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Abstract. The Semantic Web is a vision of a machine readable Web of resources,
interlinked and connected through meta-data with common ontologies. In this pa-
per we explore the impact such a Semantic Web would have on Machine Learn-
ing algorithms used for user profiling and personalisation. Our hypothesis is that
learning from the Semantic Web should outperform traditional learning from to-
day’s World Wide Web for both performance and accuracy. In this paper we
present results obtained with two different datasets marked-up with semantic
meta-data; using these we have investigated different instance representations and
various learning techniques. Our initial results with the Naı̈ve Bayes and K-NN
algorithms were disappointing, leading us to examine the use of the Progol algo-
rithm. Using ILP techniques we were able to discover meaningful and we believe,
potentially reusable knowledge.
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1 Introduction

The Semantic Web [2]1 is a vision in which today’s Web will be extended with ma-
chine readable content, and where every resource will be marked-up using machine
readable meta-data. The intention is that documents on the Semantic Web will convey
real meaning by using structured data-formats and by referring to common ontologies.
We believe that initially the Semantic Web will consist of hand-crafted pages much
like the Web we know today, providing the same information, but in machine readable
form. For example, we could envisage semantic markup accompanying a conventional
HTML page giving information such as: This is the web page of Gunnar Grimnes, he
works for Aberdeen University, his telephone number is 1224 630538 etc. We believe
that such static information demonstrates only part of the potential for Semantic Web
technologies; their deployment should allow for advanced profiling methods capable of
acquiring knowledge such as: Gunnar likes bands who recorded most of their material
from 1968 to 1975, as well as any band who uses a Moog Synthesiser. When a true
Semantic Web exists in this form it becomes useful, and should, for instance, allow
for better matching of semantically enriched product descriptions with semantic user
profiles.

Machine learning technologies have been applied in the context of today’s World Wide
Web to help users find their way through the unmanageable amount of information that
exists. A typical scenario involves acquisition of a model of a user’s interests which can
then be used to make recommendations, e.g. this link should be of interest or consider
this product, it is similar to things you’ve bought previously . A variety of approaches
exist for learning from Web-content; these range from methods which choose to ignore
all HTML markup and treat everything as plain text, to those which make use of the
limited structure in HTML and treat the title, heading, link-texts differently. Once con-
tent has been extracted from documents, the next step is to apply information retrieval
techniques, such as stopword removal, stemming, term weighting and so on. A bag-of-
words representation is then used to form the training instances required by the learning
algorithm. Figure 1 provides a schematic view of this process.

In the work presented here we wish to explore the impact of the Semantic Web on
user profiling and personalisation; more specifically, we have investigated how machine-
learning techniques could be used if we had access to semantic markup for every Web
resource. Our hypothesis is that the Semantic Web should help solve fundamental prob-
lems that make machine learning from the Web today difficult, by providing structured
information, reducing ambiguity, and providing useful references to background infor-
mation in the form of ontologies. We suggest that learning from semantically marked-up
data should outperform learning from unstructured or semi-structured text, with regard
to increased accuracy, i.e. more meaningful and more usable results, as well as a de-
crease in the time and resources needed to execute the learning algorithm.

1 World Wide Web Consortium Semantic Web Initiative, http://www.w3.org/2001/sw/
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Fig. 1. Learning from the Web – Schematic View

1.1 Methodology

The approach we have taken is based on a typical machine learning application in the
context of the World Wide Web: user-profiling. This scenario provides an opportunity
to explore the behaviour of a number of learning algorithms. We assume that a user has
interacted with a system on several occasions, perhaps by rating a Web page or making
a purchase at an e-commerce site. For our purposes the exact scenario does not matter.
Each of these interactions form a training instance, labelled with some class depending
on the action performed by the user. For example (s)he might have rated a book “Very
good”, so the data about that book then becomes the instance and its class would be
“Very good”. The challenge is to use a set of such instances to acquire a classification
model which can be used to predict class labels for future instances. For example, in
an e-business context, such a model could then be used to recommend products to a
user. To explore the impact of semantic markup, we require a number of datasets of
interactions which exist in a semi-structured text format, as well as in a Semantic Web
language, such as RDF2. We would then be able to compare the performance of learning
from the plain text format with learning from semantic meta-data.

In the next section, we describe the datasets we have used for our experiments, then
in section 3 we discuss our experiments with knowledge sparse learning, the algorithms
used, instance representations and results. In section 4 we discuss knowledge intensive

2 http://www.w3.org/RDF/
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learning, using the Inductive Logic Programming algorithm Progol, again discussing
algorithms, document representation and results. Finally, we discuss some related work
and present our conclusions.

2 Datasets

When commencing this work we knew that the Semantic Web was still very much in its
infancy, but we still hoped that it would be possible to find semantically marked-up data
upon which to base our experiments. Unfortunately, we have been unable to find any
substantial amount of data containing such markup3. For this reason we were forced to
generate our own (perhaps rather artificial) data. It is our hope, however, that this data
will serve to illustrate the issues associated with learning from the Semantic Web.

2.1 The ITTalks Dataset

ITTalks4 is an online portal for information about information technology seminars
given at universities in the US. It was the only application of a Semantic Markup lan-
guage we were able to find which had sufficient amounts of such data publicly available.
It uses DAML+OIL5 to describe talks, talkers, location and other concepts relating to
seminars. The system is public and anyone is free to submit their own talk. The talks
come in several formats, either as a plain HTML Web page or as DAML+OIL. Figure
2 shows an example of both formats.

Although these documents are generated from the same back-end database, there are
some differences in content, e.g. the HTML version includes a biography of the author,
while the DAML+OIL variant includes more information on time and place, etc. The
ITTalks set contained descriptions of 64 talks, each of which formed an instance in our
dataset. The 64 instances were manually classified by each of us (PE, GAG, ADP) into
two classes, either interesting or not interesting based on the title, author and abstract.
Three classified variants of the raw data were thus created. Figure 5 summarises the
class distributions of each version.

2.2 The Citeseer Dataset

The NEC ResearchIndex6 is a digital library of research papers within Computing Sci-
ence. It does not provide documents with semantic markup, but the lack of any other
sources of data with appropriate markup (other than ITTalks) forced us to look for dif-
ferent ways of acquiring such data. The ResearchIndex provides the full text of the
papers, and an indexing system for citations; in addition, it provides the corresponding
BibTex entries, see Figure 3.

BibTex is a highly structured format, and is therefore easily converted to an XML
based format, such as RDF. We chose RDF, as it is the W3C’s basic Semantic Web

3 We would be delighted if anyone could point us at such a datasource!
4 http://www.ittalks.org
5 http://www.daml.org
6 http://citeseer.nj.nec.com/cs
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Fig. 2. HTML and DAML+OIL Examples from ITTalks.
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@inproceedings{ zucker92performance,
author = "R. Zucker and J.-L. Baer",
title = "A Performance Study of Memory Consistency Models",
booktitle = "Proceedings of the 19th International Symposium on Computer Ar-

chitecture",
address = "Gold Coast, Australia",
year = "1992",
url = "citeseer.nj.nec.com/zucker92performance.html" }

Fig. 3. Example BibTex Entry from NEC ResearchIndex.

representation language. The conversion to RDF was performed by making the identi-
fier of the paper (i.e. zucker92performance) the subject and each attribute-value line a
predicate and object in an RDF triple. Figure 4 illustrates the RDF generated from the
BibTex appearing in Figure 3.

<?xml version="1.0"?>
<rdf:RDF

xmlns="http://www.csd.abdn.ac.uk/˜ggrimnes/exp/\#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\#">

<inproceedings rdf:about="zucker92performance">
<author>R. Zucker and J.-L. Baer</author>
<title>A Performance Study of Memory Consistency Models</title>
<booktitle>Proceedings of the 19th International Symposium on Computer Ar-

chitecture</booktitle>
<address>Gold Coast, Australia</address>
<year>1992</year>
<url>citeseer.nj.nec.com/zucker92performance.html</url>

</inproceedings>
</rdf:RDF>

Fig. 4. RDF Example Generated from BibTex.

The meta-data generated from BibTex is very simple, and lacks many of the proper-
ties of a real Semantic Web resource, such as ontology references. One notable charac-
teristic is that it is much shorter than the plain text representation of the same instance
(typically � 5000 words). In addition, the BibTex does include some information that is
not to be found in the full text, such as journal title and year of publication.

The ResearchIndex provides a Computer Science Directory7 listing the most cited
papers in each of 17 subject categories. In these categories ResearchIndex lists 5066
papers. However, a number of these appear under more than one category and were re-
moved, to leave 4220 instances in our dataset. One approach to learning from this data
would be to attempt to learn a classifier capable of discriminating between the 17 cat-
egories. However, as a multi-class problem is substantially harder than a simple binary
like/dislike classification, we also ran the experiment attempting a binary classification
over each of the 17 categories, i.e. is this paper an Agents paper, or is it any of the other
16 classes? We chose the five categories with the most instances for binary classifica-
tion, namely Machine Learning, Artificial Intelligence, Information Retrieval, Human

7 http://citeseer.nj.nec.com/directory.html

5



Computer Interaction and Databases. We also selected the Agents as one of the smaller
groups. Figure 6 presents the class distribution for this dataset. Note that the GAG vari-
ant has 10 more instances as more talks became available from ITTalks, however these
were never classified by PE or ADP.

Instances Likes Dislikes
GAG 64 25 39
PE 53 16 37
ADP 53 15 38

Fig. 5. ITTalks Dataset Profile.

Dataset ML AI IR HCI DB Agents
Number of Instances 4220 385 367 337 284 285 218

Fig. 6. ResearchIndex Dataset Profile.

3 Knowledge Sparse Learning

3.1 Introduction

We define Knowledge Sparse Learning as the approach that is traditionally taken by
statistical or probabilistic machine learning methods. In the Web context, the presence
or absence of certain discriminating keywords within a set of training instances is used
to produce a classification model. Such a model is then used to predict the class of future
unseen instances. Such a model typically consists of a set of weights or a probabilistic
model for terms occurring within each class. A model learned from such an approach is
mainly useful within the given experiment, and will be useless for classifying instances
from a different subject domain, where the discriminating keywords might be different,
or even instances from the same domain which have been preprocessed in a different
way.

3.2 Algorithms

For this part of our study, we used two well known machine learning algorithms, both
of which operate using a feature vector representation of each instance. The features
used to describe instances varied between our different approaches (see below). N-fold
cross validation [21] was used when assessing the performance of the methods. The
algorithms will now be discussed briefly.
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Naı̈ve Bayes [11] is a simplified version of the Bayes classifier, which takes a proba-
bilistic approach to learning. Naı̈ve Bayes reduces the complexity of the normal Bayes
classifier by making the assumption that the features of an instance are conditionally
independent. In practice, this assumption seldom holds true, but the algorithm still per-
forms well on many real-world classification tasks, having been shown to be equal in
accuracy to neural networks and decision tree learning [10].

K-Nearest Neighbour (KNN) [4] is an algorithm which will label unknown instances
with the label of the majority of the K nearest neighbours in N-dimensional space,
where N is the number of features used for describing each instance. KNN is a lazy
algorithm, meaning that it will not generate a model based on the training instances, but
only when asked to classify a new instance will it perform the computations needed to
classify the given instance. The version of KNN used in our experiments is a variation
of the standard algorithm, able to deal with symbolic inputs [3].

3.3 Instance Representations

We have investigated three different ways of representing instances in this study: one
based on the text content of our documents, and two which make use (in some way) of
the semantic meta-data. We will now describe each of these approaches.

1. Plain Text As a baseline approach we used a simple method to create training data [7,
1]. This was based upon the HTML version of the ITTalks data and the full text of the
ResearchIndex articles. For each instance we removed all numbers and all words of
length less than 3, before applying a stopword list which removes non-content words
such as it, the, their, etc. We also explored application of a stemming algorithm [18],
reducing words like computer, computing, computers to comput. The idea was to make
generalising over classes easier, but we found stemming to make little or no differ-
ence in performance, and chose not to use it. Once this initial pre-processing had been
completed, we had the option of either creating a binary vector with each element corre-
sponding to a term in the document vocabulary, or some form of weighted vector (based
on a subset of available terms). Due to the size of the vocabulary (150,000 terms for the
ResearchIndex dataset) we decided to adopt the latter approach.

TF/IDF weights [6] were calculated for each of the terms and the 1500 with the
highest TF/IDF ranking were selected. The presence or absence of each of these terms
was then used to create a binary term vector. Figure 7 shows an example of the process-
ing stages involved and the final representation.

2. Treating RDF Tags as Plain Text Our next approach was similar to the first, but
instead of employing a plain text representation for each instance we make use of the
marked-up data. This data was preprocessed in essentially the same manner as the plain
text, with one important difference. In HTML documents the tags provide formatting
information, i.e. � b � tells us that this text should be printed in bold, while in the meta-
data files the different XML/RDF tags represent some information about the meaning
of the content, i.e. � location � tells us that a talk has a location. We did not want to

7



Original HTML document:

<html>
<head><title>Machine Learning from the Semantic Web</title></head>
<body>
<h1>Machine Learning from the Semantic Web</h1>
<i>By Gunnar AAstrand Grimnes</i>
<p>In this seminar we give details on our recent experiments on learn-
ing from the semantic web

. . .

�
Removal of HTML markup, stopwords and numbers:

machine learning semantic web machine learning semantic web gunnar aastrand grimnes seminar give details recent exper-
iments learning semantic web . . .

�
Selection of most discriminating terms using TF/IDF:
learning, semantic, ontology, agent, talk, experiments, url . . .

Binary term vector for this instance:
1, 1, 0, 0, 0, 1, 0 . . .

Fig. 7. Instance Representation – Method 1.

ignore this information, so in this approach we treat the XML-tags as additional text
content. As we use TF/IDF to select highly ranked terms to appear in the instance
representation, commonly occurring tags will of of course be ignored. However, tags
which occur infrequently will still find their way into the instance. Figure 8 shows an
example of this instance representation.

3. Using RDF with Tag � Feature Mapping Our third approach was based on the ob-
servation that on the Semantic Web, markup provides structure, so instead of throwing
away this structure by treating all the text as one unit we processed the content of each
tag separately. Each element in our instance vector then became the set of words which
occurred within a certain tag; the content of this tag was pre-processed in the same man-
ner as for methods 1 and 2, i.e. applying a stopword list, ignoring short words, etc. The
length of the instance vector then became the number of unique tags in the documents,
not the number of unique words. This approach is possible because the variants of both
Naı̈ve Bayes and K-Nearest Neighbour we used supported sets of values as elements in
the instance vectors.

While this approach made sense for most tags, some tags had a clearly defined
internal structure where information would be lost if pre-processed. An example is the
ACMTopic field of the ITTalks dataset, which gives the topic of the talk as a string such
as ACMTopic/Computer Systems Organization/Computer Communication Networks/-
Internetworking. If preprocessed normally this would be broken up into separate terms
and the accurate meaning lost, so we did not preprocess this tag. Figure 9 shows an
example of this instance representation.

8



Original RDF document:

<xml>
<rdf>

<talk id=’mlsemweb1’>
<title>Machine Learning from the Semantic Web</title>
<speaker>

<name>Gunnar AAstrand Grimnes</name>
<url>http://www.csd.abdn.ac.uk/˜ggrimnes</url>
<faxnumber>+44 1224 273422</faxnumber>

</speaker>

. . .

�
Removal of stopwords and numbers:
xml rdf talk title machine learning semantic web speaker name gunnar aastrand grimnes name url csd abdn ggrimnes url
faxnumber speaker . . .

�
Selection of most discriminating terms using TF/IDF:

learning, semantic, ontology, faxnumber, agent, experiment . . .

Binary term vector for this instance:

1, 1, 0, 1, 0, 0, . . .

Fig. 8. Instance Representation – Method 2. (Note difference from term vector in Figure 7)

3.4 Results

The ITTalks results are shown in Figures 10 and 11. From these results, it is immedi-
ately noticeable that the GAG variant of the classified ITTalks data led to poor results.
We believe that this is an artifact due to the manual classification of the data; the GAG
variant reflects a less clearly defined interest profile than the two other variants, both
of which were created by academics researchers with specific interests. Another phe-
nomenon we can observe from the results is the poor performance of Method 3 (map-
ping RDF tags to features). We believe this is caused by the large number of distinct
tags which appear in the ITTalks meta-data, and the fact that the majority of the textual
content is contained within very few tags, such as Abstract, Bio-Sketch and Title. This
would cause the instance representation for Method 3 to have very sparse vectors with a
few features containing large numbers of terms; there are thus many redundant features
which do not provide any information that can be used for creating the model. Method
2 is not affected by this as the entire document is treated as one unit of text for instance
generation purposes. Finally, we observe that Method 1 and Method 2 lead to very sim-
ilar results. We believe that this is caused by another artifact of the dataset. All of the
instances in the dataset contain the same set of DAML+OIL tags, even if these might
be empty for certain instances. As we use TF/IDF to select highly ranked terms for
inclusion in the instance vector, and tag names appear in all examples, they will never
get into the final instance representation. Thus, the plain text and meta-data versions of
this dataset are essentially the same. We would anticipate that in a true Semantic Web

9



Original RDF document:

<xml>
<rdf>

<talk id=’mlsemweb1’>
<title>Machine Learning from the Semantic Web</title>
<speaker>

<name>Gunnar AAstrand Grimnes</name>
<url>http://www.csd.abdn.ac.uk/˜ggrimnes</url>

</speaker>

. . .

�
Removal of stopwords, numbers, etc. from tag content:

<xml>
<rdf>

<talk>
<title>machine learning semantic web</title>
<speaker>

<name>gunnar aastrand grimnes</name>
<url>csd abdn ggrimnes</url>

</speaker>

. . .

�
Using the following tags as features:
talk, title, speaker, name, url . . .
Instance:	�


,

	
machine, learning, semantic, web



,

	�

,

	
gunnar, aastrand, grimnes



,

	
csd, abdn, ggrimnes



. . .

Fig. 9. Instance Representation – Method 3.

GAG PE ADP Average
1. Plain Text 48.27% 69.38% 65.30% 60.98%
2. RDF Tags as text 50.00% 65.30% 67.34% 60.88%
3. RDF Tags as Features 34.48% 40.81% 40.81% 38.70%

Fig. 10. Results for Naı̈ve Bayes - ITTalks Dataset.

GAG PE ADP Average
Method 1: Plain Text 55.17% 73.47% 65.31% 64.65%
Method 2: RDF Tags as Text 56.90% 69.39% 59.18% 61.82%
Method 3: RDF Tags as Features 50.00% 65.31% 57.14% 57.48%

Fig. 11. Results for K-Nearest Neighbour - ITTalks Dataset.
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Multi Class ML AI IR HCI DB Agents
Method 1: Plain Tex 43.38% 83.84% 70.02% 77.35% 78.69% 85.02% 78.93%
Method 2: RDF Tags as Text 47.53% 91.71% 89.76% 91.06% 93.67% 94.43% 95.23%
Method 3: RDF Tags as Features 51.13% 89.62% 88.05% 90.33% 91.51% 91.85% 92.82%

Fig. 12. Results for Naı̈ve Bayes - ResearchIndex Dataset.

Multi Class ML AI IR HCI DB Agents
Method 1: Plain Text 46.52% 93.39% 91.26% 94.00% 93.96% 95.47% 96.40%
Method 2: RDF Tags as Text 26.47% 91.73% 90.73% 92.39% 93.41% 94.00% 94.95%
Method 3. RDF Tags as Features 24.19% 89.83% 89.69% 90.21% 93.10% 92.65% 98.58%

Fig. 13. Results for K-Nearest Neighbour - ResearchIndex Dataset.

dataset, the meta-data would be richer in nature and its presence would provide more
information than the pure text instances.

The ResearchIndex results can be found in Figure 12 and 13. The first column gives
results for the multi-category problem, and as expected, they are poor. K-Nearest neigh-
bour performs much worse than Naı̈ve Bayes at the multi-class classification, we believe
this is caused by K-nearest neighbour being very susceptible to the inclusion of irrele-
vant or redundant attributes, as the distance metric combine measurements for all of the
features [16].

4 Knowledge Intensive Learning

4.1 Introduction

On the Semantic Web content is represented via a logical language in which meaning
is clearly defined. In our first group of experiments, while some use was made of the
structure provided by markup, its logical nature was ignored. By exploiting the full
potential of the Semantic Web we argue that it should be possible to learn rules and
statements in a logical representation that is similar to that used for the content.

4.2 Inductive Logic Programming

We have chosen to use the Progol Inductive Logic Programming (ILP) system. Progol
has been defined as “A standard Prolog interpreter with inductive capabilities” [15].
It is able to learn knowledge (expressed as Prolog predicates) from supplied exam-
ple instances and supporting background information. The algorithm has been suc-
cessfully used in experiments for analysis of mutagenic activity amongst nitroaromatic
molecules [20], drug design [5] and protein shape prediction [14]. The theory behind
ILP and the original Progol algorithm is described in [13]. For our experiments we used
CProgol4.4.8

8 Progol is freely available online from http://www.doc.ic.ac.uk/  shm/Software/.
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4.3 Methodology

We explored the application of Progol in the context of the NEC ResearchIndex Dataset,
as it is the larger of our datasets and maps easily to a Prolog representation. The
ITTalks dataset has a much richer set of meta-data which is more difficult to represent
in Prolog. In our RDF � Prolog mapping, we have used the simple RDF data model of�

subject, predicate, object � triples; the ITTalks dataset is encoded using DAML+OIL,
which, when treated as plain RDF, generates many complex reification triples which
would shroud the meaning of the documents, compared to the intuitive meaning of the
simpler triples from the ResearchIndex, such as the author of this article is Gunnar
Grimnes.

Progol was run on a randomly selected subset of 1000 of the total 4220 papers from
the ResearchIndex, as running experiments with the full dataset would have taken too
long, as we were continuously tweaking learning parameters and instance representa-
tions. As before, we ran binary experiments over the different classes, but with Progol
we attempted to learn a classification for each of the 17 classes. We used a single Prolog
predicate of the form inClass( +article ) to represent class membership. This became
the target clause which Progol would try to learn.

4.4 RDF as 1st Order Logic

Initially we chose a very simple approach to map RDF to Prolog. As the RDF data-
model represents (subject, predicate, object) triples, we employed a single Prolog pred-
icate called triple. Figure 14 illustrates our initial representation and corresponds to the
RDF appearing in Figure 4. Note how the BibTex type maps to a RDF concept within
the namespace of these experiments.

triple( url, zucker92performance,
’citeseer.nj.nec.com/zucker92performance.html’ ).

triple( booktitle, zucker92performance, ’Proceedings of the 19th
International Symposium on Computer Architecture’ ).

triple( type, zucker92performance,
’http://www.csd.abdn.ac.uk/˜ggrimnes/exp/#inproceedings’ ).

triple( address, zucker92performance, ’Gold Coast, Australia’ ).
triple( title, zucker92performance, ’A Performance Study of

Memory Consistency Models’ ).
triple( year, zucker92performance, ’1992’ ).
triple( author, zucker92performance, ’R. Zucker and J.-L. Baer’ ).

Fig. 14. RDF Encoding – Initial Approach.

Perhaps as expected, this approach did not give very good results as the search
space for Progol became extremely large. Due to Progol only having one predicate to
use in the construction of the result clause, the algorithm would quickly get lost down
a faulty path of the search-tree with incorrect constants or incorrect unifications, and
never recover.

Our first improvement was to change the way we represented triples. Instead of
casting them all to the same predicate, we created a Prolog predicate corresponding

12



to each RDF predicate, e.g. triple( author, zucker92performance, ’J. Zucker’) became
author( zucker92performance, ’J. Zucker’ ). Secondly, we recognised that Progol op-
erates on strings and if two literals are not exactly equal, Progol has no way of gen-
eralising over them. This led us to preprocess all strings so that each word became a
separate Prolog fact. For example, instead of title( learning02grimnes, ’Learning from
the Semantic Web’ ) we would have: title( learning02grimnes, ’learning’ ), title( learn-
ing02grimnes, ’semantic’ ) and title( learning02grimnes, ’web’ ) . In addition to this
simple pre-processing we also applied a list of synonyms for commonly used abbrevi-
ations and misspellings, e.g. proc, procs and proceeding all map to proceedings, sixth
maps to 6th, etc. Finally, we standardised the representation of author names to first ini-
tial plus surname, as BibTex does not specify a standard. This means that Alun Preece,
Preece A. and Alun D. Preece all map to A. Preece. As with title words we would cre-
ated one Prolog fact for each author. An example of our final representation appears in
Figure 15.

url( zucker92performance, ’citeseer.nj.nec.com/zucker92performance.html’ ).
booktitleword( zucker92performance, ’proceedings’ ).
booktitleword( zucker92performance, ’19th’ ).
booktitleword( zucker92performance, ’international’ ).
booktitleword( zucker92performance, ’symposium’ ).
booktitleword( zucker92performance, ’computer’ ).
booktitleword( zucker92performance, ’architecture’ ).
type( zucker92performance, ’http://www.csd.abdn.ac.uk/˜ggrimnes/exp/#inproceedings’ ).
address( zucker92performance, ’Gold Coast, Australia’ ).
titleword( zucker92performance, ’performance’ ).
titleword( zucker92performance, ’study’ ).
titleword( zucker92performance, ’memory’ ).
titleword( zucker92performance, ’consistency’ ).
titleword( zucker92performance, ’models’ ).
year( zucker92performance, ’1992’ ).
author( zucker92performance, ’R. Zucker’ ).
author( zucker92performance, ’J. Baer’ ).

Fig. 15. RDF Encoding – Second Approach.

4.5 Results

Lack of space prevents us from presenting the Progol results in full. However, we will
discuss some features of the results and will provide illustrative examples. For most
classes the majority of the rules discovered by Progol are of the form:
inClass( zucker92performance ), meaning that Progol was unable to find any common
features between instances of the given class, and simply returned an inClass clause
that lists all the instances declared to be in that class. This problem is almost certainly
caused by the small number of features used to describe each instance, and overlap
between some of the classes, making it difficult for the algorithm to identify discrimi-
natory generalisations.

Despite this problem, some rules were discovered that covered more than a single
instance. For example, Figure 16 shows the rules generated from the Agents class; the
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first five rules are straightforward, and encapsulate obvious facts about publications in
the area of agents technologies. However, the sixth rule, inClass(A) :- titleword(A,bdi).,
is more interesting. BDI is an abbreviation for beliefs, desires and intentions, a common
paradigm within agents research [19]. An active researcher in the agents field would find
this almost as obvious as the other rules, based on their knowledge and experience of
the field. This Progol result is thus a piece of general knowledge, which is not only
usable in trying to classify new research papers from the ResearchIndex, but could also
potentially be applied outside this experiment. Several of the other classifications also
generated rules of a similar type. We find these results from our Progol experiments very
exciting, and present a selection in Figure 17. The rules range from the slightly bizarre,
such as all papers published in volume 18 are Theory, to rules containing interesting
and potentially reusable knowledge, such as Papers published by Morgan Kaufmann
appearing in books with learning in the title are in the field of Machine Learning.

Agents:

inClass(A) :- author(A,’A. Rao’).
inClass(A) :- author(A,’D. Lambrinos’).
inClass(A) :- titleword(A,agent), titleword(A,mobile).
inClass(A) :- type(A,’http://www.csd.abdn.ac.uk/˜ggrimnes/exp/#misc’),
textword(A,agent), titleword(A,agent).
inClass(A) :- year(A,1999), titleword(A,agents).
inClass(A) :- titleword(A,bdi).

Fig. 16. Excerpt of Progol Results - Agents Experiment

Examination of the Progol results indicate that Progol is overfitting to the problem,
by creating a large number of inClass rules. This is because it is impossible for Progol
to generalise any further without creating rules that are not correct for 100% of all the
instances. It would be desirable to allow rules that would correctly classify, say, 99%
of the instances, thus allowing more generalisations and pruning the set of resulting
rules. By doing this we would hopefully get a smaller set of rules for each class, and
a much smaller set of inClass statements. However, as Progol has no built in method
for doing this, we chose to take a very simple approach as follows: all the inClass rules
were discarded and only the more knowledge-rich rules retained for each class. When
this reduced set is used for classification, the precision of the rules is still 100% as no
articles will ever be incorrectly classified, however recall will no longer be perfect. The
percentage of recalled instances for each class are presented in Figure 18.

5 Related Work

We are aware of little work concerned with application of machine learning to Semantic
Web data. This is in contrast to applications to the Web, of which there have been many.
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Artificial Intelligence:
inClass(A) :- journal(A,’SIAM Journal on Control and Optimiza-
tion’).
inClass(A) :- journal(A,’Computational Linguistics’).

Databases:
inClass(A) :- titleword(A,warehousing).
inClass(A) :- titleword(A,deductive).
inClass(A) :- titleword(A,aggregate).
inClass(A) :- titleword(A,transactions).

Machine Learning:
inClass(A) :- publisher(A,’Morgan Kaufmann’), booktitleword(A,
learning).
inClass(A) :- titleword(A,based), titleword(A,case).

Programming:
inClass(A) :- pages(A,225), booktitleword(A,conference).

Security:
inClass(A) :- booktitleword(A,privacy).
inClass(A) :- titleword(A,watermarking).
inClass(A) :- titleword(A,encryption).

Theory:
inClass(A) :- volume(A,18).

Fig. 17. Progol Results - Sample Rules

ML AI IR HCI DB Agents
Recall: 62.50% 58.93% 26.92% 45.31% 37.50% 58.93%

Fig. 18. Recall for Pruned Progol Rules - ResearchIndex Dataset.
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For example, Syskill & Webert [17] uses machine learning to acquire a model able to
predict which links on a Web page a user will find useful. It does this by analysing a
set of Web pages manually rated by a user, which are then processed using structural
IR techniques. Syskill & Webert uses a Naı̈ve Bayes classifier, but the authors also
report investigations using nearest neighbour algorithms, ID3, perceptrons and multi-
layer neural networks. Webwatcher [1, 12], like Syskill & Webert, is a browsing aid
which attempts to annotate a Web page with information on what links a user might
find useful. The authors explored a variety of learning algorithms, such as Winnow [9]
and Wordstat. Underlying the system was an instance representation which did attempt
to exploit more of the structure of the HTML documents, as link text, headers, etc.
were treated differently. Letizia [8] is a browser helper, displayed in a separate window
next to the user’s browser. It pre-fetches all outgoing links from the current page and
will do a breadth first search to advise the user on which links to visit next. Letizia
uses TF/IDF to extract content from pages, and uses the weighted terms to identify
documents matching the user’s interest.

6 Conclusions

Our results have demonstrated that today’s available Semantic Web markup cannot be
expected to outperform conventional machine learning applied to plain text, with re-
gards to accuracy of the learned model. However, it must be noted that applying the
same algorithm to the full text of an article of 6000 words, and to 10 lines of RDF code,
while still getting equally good predictive accuracy does constitute an increase in per-
formance and scalability. In the Web context this is especially important as algorithms
will be expected to scale to millions of pages. Nevertheless, we remain somewhat un-
satisfied with our current results for a number of reasons. Although we attempted to find
real Semantic meta-data, we admit that we are not completely happy with our datasets.
The ITTalks dataset is too small to be able to draw any firm conclusion from any results,
and the ResearchIndex dataset has generated meta-data from a source which was never
meant to provide real meaning. Also, when the Semantic Web becomes reality, many
supporting technologies should be available, most significantly ontological support and
the availability of inference engines, which should allow for easy generalisations of the
kind: A*, Simulated Annealing and Depth-first are all types of Search algorithms which
could be used to facilitate classification tasks such as the ones we have attempted in this
paper, but which are nearly impossible to discover without any background information.

6.1 Future Work

We plan to continue exploring issues concerned with Progol and Knowledge Intensive
Learning on the Semantic Web, primarily attempting to utilise background information
to help Progol generalise better over classes. We plan to explore generation of such
background information from ontologies referenced in the meta-data, as well as through
the use of general background information such as as synonyms or word similarity.9.

9 This data could for example be taken from WordNet (http://www.cogsci.princeton.edu/  wn/)

16



We are very interested in trying to apply the resulting Prolog clauses outside the
original experiment. As the results are first order logic it should be possible to map
them back to a representation in RDF or a similar logic based format, thus exporting
the model that was learned.

Due to the current shortcomings of Semantic Web data we plan to do further exper-
iments with our current datasets. Primarily we intend to re-classify the ResearchIndex
papers based on personal interest, thus moving further towards the personalisation and
learning user models scenarios used as motivation for this work. We would also like to
run Progol with the full ResearchIndex dataset, not just a small subset of the instances,
as well as attempting to find a good way of mapping DAML+OIL to Prolog, so that we
may run Progol experiments with the ITTalks dataset.
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