AUCS/TR9803

Reusable Components for
Knowledge Base and
Database Integration

A D Preece, A J Borrowman and T J Francis

Department of Computing Science
King’s College, University of Aberdeen
Aberdeen, Scotland, AB2} 3UE

Email: apreece@csd.abdn.ac.uk

May 1998

Abstract

Organisations increasingly need to integrate their database and knowledge-based
systems into an enterprise-wide information system. This need applies to both new
and legacy database and knowledge-based systems. This paper argues that modern
middleware technology, notably Java and CORBA, provides an effective integration
medium, particularly when combined with software agent technology. Defining the
components of an enterprise information system as software agents provides a degree of
uniformity which facilitates integration; Java and CORBA middleware provide a solid
platform on which to implement the agent-based architecture. The paper is illustrated
with an example of a medical information system prototype, featuring the integration
of a number of SQL databases and a CLIPS knowledge-based system, integrated by
lightweight and reusable Java/CORBA components.

1 Middleware for Information Integration

There is currently considerable interest in using middleware technology to integrate
sources of data and knowledge. Some of these sources are legacy systems (pre-existing
databases and expert systems), while others are custom-built services specifically de-
signed to operate as components within distributed information architectures. Some of
the common scenarios served by such architectures are:

e extracting data from databases and providing it as the input to knowledge-based
systems, which in turn derive new information;

e extracting data from databases and knowledge from knowledge bases, and com-
bining both to compose a new information source;

e extracting and transforming data and knowledge into constraint programs, the
solution of which yields new information.

Some example instantiations of these scenarios in actual application domains are:

e distributed engineering design, where data on components is combined with know-
ledge of how designs are composed, and constraints given by the customer’s re-
quirements (for example, configuring a modular computer system);

e medical informatics systems, where patient data is fed into expert systems for
therapy recommendation or critiquing (for example, recommending appropriate
drugs based on the patient’s needs and current drug usage);

e University admissions systems, where appropriate programmes of study can be
offered, based on the student’s needs and consistent with data on their academic
history (for example, knowledge of prerequisites can be checked against the stu-
dent’s database entry from their previous institution).

The “technology push” behind these kinds of integrated application originates in
projects such as the Knowledge Sharing Effort (KSE) [5] and the Stanford Mediators
work [9] of the early 1990s. In particular, the KSE work has popularised the notion
of viewing information sources as software agents, which interoperate using an agent
communication protocol such as KQML [1]. KQML supports both the transmission
of information (data and knowledge statements) and the co-ordination and control as-
pects of a distributed information system. The Mediators work has promoted the idea
of a three-layer information systems architecture, in which “top-layer” user interface
components access the “bottom-layer” information sources through a “middle-layer” of
mediator components. These mediators are considered to “add value” to the informa-
tion, for example, by “fusing”, filtering, or sorting the source data and knowledge [2].

Additional impetus has been provided by the widespread adoption of internet tech-
nology, which has made the implementation of distributed information systems much
more straightforward by providing a standard network platform (the TCP/IP protocol
stack). More recently, higher-level programming paradigms have emerged to support the
development of platform-independent, interoperable software components on TCP /IP
internetworks. Termed middleware, technologies such as Java and CORBA offer an
effective means of “glueing” heterogeneous applications together.

User Agent software
layer component

Other software

component
Middle

layer ul User Interface
UA User Agent
MA Middle Agent
RA Resource Agent

Resource R Resource
layer

<——> Example comms link

Figure 1: Three-layer agent architecture.

The above technologies are still relatively new, and there is relatively little experi-
ence in combining them to meet the requirements of enterprise information integration
systems. This paper presents an experience report on efforts to develop reusable com-
ponents for integrating database and knowledge-based systems, taking a KSE-inspired
agent-based approach, implemented using Java and CORBA middleware. An example
application is featured, which seeks to integrate a number of “legacy” SQL databases
with a “legacy” rule-based expert system developed in CLIPS. Section 2 defines the lo-
gical and physical architectures employed; Section 3 describes the agent communication
protocol used; Section 4 presents an example application, examining each kind of agent
used, and noting the reusable components of each; Section 5 briefly summarises some
support tools under development; Section 6 concludes.

2 Logical and Physical Architecture

The architecture employed in this work is a synthesis of ideas from the KSE and Me-
diators work: conceptually, the architecture is three-layered [9], but any agent at any
level is free to communicate with any other agent at any level [1]. The logical architec-
ture is shown in Figure 1. Note that the communication links shown in the figure are
only examples of possible interactions between agents: links are formed dynamically at
run-time between acquainted agents which need to exchange messages. Messages are
transmitted using an agent communication protocol.

The function of each layer of agents is as follows:

User Agents These are agents that interact directly with human users; typically they
offer graphical user interfaces; sometimes they are embedded in Web pages in the
form of Java applets. Conceivably, however, they could offer some other kind of
external interface, such as speech.

Resource Agents These are resources — databases or knowledge-based systems —
which have been “agentified” by providing them with an agent front-end. They
may be legacy systems, or purpose-built for integration.

Middleware Agents These are the agents that actually provide the database and
knowledge base integration services; typically, each performs some useful task, on

< Network >
@ BA Broker Agent

Figure 2: Abstract physical agent architecture.

request from some other agent or on its own “initiative”, and calling upon the
services of other agents. Some of these will be mediators as described in [9].

In a typical usage scenario, a user invokes a request via the user interface of a
User Agent. This request is expressed in the agent communication protocol, and is
relayed over the underlying network to either a Middle Agent or a Resource Agent
(depending upon the type of request). A Middle Agent will typically handle a request
by decomposing it into sub-requests which it will relay to other appropriate agents using
the agent communication protocol. A Resource Agent will relay a received request to
the resource in the local query language of the resource (for example, an SQL query
to an SQL database). The Resource Agent then relays the response from the resource
back to the originator of the request, again using the agent communication protocol.

Since agent communication is peer-to-peer, the logical layering vanishes in the ab-
stract view of the implementation architecture shown in Figure 2. The three types of
agent simply communicate over the underlying network. An additional feature of this
architecture becomes visible here: in order for agents to direct their requests to appro-
priate peers, they must know what services are provided by each agent. The Broker
Agent performs this function: it acts as a “yellow pages” directory of available agent
services, performing a similar role to the facilitators of the KSE work [1] and the Broker
Agent of the InfoSleuth architecture [7].

The architecture is implemented using Java and CORBA middleware as shown in
Figure 3. All of the agent components share a common communication facility, im-
plemented as a Java class, Messenger, which handles conversational operations in the
agent communication protocol, using the Java Remote Method Invocation (RMI) mech-
anism to handle the fundamental messaging functions. Java was chosen because it is
platform-independent, and RMI was chosen because it offers a high level of abstraction
for distributed programming (the level of distributed object-oriented programming).
User Agents benefit from the use of Java, in that their user interfaces may be imple-
mented as applets, runnable from a web browser (the entire User Agent, including its
Messenger, may reside in an applet, as long as browser security allows RMI calls from
the applet to other agents on the network).

Middle Agents are also implemented in Java for maximum portability. Using Java
for Resource Agents provides convenient SQL database access via Java Database Con-
nectivity (JDBC). The problem of integrating non-Java components within this archi-
tecture is solved using CORBA: Figure 3 shows this method used to incorporate a
CLIPS knowledge-based system. CLIPS is implemented in C, and was “wrapped” as a

CLIPS
KBS

CORBA IIOP

SQL
DB

©
D@

Java RMI >
RMI Registry Msgr Messenger class

JDBC JDBC interface
Stub CORBA stub
Skel CORBA skeleton

Figure 3: Concrete physical agent architecture.

CORBA object by the provision of a server-side CORBA skeleton object implemented
in C4++. A corresponding client-side CORBA stub object implemented in Java allows
the Resource Agent to call upon the services of the CLIPS resource. The CORBA
linkage between Resource Agent and back-end CLIPS resource runs over the Internet
Inter-ORB Protocol (IIOP), and does not use the agent communication protocol.!

Brokerage is provided by the KQML Registry service, which allows a Java object to
register itself along with a description of the service it provides.

3 Agent Communication Protocol

The previous section described the agent architecture, and showed how Java RMI is used
to carry messages between agents. The actual messages are in the form of a subset of
the KQML protocol developed by the KSE project [1]. (Part of the intention of the work
was to examine the suitability of the KQML specification for this kind of task.) Each
KQML message has a performative that defines the type of “communication action”
that the message is. A KQML message consists of the performative name followed by

an unordered list of parameter-value fields. An example KQML message is:?
(ask-one
:sender Gen-Agent
:receiver Gen-DB
:reply-with Q42
:language Prolog
:ontology Geneology
:content "mother (’Elizabeth’,X)")

LA design decision was taken to use RMI exclusively for inter-agent communications, to allow full
exploitation of the close integration of RMI with Java (for example, the passing of arbitrary Java objects
across the network by copy, which supports potential mobility of agents).

2This message is shown in the standard KQML LISP syntax, in which parameter names begin with
a colon.

Agent Requirement ‘ KQML Performatives
Knowledge and data Interchange

Ask queries ask-if, ask-one, ask-all

Tell data or knowledge to a peer; reply to | tell, deny

queries from a peer

Advertise capabilities to a peer advertise

Invoke “side effect” operations on a peer achieve

Susbcribe to services of a peer subscribe

Networking

Register their existence with a peer register

Locate a peer who can provide some service | recommend-one, recommend-all

Broadcast a message to all peers broadcast

Forward a message to a peer forward
Error-handling

Indicate that a message is invalid error

Indicate that no response can be provided sorry

Table 1: KQML performatives to meet agent communication needs.

Here, ask-one is the performative; the communication action of this message is that the
sender, Gen-Agent, is asking the receiver, Gen-DB, for a response to the query contained
in the message :content. The :language field indicates that the : content is expressed
in Prolog, and the :ontology field informs the receiver how to interpret the terms in
the :content (for example, the predicate mother). The :reply-with field carries a
query identifier (Q42) that the recipient should use when issuing a reply. A reply to this
message will include the field “:in-reply-to Q42”.

Table 1 lists the communication requirements of agents, and cross-references these
with KQML peformatives that meet the needs. The performatives are as defined in the
1996 KQML specification [3].

The KQML specification defines valid conversations (sequences of messages). A
common conversation instance involves a “customer” agent using the recommend-one
performative to ask a Broker Agent to put the customer in touch with a “supplier”
agent. The broker obliges, and then “drops out” of the transaction. The full sequence
of messages in this conversation is summarised below, and illustrated in Figure 4:3

(i) Agent A advertises to broker B that it can handle ask-one queries about know-
ledge K.

(ii) Originator O requests B to recommend-one agent that can handle ask-ones about
K.

(iii) B forwards O the advertisement that A can handle ask-ones about K.
(iv) O sends A an ask-one query Q about K.

(v) A tells O some information | in response to the ask-one Q.

3Figure 4 is one valid conversational sequence composed of advertise, recommend-one, forward,
ask-one, and tell.

4. ask-one Q

oL 5_tell | 1A

3. forward {
advertise {
ask-one K}}

2. recommend-one {
ask-one K}

1. advertise {
ask-one K}

Figure 4: Example KQML conversation using recommend-one.

User
layer
Middle
layer
TA
Resource PA
layer
Patient DAL
DB DA2
KA

Task Agent
Patient Agent
Drug Agent 1
Drug Agent 2
KBS Agent

Figure 5: Example Medical Information System architecture.

4 Example Medical Information System Application

The Medical Information System shown in Figure 5 illustrates the application of the
architecture described in the previous sections. This system is designed to recommend

drug therapies for patients, based on:

e the patient’s therapy requirements;

the patient’s existing drug regimes;

information on available drugs;

knowledge of undesirable drug interactions.
The application makes use of three sources of information:

Patient DB SQL database containing patient records.

Drug DB SQL database containing information on drugs and their uses.

Drug KBS CLIPS knowledge-based system providing advice on undesirable drug in-

teractions.

Each of these sources is “agentified” with appropriate Resource Agents, described below.

Patient Agent

The Patient Agent provides access to the patient database. Upon start-up, it sends an
advertise message to the Broker Agent, indicating that it can supply instances in the
form of the following relation:

Patient(Name: PatientName, CurrentDrugs: List of Drug)

This relation is carried in the content of the advertisement message, and stored as a
string in the RMI Registry, serving as the Broker Agent. It is worth noting that the
terms used in the relation are defined in an ontology for the application domain. In
the current architecture, this ontology is not stored within the system, and cannot be
queried or manipulated. Other related work is investigating the provision of on-line
ontology information [2].

It should also be noted that the patient database schema was developed independ-
ently of its use in the integrated application shown in Figure 5; the Patient Agent can be
considered to be a wrapper for the SQL database. In this case, the wrapper essentially
serves up a view on the database. In more complex cases, the wrapper will provide
more than just a view: it can perform some pre-processing on the data, to transform it
in some non-trivial way. The internal architecture of the Patient Agent is as shown for
the database-accessing Resource Agent in Figure 3: a JDBC client component is used
to access the SQL Patient Database.

Drug Agents 1 and 2

The Drug Database is provided with two independent wrappers, each of which serve up
database information in different ways. The relation advertised by Drug Agent 1 is of
the following form:

TherapyDrug(Therapy: TherapyName, Drugs: List of Drug)

This agent provides information on what drugs are suitable for what kinds of therapy.
The relation advertised by Drug Agent 2 is:

Drug(Name: DrugName, Group: DrugGroup, SubGroup: DrugSubGroup)

This agent provides information on individual drugs: drugs are organised into various
groupings.

Wrapping the Drug Database in different ways for different uses supports reuse of
the information contained therein. Representation of the underlying data may change
(for example, in time, the single Drug Database may be replaced with more than one
database, or some combination of database and knowledge-base) without affecting the
agent-level services.

The internal structure of the two Drug Agents, and the Patient Agent, is relatively
simple and highly-reusable. They can be considered “lightweight wrappers”, readily
deployed to provide new services in time. As for the Patient Agent, the Drug Agents
employ JDBC client components to access the SQL Drug Database.

KBS Agent

In contrast to the other three Resource Agents, the KBS Agent provides the services
of a CLIPS knowledge-based system rather than SQL databases. The knowledge-based
system is a standalone rules-based expert system that provides advice on acceptable
and undesirable interactions of drug therapies. The relation advertised by the KBS
Agent is:

SafeDrugs (CurrentDrugs: List of Drug,
ProposedDrugs: List of Drug,
SafeDrugs: List of SafeDrug)

SafeDrugs is the subset of ProposedDrugs that won’t interact undesirably with the
drugs listed in CurrentDrugs. SafeDrug is the following relation, between a drug, a
drug with which that drug interacts, and the type of interaction:

SafeDrug(Name: DrugName,
InteractsWith: DrugName,
Interaction: InteractionName)

The internal architecture of the KBS Agent is as shown for the KBS-accessing Resource
Agent in Figure 3: a CORBA stub object is used to access the CORBA skeleton object
which “wraps” the CLIPS runtime system (into which is loaded the drug interactions
rules base). It is perhaps worth noting that the CORBA stub and skeleton are highly
reusable, and in fact were reused from an earlier project which provided network access
to a CLIPS rules-based system.

Task Agent

The sole Middle Agent in the example application is the Task Agent responsible for
running the distributed information integration task.* Like the Resource Agents, the
Task Agent advertises its service in the form of a relation to the Broker Agent (RMI
Registry):

ProposeDrugs(Name: PatientName,
Therapy: TherapyName,
ProposedDrugs: List of SafeDrug)

Given a named patient and desired therapy, the Task Agent finds a list of suitable drugs
for that theraphy, given the patient’s drug regime. Upon receipt of a request matching
this relation (presumably from the User Agent), the Task Agent performs the following
sequence of sub-tasks:

(i) issue a request to Drug Agent 1 to find a list of suitable drugs for the therapy
identified in the incoming request;

(ii) issue a request to the Patient Agent to get the current drug regimes for the patient
identified in the incoming request;

(iii) for each drug in the reply from the Patient Agent, request from Drug Agent 2 its
grouping information (needed by the KBS Agent);

“The term “task agent” in this context was adopted from the InfoSleuth project [7].

10

(iv) send the combination of proposed suitable drugs and current drug regimes to
the KBS Agent, requesting the list of those suitable drugs that will not interact
undesirably with the current drugs;

(v) respond to the sender of the original request (typically the User Agent), passing
back the list of acceptable drugs.

Note that the Task Agent can perform sub-tasks 1 and 2 concurrently. Note also that,
before contacting each new agent, the Task Agent will issue a recommend-one request to
the Broker Agent to find an agent that can provide the service it needs at each step. For
example, when it needs patient data in step 2, it will issue a recommend-one request to
the Broker Agent, specifying the information relation it needs, and receiving in response
a message identifying the Patient Agent (as in the generic conversion of Figure 4). Once
it has identified a service-providing agent for each new information relation, it can cache
that information for future use.

User Agent

Rather than provide a fixed interface to allow the user to invoke the service provided
by the Task Agent, the User Agent instead queries the Broker Agent to determine what
services are available on the network as a whole. Using the information relations thus
obtained, the User Agent dynamically creates Java windowing toolkit panels to allow
the user to send queries to any of the available agents on demand.® In this way, the user
is not restricted to directing queries only to the Task Agent, but can obtain information
directly from the Patient Agent, either Drug Agent, or the KBS Agent. This “generic”
User Agent is therefore a highly reusable component.

An example panel generated from the relation obtained from the Task Agent is
shown in Figure 6.

Reusable Components

To summarise the reusable components of the example application:

e an agent communication Messenger Java class, using a subset of KQML, running
over Java RMI;

lightweight wrappers for “agentifying” SQL databases, using JDBC;
a CORBA object wrapper for CLIPS knowledge-based systems;

e a generic User Agent, that builds (simple-but-usable) graphical user interface dis-
plays on demand.

It is worth noting that the Messenger class implements the basic sequencing rules
that ensure valid KQML onversations. The rules needed for the KQML subset detailed
in Section 3 are:

(i) ask-one and ask-all messages must be preceded by corresponding advertise
messages (an agent will not allow unsolicited requests);

®This appears similar to the way Java applets are employed to provide customised user interfaces by
the InfoSleuth project [7].

11

User Agent Jean é é Propose drug query

Patient_rname: rgash
Carrent on-line queries - - I Tad Alle

« Drug Interactions Wtom_or_&‘aze—PIm: Ik}pertmsim’f
Drwy indformation : 4

Drug_catalogue
Propose_druy
Carrent drogs

b
W
.S
W

Update guery List | New guezy|

Propose drug results

Patient name | Sympton_or_Care-Plan | Drug name | Interacts with Imteraction

Tad Allergash Hypertension Aydralazine propofol enhanced effect

Tad Allergash Hypertension nitroprusside no_current_drugs none

Dismiss

Figure 6: Example User Agent screenshot, for the Task Agent service.

(ii) tell messages must be preceded by corresponding ask-one or ask-all messages
(an agent will not accept unsolicited information);

(iii) advertise and recommend-one/recommend-all messages can only be handled by
Broker Agents.

The Resource Agents and Task Agents reuse common components which allow them to
handle multiple requests, employing Java’s multithreading capabilities. Multithreading
is also employed when an agent issues multiple requests: a new thread is spawned for
each new request, indexed by a hashtable using the KQML reply-with tag as key; this
makes it easy for the agent to reconcile incoming messages with KQML in-reply-to
fields with the original requests.

5 Support Tools

Construction of integrated knowledge-based and database systems using the resuable
components described in the previous section is eased by a number of support tools.

Monitoring and Visualisation

Tools are available for monitoring and visualising the interaction of agents, for debugging
and demonstration purposes. A Monitor Agent receives echoes of each message sent
between agents, and displays the interactions graphically. The Monitor makes use of
a generic message Java class, of which KQML messages are a subclass. A sample
screenshot from the Monitor Agent is shown in Figure 7. Here, an agent called shopper

12

1 1

=| Applet Viewer: visual. monitor.MonitorApplet i a ;DJ

Applet
@ urchin
ShUDDEf."“-—-—-—— KOML Message: From "shopper” to “vmh" 'yuurprice
Perfarmative: ask-all
Content: ({name spice) @

hrn’en
Step:100f 11 Mode: Step by step —

[
<Prev| Pauseil| Next>| Options.. —

T AL13:08:16.222 message received:

FGML Message: From '#1:39.133.200.90:161 14/shopper 10 "#139.133.200.40:161 14Amh"
Performative: ask-all

Content; {name spice)

Applet started.

Figure 7: Example Monitor Agent screenshot.

is shown sending a KQML ask-all message to an agent called vmh. More information on
the agents and the message can be obtained by clicking on their visual representations.
Exchanges of messages are stored and can be replayed and stepped-through.

Verification and Validation

Following earlier work in the verification and validation of standalone knowledge-based
systems [6], tools are under development to assist in the design and validation of distrib-
uted knowledge base and database systems. DISCOVER and COVERAGE are tools that
support the construction of multiple-agent systems. DISCOVER verifies that “agentified”
knowledge bases and databases conform to a shared ontology; this is a pre-requisite for
sharing knowledge in an integrated system [8]. COVERAGE verifies the well-formedness
of “teams” of agents: it establishes the closure of task interdependencies, by checking
that agents are able to meet their advertised commitments [4].

6 Conclusion

This paper has presented an experience report of using a combination of agent-based and
middleware technology to construct integrated database and knowledge-based systems.
While these technologies promise a great deal, there is relatively little concrete experi-
ence in their use to date. The starting point for the architecture was a combination of
ideas from Knowledge Sharing and Mediators work [5, 9]. The agent-based conceptual
architecure was implemented on top of a layer of Java and CORBA middleware, which

13

was found to be an effective combination.

Looking at related work, the InfoSleuth project [7] in noteworthy in that it also makes
extensive use of Java to provide its infrastructure, including the dynamic creation of
customised applets for User Agent interfaces, and use of both KQML and RMI within
the architecture. However, InfoSleuth does not appear to use RMI to deliver KQML
messages; nor do its User Agents appear to use KQML to contact Task Agents; in
effect, KQML and RMI are used as independent peer protocols for different parts of the
InfoSleuth infrastructure.5

Experience gained from the work described in this paper shows that the combination
of KQML as the message “content” protocol, with RMI as the “carrier” protocol, has
proven convenient and effective. Having all agents communicate uniformly with KQML
provides homogeneity at the inter-agent level, and facilitates integration. Another ad-
vantage of running KQML over RMI is that an arbitrary Java object can be carried in
the content (“payload”) field of the KQML message, supporting potential moblity of
agent components.

Another finding from this work has been that the use of lightweight resource wrap-
pers, each offering fine-grained information relations, is an effective and flexible way
to make legacy data and knowledge available to a network. In the past, the dominant
approach has been to hide each back-end data sources behind a single “coarse-grained”
server with a large set of interface operations. In contrast, the approach taken here
was to provide access to the back-end resource via a number of “fine-grained” Resource
Agents, each offering a relatively simple interface. A good design motto seems to be:
“wrappers are cheap”.

Future work involves supporting the eztraction of knowledge from legecy knowledge-
bases, and enriching the kinds of knowledge integration and transformation performed
by Middle Agents. Improved Broker Agent services are also planned. Much of this
work will be done in the context of the KRAFT project”, which aims to create a generic
architecture for sharing knowledge in the form of constraints. Constraint knowledge
will be extracted on demand from databases and knowledge-bases, transformed to a
shared ontology, and delivered to an appropriate constraint solver. Middle Agents will
locate and transform the constraints, and Broker Agents will provide rich directory and
brokerage services. KRAFT is specifically intended to support distributed engineering
design applications, and a prototype application is currently under construction. An
overview of the project has been published in [2].

SInfoSleuth is also different from the work described here in that it focusses upon database integration,
rather than database and knowledge-based system integration.

"KRAFT = “Knowledge Reuse And Fusion/Transformation”; the project is funded jointly by BT
and the UK EPSRC.

14

References

1]

2]

3]

[4]

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Communic-
ation Language. In Proceedings of Third International Conference on Informatio n
and Knowledge Management (CIKM’94). ACM Press, 1994.

P.M.D. Gray, A. Preece, N.J. Fiddian, W.A. Gray, T.J.M. Bench-Capon, M.J.R.
Shave, N. Azarmi, and M. Wiegand. KRAFT: Knowledge fusion from distributed
databases and know ledge bases. In R.R. Wagner, editor, Eighth International Work-
shop on Database and Expert System Applications (DEXA-97), pages 682-691. IEEE
Press, 1997.

Yannis Labrou. Semantics for an Agent Communication Language. PhD Thesis,
Baltimore, Maryland, 1996.

Neil Lamb and Alun Preece. Verification of multi-agent knowledge-based systems. In
ECAI’96 Workshop on Validation, Verification and Refinement of Knowledge-Based
Systems, pages 114-119, Budapest, Hungary, 1996. ECCAI/NJSZT.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senatir, and W.R. Swartout.
Enabling Technology for Knowledge Sharing. AI Magazine, 12(3):36-56, Fall 1991.

Alun D. Preece, Rajjan Shinghal, and Aida Batarekh. Principles and practice in
verifying rule-based systems. Knowledge Engineering Review, 7(2):115-141, 1992.

R. Bayardo Jr. et al InfoSleuth: Agent-Based Semantic Integ-
ration of Information in Open and Dynamic Environments. URL
http://www.mcc.com/projects/infosleuth.

A. Waterson and A. Preece. Knowledge reuse and knowledge validation. In Veri-
fication and Validation of Knowledge-Based Systems: Papers from the 1997 AAAI
Workshop (Technical Report WS-97-01), Menlo Park, CA, 1997. AAAT Press.

Gio Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, pages 38-49, March 1992.

15

