ideal

world, a verified KBS would be a naturally-validated KBS (Adrion, 1982), but this is far from

what is currently possible in practice, especially in business applications of KBS. Even if it

were possible to specify formally all of the users' requirements, and then to verify that an

implementation conforms to this specification, there would still be no guarantee that the

requirements were correct. Therefore, it seems that validation must always be more than

verification.

Validation bridges the gap between performance of the KBS (the software divorced from

setting and user), and performance of the system (the software in place being used to

perform its task). Table 2 presents a number of methods for validation taken from O'Keefe

and O'Leary (1993); helpfully it is somewhat self-explanatory. Validators typically use

methods to investigate the components of a KBS (individual rules, programmed heuristics,

the knowledge or conceptual model), and the entire KBS itself.

A KBS must have criteria against which it can be validated. Criteria based upon performance,

accuracy, and user-oriented attributes (such as ease-of-use) are common, and it is unlikely

that a single criterion will suffice. (Adelman, 1992, discusses this in great detail, and is

required reading for anyone validating and evaluating a KBS.) Most validation methods are

applicable to performance related criteria, especially acceptable level of performance — the

notional level of performance that the KBS must perform at to be a useful surrogate or

supporting system for decision making. This is very task and application dependent, and

thus validation for a specific application does not validate a KBS as usable for other tasks.

There is no absolute stamp of validity, as there might be with (for instance) a programming

language compiler or database system.

By far the most prevalent method of validation is case testing, where the validator runs cases

previously solved by an expert or experts through the system, and compares performance of

the system to the experts. This benchmarking approach is very convenient, and has the

23

advantage that statistical techniques may be employed to make the comparison sounder.

However, in practice it is not always easy to implement. It requires good cases that match

those that the system will encounter. Where attributes of the problem have changed

significantly, or it is now recognized that previously highly regarded solutions are not

necessarily that good (think about advances in medicine), the approach may not be that

good. It also assumes that the experts are the targets for performance, but many validators

find that expert performance is mixed and often contradictory (think about the performance

of financial advisors).

There has been some consideration of the criteria for what constitutes a good set of test cases

for a KBS. In general, it is not possible to create a set of test cases which is guaranteed to

expose all faults in an arbitrarily-complex piece of software, including all KBS (Goodenough

and Gerhart, 1975). Instead, it is necessary to create test cases to show that known types of

error are not present. In conventional software testing, errors of commission can be exposed

through structural testing criteria, aimed at testing execution paths through the program

code. Analogous methods can be employed for KBS, provided that a workable notion of

execution path can be developed (Grossner et al, 1993; Kiper, 1992). Errors of omission can be

exposed through functional testing criteria, based upon specifications of the users'

requirements. This approach does not necessarily require complete formal specifications,

since classes of potential functional faults can be identified in practice for KBS by rigorous

engineering approaches (Miller, 1990; Rushby, 1988). Limited experiments performed to date

— albeit using somewhat simple application systems — have suggested that a combination

of structural and functional testing is a highly effective means of exposing faults in a KBS

(Kirani, Zualkernan and Tsai, 1992; Rushby and Crow, 1990).

It is worth noting in Table 2 that most validation methods — including the testing

approaches — are applicable to the later stages of the life cycle when the system has achieved

some level of performance. This often results in validation being driven out of development

due to budgetary problems and the pressure to fully implement. How much a system is

24

under-validated tends to be a function of its task; developers are not willing to let life, money

or mission critical KBS be fielded and fail, but typically take a far more liberal view when a

system is not critical.

6.3 Validation Strategies

Many KBS projects are driven by KA, where what knowledge is required next acts as a

driving force determining the next step in the project. It may be more sensible, however, for a

project to be validation driven, where the gap between present and desired performance

drives the project. Lee and O'Keefe (1994a) discuss this, and in the context of a KBS project

present some guidelines for generating a strategy that specifies the validation methods and

their timing. The method assumes that the strategy will be liable to changes based upon what

is learnt as the project progresses.

To generate a strategy, some guidelines are:

1. Choose and specify the criteria for V&V. This should be done in as much detail as possible.

Although this can be changed 'down the line', and for some systems may not become

clear until some KA is performed, having a clear as possible goal for V&V will greatly aid

development. In addition to performance related criteria, where usage is optional, usage-

oriented criteria should also be developed early on, even if how to measure for usage-

oriented validity may not be immediately apparent.

2. Develop a list of suitable V&V methods given the intended characteristics of the KBS and the

identified criteria. This requires some familiarity with the methods, including those shown

in Table 2, and where they are best applied.

25

3. Map the V&V methods onto the life cycle being used. Specify where the methods will be used

and when. This mapping can be revised, but revision should not mean frequently

postponing V&V until the later stages of the life cycle (where issues of cost, timing and

resource availability will come into play).

This may appear to be little more than common sense. Our experience, however, suggests

that few developers enter a project with any preconceived ideas about how to do validation.

7. Implementation

KBS rarely fail due to technical problems. Despite the advanced nature of some of the

technology, developers appear to be able to work with it, and when necessary, overcome

some of its limitations with novel procedures and fixes.

Implementing KBS into organizations is far from trivial (Sharma, Conrath and Dilts, 1991).

Although this is probably a truism for all but the simplest of Information Systems, it appears

that successful implementation of KBS is sometimes more difficult than for other systems.

This is due (at least in part) to the task-oriented focus of KBS — the success of the KBS is

related to the successful management and importance of the task as much as the successful

performance of the KBS.

In a study on the success of KBS in three organizations, Duchessi and O'Keefe (1992,

forthcoming) found some common factors among successful systems. Two of these, namely

management commitment to the project and the importance of user participation, are

common to successful IS in general. More interestingly, it was found that:

1. Systems must have demonstrable benefits. It is not sufficient for a KBS to be found to be

"usable" or even "useful". It must make a measurable contribution to the organization,

26

such as a decrease in down-time or cycle-time, or an increase in market share. If the

outcome from a task is measured (ˆ la re-engineering), then a KBS should have an impact

on those measures.

2. There must be growth in the underlying application area. The underlying application (or task)

must be growing in either importance or frequency or execution; thus a KBS can

contribute to that growth. Everyone remembers XCON due to the success of the VAX

computer; no one can name the KBS developed to support the configuration of now

discontinued computer products.

3. There is a need to control and understand data. Building a KBS, and then expecting the data

required to use it to magically appear, is an overture to failure. It is necessary to

understand the available data, and perhaps even build some data capture and

management facilities. Not only is this necessary to support the implemented KBS, but

understanding the data can help determine the scope and role of the KBS.

Regarding behavioural issues, implementing a KBS can have profound effects on the way

that knowledge is distributed in an organization. Given the association with specific tasks,

workers performing those tasks can find their job enhanced, devalued or even replaced. The

announcement made by AT&T that they would replace the majority of their phone operators

with a speech recognition system is an extreme case, and perhaps the first reported large-

scale displacement of workers by AI (Duchessi, O'Keefe and O'Leary, 1993).

8. Conclusions

So, for an Operational Researcher (or other person working on business and managerial

problems and systems) where does KBS fit in? Are they another technique, or a complete

philosophy?

27

Our personal opinion is that KBS is best viewed as another set of modelling techniques and

methods, with associated software and system development approaches. Whereas

mathematical programming and discrete-event simulation are both considered as OR

techniques, in truth they are now individual well developed schools of thought, each with

their own conferences, practitioners and software providers. KBS is similar, but generally not

considered part of OR (the way that mathematical programming and simulation are). This is

simply because OR people did not discover and propagate the ideas. From an OR perspective

(especially pedagogical), the fact that KBS is out and mathematical programming in is a quirk

of history.

Thus we return to the paragraph quoted at the start of the paper. One possible rewrite is:

"We hope that the development and implementation of KBS is seen as a useful

technology, readily available via software. As such, KBS should be considered as

similar to packaged modeling methods such as linear programming and discrete-

event simulation, but not as fundamental a tool as statistics or basic computing

skills. Evidence suggests that for certain types of tasks, KBS is a viable method

for automating, augmenting or supporting the task. KBS should not be defined

as a decision support method per se, since the applications of KBS are more multi-

faceted than simple support and advisory roles. Further, efforts to build large-

scale generic DSS based upon KBS method have not been successful; KBS is

perhaps best seen as a possible building block in DSS rather than the cement."

Of course, other rewrites (using better grammar and metaphors, let alone more insight) are

possible.

Acknowledgements

28

Our understanding of KBS is dependent upon fellow colleagues and researchers over recent

years. Bob O'Keefe would particularly like to acknowledge the insights acquired from

working with Val Belton (University of Strathclyde, Scotland), Peter Duchessi (State

University on New York at Albany, USA), Dan O'Leary (University of Southern California,

USA), Sunro Lee (Hong Kong University of Science and Technology) and Walter Reitman

(Rensselaer Polytechnic Institute, USA). Alun Preece would like to thank former colleagues in

the Computer Science Department/CENPARMI, Concordia University, MontrŽal, Canada,

the members of LIA, UniversitŽ de Savoie, France, and Laurie Moseley (University College

Swansea, Wales).

29

References

L. Adelman (1992) Evaluating Decision Support and Expert Systems, John Wiley & Sons, New

York, NY.

W.R. Adrion, M.A. Branstad and J.C. Cherniavsky (1982) Validation, verification and testing

of computer software, ACM Computing Surveys. 2(June), 159-192.

M. Alavi and J.C. Wetherbe (1991) Mixing prototyping and data modeling for information

system design, IEEE Software, 8(May), 86-91.

A. Anjeweirden, J. Wielemaker and C. Toussaint (1992) Shelley: computer-aided knowledge

engineering, Knowledge Acquisition 4:1, 109-126.

V. Barker and D. O'Connor (1989) Expert systems for configuration at Digital, XCON and

beyond, Communications of the ACM 32:3, 298-320.

K. Bellman (1990) The modeling issues inherent in testing and evaluating knowledge-based

systems, Expert Systems with Applications, 1:3, 199-215.

A. van de Brug, J. Bachant and J. McDermott (1986) The Taming of R1, IEEE Expert 1:3, 33-39.

S. Burton, K. Swanson and L. Leonard (1993) Quality and knowledge in Software

Engineering, AI Magazine 14:4, 43-50.

T.H. Davenport (1993) Process Improvement: Reengineering Work Through Information

Technology, Harvard Business School Press, Boston, MA.

30

P. Duchessi and R.M. O'Keefe (1990) A knowledge-based approach to production planning,

Journal of the Operational Research Society 41:5, 377-390.

P. Duchessi and R.M. O'Keefe (1992) Contrasting successful and unsuccessful expert systems,

European Journal of Operational Research 61:1/2, 122-134.

P. Duchessi and R.M. O'Keefe, Evolutionary steps in expert systems projects, forthcoming in

Expert Systems With Applications.

P. Duchessi, R.M. O'Keefe and D.E. O'Leary (1993) A research perspective: artificial

intelligence, organizations and management, International Journal of Intelligent Systems in

Accounting, Finance and Management 2:3, 151-159.

J.S. Edwards (1992) Expert systems in management and administration — are they really

different from decision support systems?, European Journal of Operational Research 61:1/2, 114-

121.

M.K. El-Najdawi and A.C. Stylianou (1993) Expert support systems: Integrating AI

technologies, Communications of the ACM 36:12, 54-65.

E.C. Freuder & A.K. Mackworth (1994) Constraint-Based Reasoning. MIT Press, Cambridge

MA.

R.F. Gamble (1993) A perspective on formal verification, in A.D. Preece, ed., Validation and

Verification of Knowledge-Based Systems (AAAI-93 Workshop Notes), AAAI Press, 131-134.

R.F. Gamble, G.-C. Roman and W.E. Ball (1991) Formal verification of pure production

system programs, in Proceedings 9th National Conference on Artificial Intelligence (AAAI 91),

AAAI Press, 329-334.

31

J. Giarratano and G. Riley (1989) Expert Systems: Principles and Programming, PWS-Kent, New

York, NY.

D.I. Gold and R.T. Plant (1994) Towards the formal specification of an OPS5 production

system architecture, International Journal of Intelligent Systems, 9:8, 739-768.

J.B. Goodenough and S.L. Gerhart (1975) Toward a theory of data selection. IEEE Transactions

on Software Engineering, SE-1:2, 156-173.

C. Grossner, A. Preece, P.G. Chander, T. Radhakrishnan and C.Y. Suen (1993), Exploring the

structure of rule based systems, in Proceedings 11th National Conference on Artificial Intelligence

(AAAI 93), AAAI Press, 704-709.

F. Hayes-Roth and N. Jacobstein (1994) The state of knowledge-based systems,

Communications of the ACM 37:3, 27-39.

P. Holroyd, G. Mallory, D.H.R. Price and J.A. Sharp (1985) Developing expert systems for

management applications, Omega 13, 1-11.

L. Jojo and R.M. O'Keefe (1994) Experiences with an expert system prototyping methodology,

Expert Systems: The International Journal of Knowledge Engineering 11:1, 13-22.

J.K. Kastner and S.J. Hong (1984) A review of expert systems, European Journal of Operational

Research 18:3, 285-292.

J. Kingston (1992) Pragmatic KADS: a methodological approach to a small knowledge-based

systems project, Expert Systems: The International Journal of Knowledge Engineering, 9:4, 171-180.

32

M. Sternberg, R. Lewis, R. King and S. Muggleton (1992) Modelling the structure and

function of enzymes by machine learning, in Proceedings of the Royal Society of Chemistry:

Faraday Discussions, 93, 269-280.

S. Kirani, I. Zualkernan and W.-T. Tsai (1992) Comparative evaluation of expert system testing

methods, Technical Report TR 92-30, University of Minnesota, Department of Computer

Science.

S. Lee and R.M. O'Keefe (1994a) Developing a strategy for expert system verification and

validation, IEEE Transactions on Systems, Man and Cybernetics 24:4, 643-655.

S. Lee and R.M. O'Keefe (1994b) An experimental investigation into the determinants of knowledge-

based systems quality, Technical Report, Department of Business Information Systems, Hong

Kong University of Science and Technology.

M. Lowry (1992) Software engineering in the twenty-first century, AI Magazine 13:3, 71-87.

L.A. Miller (1990) Dynamic testing of knowledge bases using the heuristic testing approach,

Expert Systems with Applications, 1:3, 249-269.

S. Muggleton (1992) Inductive Logic Programming. Academic Press, London.

T. Nguyen, M. Czerwinski and D. Lee (1993) Compaq QUICKSOURCE: Providing the

consumer with the power of AI, AI Magazine 14:3, 50-60.

R.M. O'Keefe (1985) Expert systems and operational research — mutual benefits, Journal of the

Operational Research Society 36:2, 125-129.

33

R.M. O'Keefe, O. Balci and E.P. Smith (1987) Validating expert system performance, IEEE

Expert 2:4, 81-90.

R.M. O'Keefe, V. Belton and T. Ball (1986) Experiences with using expert systems in O.R.,

Journal of the Operational Research Society 37:7, 657-668.

R.M. O'Keefe and D.E. O'Leary (1993) A review and survey of expert system verification and

validation, Artificial Intelligence Review 7:1, 3-42.

R.M. O'Keefe and D. Rebne (1993) Understanding the applicability of expert systems,

International Journal of Applied Expert Systems 1:1, 3-24.

R.M. O'Keefe, D. Rebne, D.E. O'Leary and Q Chung (1993) The impact of expert systems:

System characteristics, productivity and work unit effect, International Journal of Intelligent

Systems in Accounting, Finance and Management 2:3, 177-189.

D.E. O'Leary and R.M. O'Keefe (1993) The use of formal methods for specifying KBS: The

case of business systems, presented at the AAAI Workshop on Verification, Validation and

Testing of KBS.

A.D. Preece, R. Shinghal and A. Batarekh (1992). Principles and practice in verifying rule-

based systems, Knowledge Engineering Review, 7:2, 115-141.

A. Preece and R. Shinghal (1994) Foundation and application of knowledge base verification,

International Journal of Intelligent Systems, 9:8, 683-702.

A.D. Preece (1990) Towards a methodology for evaluating expert systems, Expert Systems, 7:4,

215-223.

34

W. Reitman (1990) Generic expert systems for management applications: the Operations

Advisor and the Management Advisor, Computer Science in Economics and Management 3, 167-

175.

D. Reynolds and T. Beck (1993) Tennessee offender management information system, AI

Magazine 14:3, 61-68.

J. Rushby (1988) Quality measures and assurance for AI software, NASA Contractor Report CR-

4187, SRI International, Menlo Park CA.

J. Rushby and A. Whitehurst (1989) Formal verification of AI software, NASA Contractor Report

CR-181827, SRI International, Menlo Park CA.

J. Rushby and J. Crow (1990) Evaluation of an expert system for fault detection, isolation, and

recovery in the manned maneuvering unit, NASA Contractor Report CR-187466, SRI

International, Menlo Park CA.

R.S. Sharma, D.W. Conrath and D.M. Dilts (1991) A Socio-technical model for deploying

expert systems — Part I: The general theory, IEEE Transactions on Engineering Management,

38:1, 14-23.

D. Shpilberg and L.E. Graham (1989) Developing ExperTAX: An expert system for corporate

tax accrual and planning, in M.A. Vasarhelyi (ed.) Artificial Intelligence in Accounting and

Auditing, Markus Weiner, New York, NY, 343-372.

G. Sullivan and K. Fordyce (1990) IBM Burlington's logistics management system, Interfaces,

20:1, 43-64.

35

J.J. Sviokla (1990) Expert systems and their impact on the firm: the effects of PlanPower use

on the information processing capacity of The Financial Collaborative, Journal of Management

Information Systems 6:3, 65-84.

B.G. Silverman and T.M. Mezhar (1992) Expert critics in engineering design: Lessons learned

and research needs, AI Magazine 13:1, 45-62.

K.Y. Tam (1992) Neural network models and the prediction of bank bankruptcy, Omega 19:5,

429-445.

K.Y. Tam and Y.H. Kiang (1992) Managerial applications of neural networks: the case of bank

failure predictions, Management Science 38:7, 926-947.

J. Treur and T. Wetter (1993) Formal specification of complex reasoning systems, Ellis Horwood,

Chichester, England.

B.J. Wielinga, A.Th. Schreiber and J.A. Breuker (1992) KADS: a modelling approach to

knowledge engineering, Knowledge Acquisition 4:1, 5-54.

