
KRAFT: Knowledge Fusion from Distributed Databases and Knowledge Bases�

P M D Grayy, A Preecey, N J Fiddianz, W A Grayz, T J M Bench-Capon�, M J R Shave�,
N Azarmi�, M Wiegand�, M Ashwellz, M Beer�, Z Cui�, B Diaz�,

S M Emburyy, K Huiy, A C Jonesz, D M Jones�, G J L Kempy, E W Lawsonz,

K Lunn�, P Martiz, J Shaoz, P R S Visser�

y Computing Science Department, University of Aberdeen
z Computer Science Department, University of Wales, Cardiff
� Computer Science Department, University of Liverpool

� BT Laboratories, Martlesham Heath, Ipswich

Abstract

The KRAFT project aims to investigate how a distributed
architecture can support the transformation and reuse of a
particular class of knowledge, namely constraints, and to
fuse this knowledge so as to gain added value, by using it
for constraint solving or data retrieval.

1. Introduction

Currently most people are accustomed to using the In-
ternet and World-Wide-Web for browsing, mainly seeking
technical and simple pictorial information, followed by the
extraction of data for processing on their local computer. By
this means, information can be gathered from many sources,
but there is no systematic way to gain added value from the
combination of information. We believe that the real chal-
lenge is to recognise and combine knowledge, in order to
enhance the available information base, but without detailed
human intervention. Thus the members of the KRAFT con-
sortium1 are working together to design and build a system
having this capability. It will have intelligent mediators [22]
that act as knowledge brokers and, more significantly, trans-
form knowledge to make it useable by powerful problem-
solvers at various sites on the network. The issue of know-
ledge transformation is crucial to the KRAFT project, since
it makes possible a much greater degree of knowledge re-
use [9, 10].

�The KRAFT Project is funded by grants from EPSRC
(GR/K82765, GR/K82772, GR/K82789) and BT. For fur-
ther information about KRAFT and related work, see:
http://www.csd.abdn.ac.uk/research/kraft.html

1KRAFT� “Knowledge Reuse And Fusion/Transformation”

Much of the research into this area — which we will
call Distributed Information Systems (DIS) — has concen-
trated on the distributed access and manipulation of data.
While this is an important issue, with many problems re-
maining to be solved, it should be recognised that DIS must
also manipulate and communicate knowledge. The manip-
ulation of structural knowledge about data is now well un-
derstood and is the basis of most DBMS functionality, but
knowledge also exists in other forms: integrity constraints,
derivation rules, procedural knowledge, intensional query
answers, production rules, classification hierarchies, and so
on. All these types of knowledge can be reused within the
wider context of DIS, provided that they can be liberated
from the heterogeneous databases and knowledge bases in
which they reside, and that appropriate tools for their ma-
nipulation and integration can be provided. This is the aim
of the KRAFT project: to investigate how existing pro-
posals for DIS architectures can support the transformation
and reuse of a particular class of knowledge, namely con-
straints, and to propose further tools and architectural com-
ponents for their manipulation and solution.

Currently there is great interest in DIS using mediators
and facilitators following Wiederhold’s original paper [22].
In particular, the DARPA-funded Knowledge Sharing Effort
(KSE) [17] aims to facilitate sharing and reuse of know-
ledge bases. We wish to build on this work, but to ex-
plore particularly the ideas of knowledge reuse and func-
tional transformation. Whereas the KSE has explored very
general kinds of common-sense knowledge and natural lan-
guage applications, we wish to look more specifically at
those kinds of knowledge that can be represented declar-
atively as constraints, and transformed in various ways for
use in design, scheduling, knowledge integration, and many
other applications.



Thus we wish to extract constraint knowledge together
with stored facts from various sites, and to combine it with
constraints stated as a query or a design goal, so as to ar-
rive at a more soluble problem. In other words, where vari-
ous knowledge sources acting independently cannot solve a
problem, we must enable them to combine information to
solve it! Another point is that we need to learn how to use
constraints, which are potentially much richer than tables of
data as used currently in distributed databases. Although it
is difficult to combine arbitrary pieces of procedural code
taken from different databases, possibly in different lan-
guages, we hope to be more successful with constraints, be-
cause of their declarative form, whilst still retaining much
of the utility and expressiveness of code.

1.1. Motivating Example

For an example of the use of a KRAFT system, con-
sider the problem of finding a number of parts that fit to-
gether to make something, or that work together in some
way. Suppliers of these parts make catalogues, in the form
of database tables, available over the Internet. However,
the tables may have different semantics and hidden assump-
tions. These assumptions are often contained in an aster-
isked footnote in the catalogue, for example: this part must
be mounted in a housing of adequate size. Thus it is not
enough just to make a distributed database query to find a
list of possible parts; we must also ensure that these parts
satisfy various constraints.

It is the knowledge in these constraints which we intend
to reuse by transforming it to work in the context of a shared
ontology (see Section 5) that is being used to integrate the
data. Thus we might have a constraint stored as metadata in
the database for the AbComponents catalogue:

constrain each w in widget
to have width(housing(w)) >= width(w) + 5

and width(housing(w)) =< width(w) + 15;

This constraint is expressed in the KRAFT Constraint Inter-
change Format (CIF), the first version of which is based on
the CoLan language used to express semantics in the object
database P/FDM [5]. However, within the AbComponents
database, the constraint might actually have been represen-
ted in some other form (as a trigger on a frame structure,
for example) — it must be translated into a CIF constraint
before it can be used by the KRAFT network. To make
use of widgets from the AbComponents catalogue, we must
translate this constraint into a form consistent with a shared
ontology. This requires an understanding of the different
terminologies used in the AbComponents database and the
shared ontology:

constrain each w in wotsit such that

source(w) = "AbComponents"
to have distance(left_neighbour(w),

right_neighbour(w)) >= width(w) + 2
and distance(left_neighbour(w),

right_neighbour(w)) =< width(w) + 6;

There are various ways to use the transformed constraint; in
a design, for example, it could be transformed and fused
with another constraint on a particular usage of the wid-
gets/wotsits as parts of containers:

constrain each c in container so that
each p in parts(c) such that

p is a wotsit
and source(p) = "AbComponents"

has internal_diameter(c) >= width(p) + 2 and
internal_diameter(c) =< width(p) + 6;

Alternatively we could represent the fused constraints as a
collection of clauses in normal form. We can now use this
fused information in one of three ways:

� To check the constraints against sets of objects re-
trieved by a distributed database query across the net-
work, so as to reject any not satisfying the conditions.

� To use some combination of selection information in
the constraint to refine the distributed database query,
and thus do it more efficiently. This could also use
principles of semantic query optimisation [14].

� To use constraint logic solving techniques to see if a
complex set of interlocking constraints, whose form is
not known until run time, does have a solution [5, 19].

1.2. Transforming Constraints

We are in the early stages of manipulating and sending
quantified database constraints as first class objects. One
thing that is becoming clear is the subtle difference between
the transformations used in supporting database views and
those we have used in moving constraints from the con-
text of one data model to another. In the case of views we
are converting data items so that they match the specific-
ation expected by an application program. In KRAFT we
are transforming quantified constraints (considered as a de-
clarative form of program) so that they match the data in a
common data model. Converting programs is always harder
than converting data, but the declarative form of constraints
makes it more tractable. Nevertheless it is a hard problem,
needing an understanding of interoperability between dif-
fering ontologies.

The remainder of this paper is organised as follows: Sec-
tion 2 describes the generic architecture of a KRAFT sys-
tem, Sections 3 to 5 describe each of the components of
the KRAFT architecture in more detail, and Section 6 con-
cludes the paper.



2. The KRAFT Architecture

In keeping with the objectives of the KRAFT project de-
scribed in the previous section, the KRAFT architecture is
designed to support knowledge fusion from distributed, het-
erogeneous databases and knowledge bases. Components
of the KRAFT architecture help applications and users to:

� locate data and knowledge relevant to their current
needs;

� combine and refine data and knowledge in order to
generate the information they require;

� identify and exploit the processing engines best able to
solve their problems.

The KRAFT architecture will help information providers
and system developers to:

� make their resources available to the widest population
of users;

� cope with changes in the information or service they
provide, while minimising the effects on client applic-
ations;

� keep account of users’ access to their resources (e.g.
for billing).

The basic philosophy of the KRAFT architecture is to define
a “sanitized” communications space — a KRAFT domain
— within which certain communication protocols and lan-
guages must be respected. Components which form part of
the KRAFT architecture must conform to these protocols
and languages, and must also provide sharable and asyn-
chronous access to the services they provide. We call these
components KRAFT facilities. Several important roles for
KRAFT facilities have been identified to allow non-KRAFT
components to be connected to KRAFT networks and to
help manage communication between KRAFT components.
Figure 1 shows a conceptual view of the architecture.

We will now describe the various roles that have been
identified so far. As a starting point, we have taken three
roles from other DIS research projects, namely wrapping,
facilitation and mediation, but as the project progresses we
expect to identify further useful roles, particularly in the
area of knowledge manipulation.

Figure 1 also shows two types of component which are
considered to be external to the KRAFT domain, but which
must interface with it in some manner: user agents and re-
sources. Users access the services of the KRAFT domain
via user agents. A user agent may be a fully-fledged ap-
plication such as a spreadsheet, or a simpler front-end such

as a Web browser. Such user agents play the role of “con-
sumers” of KRAFT services. Resources include both data-
bases and knowledge bases; they also include constraint
solvers and other kinds of processing engine. Such re-
sources play the role of “service providers” to the KRAFT
domain. They supply information (data or knowledge) in
the form of responses to database queries, and solutions to
constraint-satisfaction problems or KBS goals.

A user agent may be tightly coupled to a resource (as
shown in the top-right of Figure 1); an example would be a
KBS that is used directly by the local user to solve prob-
lems, while also being available on the network as a re-
source (for solving remote problems or as a source of know-
ledge for extraction). Such couples play the dual role of
both consumer and service provider.

As we have said, user agents and resources are independ-
ent of the KRAFT architecture; they are interfaced to the
KRAFT domain via wrappers. Wrappers provide trans-
lation services between the internal data formats of user
agents and resources and the data format used within the
KRAFT domain. If a resource is not sharable, or is incap-
able of handling asynchronous communication, then it is the
responsibility of the wrapper to handle the necessary buf-
fering and scheduling of requests to that resource. In addi-
tion, wrappers must provide the high-level communication
mechanisms needed to link the user agents and resources to
the internal facilities of the KRAFT domain: the KRAFT
facilitators and mediators.

Facilitators provide internal routing services for mes-
sages within the KRAFT domain. They maintain direct-
ories of KRAFT facilities, their locations and what ser-
vices they provide, and also details of their availability, load
and reliability. Their principal function is to accept mes-
sages from other KRAFT facilities and route them appropri-
ately. In particular, facilitators provide content-based rout-
ing services, so that they are able to route messages which
are only partially addressed (or even wholly unaddressed)
based upon the content of the message, or the service re-
quired.

The final role that has been identified so far is that of me-
diation, which is the process of using domain knowledge to
transform data in order to increase its information content.
If this definition is rather general, this is because the term
mediation actually encompasses a range of techniques for
manipulating data sets in order to make them more useful.
Examples of more specific kinds of mediation are:

� integration of data from multiple, possibly heterogen-
eous sources;

� summarisation of data sets in terms of trends, averages
or exceptions;

� transformation of data from multiple sources to re-
solve mismatches of semantics, units of measurement



UA W

W

UA

R

W

R

W W

W
R R

UA

UA

R

W

F

M

User
Agent

Resource

Wrapper

Facilitator

Mediator

KRAFT facilities

Non-KRAFT components

F

F

M

M

M
KRAFT 
domain

Key

M

Figure 1. A conceptual view of the KRAFT architecture.

or granularity;

� filtering, sorting or clustering data according to relev-
ance or some user-defined function;

� consistency checking and refinement of knowledge
and data;

� maintenance of commonly-used sets of derived data.

Again, however, this is only a partial list, taken mainly from
the existing literature (e.g. [22]), and we expect to be able
to add further mediation roles specific to the manipulation
of knowledge as the KRAFT project proceeds.

Unlike facilitators, mediators perform processing opera-
tions on messages within the KRAFT domain. They may
combine messages, split messages, and transform the con-
tent of messages. The crucial point is that the operations
performed by a mediator implement a particular task. The
task may be highly specific to a particular application do-
main (such as a mediator for locating suppliers of wot-
sits that will fit into a particular container) but the medi-
ator will be more generally useful if it performs a domain-
independent task (such as locating suppliers of objects that
satisfy a set of given constraints). However, it is also im-
portant that mediators provide a reliable, high-quality ser-
vice, and therefore that they are small enough, and concep-
tually simple enough, to be easily maintainable.

One specific knowledge transformation role identified
for mediators is the translation of knowledge expressed
against one ontology (terminology) to the equivalent know-
ledge expressed against a different ontology. We call this
role ontological mediation.

The fact that Figure 1 does not define concrete links
between facilities within the KRAFT domain is signific-
ant. The communication relationship between all facility
types is, in fact, many-to-many. In principle, any KRAFT
facility can communicate with any other KRAFT facility.
All KRAFT facilities communicate using common proto-
cols and languages and, once one facility knows the network
address of another, it can communicate directly with that
facility. However, communication between wrappers will
typically be conducted via facilitators and mediators, be-
cause user agent wrappers will not, in general, know which
resources can provide the services they need at a particu-
lar time. It is also expected that mediators will make as
much use of the content-based routing facilities provided
by facilitators as is possible, as this will provide a degree of
insulation from change in the availability or capabilities of
network components.

3. Mediators in KRAFT

Mediation [21] is an architectural concept for large-scale
distributed information systems which addresses the fail-
ings of the client-server architecture in respect of resilience
to change, and reuse of code. It is now recognised that
change is an integral feature of large-scale computer sys-
tems, and is not merely a result of poor system specification
or implementation [23]. Computer systems must model the
real-world, and the real-world is subject to change. Busi-
ness strategies and management policies, governmental reg-
ulations, even the scientific or mathematical models under-
lying an application can all change over the lifetime of an



application in ways that cannot be predicted during specific-
ation and implementation. A mediated architecture, as pro-
posed by Wiederhold, improves upon more familiar models
by promoting a finer granularity of code reuse, and by min-
imising the scope of changes and buffering existing com-
ponents from their effects.

In Wiederhold’s vision, a distributed information system
consists of three layers (see Figure 2). In the top layer, we
have the application programs (representing the needs of the
various users of the DIS), while the lowest layer consists
of the basic information sources (the databases, knowledge
bases, simulation systems, forecasters, etc.) In between
these, we have a layer of mediators — sharable software
components which take data from the underlying sources
and convert it into a more useful (and more usable) form
for consumption by the application layer, or by other medi-
ators. In this architecture, each mediator may extract data
from one or more of the underlying information sources,
and each application may make use of the transformed data
provided by one or more mediators.

Wiederhold gives the following definition of a mediator:
“A mediator is a software module that exploits encoded
knowledge about certain sets or subsets of data to create
information for a higher layer of applications. It should be
small and simple, so that it can be maintained by one expert,
or at most, a small and coherent group of experts.” [22] The
crucial idea here is that a mediator adds value [24], in some
sense, to the data retrieved from lower-level components.
One of the commonest kinds of mediator is the “integrator
mediator”[6, 16], which supports distributed querying by
providing a coherent view of data from multiple heterogen-
eous sources. For example, a mediator might provide data
about the employees of some company by integrating in-
formation stored in the personnel database and in the payroll
record system. In this case, the knowledge encoded by
the mediator is knowledge about the semantics of the data
stored in each of these data sources. Other functions that a
mediator can provide are abstraction of data to a common
level of detail, conversion of units (e.g. imperial to metric)
to allow comparison of data sets, statistical analyses and ag-
gregation of data, and maintenance of commonly-used sets
of derived data. All these functions serve to increase the
“usefulness” of data—to make it easier for the user of that
data (whether an application program or another mediator)
to abstract from it the information that is needed.

It is clear that the mediator concept can facilitate soft-
ware reuse, since commonly used services can be provided
as autonomous, sharable mediator components that are ac-
cessed by as many applications as require that service.
Those applications which make use of the data provided dir-
ectly by the underlying information sources are completely
unaffected by the provision of the new service. The three-
layered architecture (which has obvious parallels with the

ANSI/SPARC three-layer architecture [4] for database sys-
tems) also buffers the higher-layers against changes occur-
ring in the lower layers. For example, if a change must be
made to a data source used by some mediator, then a new
version of that mediator can be provided which takes ac-
count of the change, while the old version of the mediator
is modified to hide it. Then applications can either change
to use the new version of the mediator, or can continue to
use the old one. Wiederhold suggests an economic model
for keeping the number of versions of mediators low, by in-
creasing the charges for older versions to discourage their
continued use [24]. Presumably other factors could also
come into play, such as increased processing time, or known
bugs which will not be fixed, to make older versions of me-
diators less attractive to users.

While we expect to be able to support all the mediation
roles so far identified within the KRAFT architecture, our
primary focus is on “knowledge level mediation”. In partic-
ular, we are aiming to provide a range of mediators which
are specialised in the manipulation of knowledge in the
form of constraints. Such manipulation will include:

� the extraction of relevant constraints from multiple un-
derlying sources (i.e. distributed meta-level querying);

� translation of constraints expressed according to one
ontology into constraints which can be understood by
components which commit to a different ontology (on-
tological mediation);

� transformation and fusion of constraints according to
the context of a particular problem;

� coordination of the available constraint solving re-
sources for the solution of complex constraint satisfac-
tion problems.

We can illustrate the use of these mediation roles by con-
sidering the design example given in Section 1.1. Given the
problem of deciding which catalogue to order a particular
component from, we might first use a constraint extraction
mediator to generate descriptions of the available compon-
ents as conjunctions of constraints. These would then need
to be translated into the domain ontology used by our design
database, using one or more ontological mediators. The res-
ulting collection of constraints must then be transformed
into a single disjunctive constraint representing the avail-
able options, and this must be fused into our existing set of
design constraints. Finally, we ask one or more constraint
solver mediators to coordinate the search for solutions to
our problem, in a way that makes the best possible use of
the available solving resources.

An important difference between Wiederhold’s three-
layer architecture and the KRAFT architecture is that, in



A1
Application

Layer A2 A3

M1
Middle
Layer M2 M4M3

D1
Application

Layer D2 D3

Figure 2. The Three Layer Architecture as envisaged by Wiederhold [22]

KRAFT, we do not distinguish so clearly between applica-
tions and information sources. This is because some soft-
ware components may play both roles, in that some sources
may initiate requests (e.g. to mediators) and some applic-
ations may be able to supply information for use by other
processes. For example, the user of some knowledge base
may require some mediated services in order to provide ad-
ditional knowledge for solving their problem, while that
same knowledge base may also contain knowledge that is
more generally useful, and that may be retrieved by other
components.

Another difference between the KRAFT architecture and
the three-layer model is the idea that mediation is only one
“role” for middleware components, and that “wrappers” and
“facilitators” also have distinct roles. Wiederhold has tried
to incorporate the facilitator concept into his middle layer
by classifying it as a special kind of mediator [25] (since, for
him, all middle layer components are mediators). We think
it is better to keep the extremely useful roles of mediation
and facilitation distinct. KRAFT is open to new classes of
middleware facility, so that we do not have to weaken the
concepts of mediation, facilitation and wrapping in order to
accommodate middle layer components that don’t quite fit
into these specific roles.

4. Facilitators, Wrappers and Communication
Language

In this section we will briefly describe facilitators, wrap-
pers and communication languages which are used to bring
heterogeneous resources together.

4.1. Facilitators

Facilitators are, like mediators, an important class of
facility within the KRAFT domain. Their task, as men-
tioned in Section 2, is to provide internal routing services
for messages within the KRAFT domain. More specifically,
KRAFT facilitators will provide the following two main
types of service:

Routing Services These services carry out message rout-
ing directly. That is, given a “request” from a user,
a KRAFT facilitator will locate a set of “service pro-
viders” for that request. Typical routing services in-
clude a yellow page service which locates service pro-
viders based on a specific service type named in a user
request, and a content-based routing service which loc-
ates service providers based on a user request without
the help of a named service.

Routing Support Services These services do not locate
“service providers” for a given user request. Rather,
they provide support for routing services within the
KRAFT domain. For example, performance monit-
oring is one of the routing support services which is
used by routing services to decide which service pro-
vider should be used, in situations where a user needs
one provider and there are several providers available.
The selection criteria will include their respective re-
liability and their “cost”. Other routing support ser-
vices include subscription services and service pro-
vider browsing.

Note that facilitation has been used to describe a number of
different roles in various projects [3, 15, 18]. In KSE, for
example, facilitators perform the functions of problem de-
composition, message routing and vocabulary translation,



not just message routings as we do in KRAFT. However, we
believe that having a specific facility within the KRAFT do-
main is advantageous. This is because it enhances “service
provider independence”. Without facilitators, any change
made to any of the service providers, such as a change of
physical address or a new provider signed onto KRAFT,
will have to be propagated to all potential users of those ser-
vices. Clearly, by using facilitators, such physical changes
are made transparent to users. Users can thereby request
services at a purely logical level.

Facilitators serve as the first contact point between the
wrapper of a user agent (UA) and other facilities within the
KRAFT domain, as shown in Figure 3. That is, a user re-
quest is always submitted to a facilitator first, via the UA
wrapper. If the submitted request requires a specific named
service, then a simple table look-up by the facilitator will
suffice and will return the required physical address of that
service. On the other hand, if a more general request is en-
countered, a facilitator will locate the relevant service(s) by
carrying out some inference and analysis. It should be noted
that this will potentially involve consulting ontologies. Note
also that although facilitators are expected to perform some
inference to locate service providers, they will not decom-
pose a given request or integrate partial results. If a given
problem needs to be decomposed before it can be solved,
then KRAFT assumes that a mediator exists to do this. So
the facilitator’s task in this case will be to locate a relev-
ant mediator. Of course, the mediator may use a facilitator
again in the process of solving the problem delegated to it,
as explained in Section 3.

Facilitators establish initial contacts between pairs of
KRAFT facilities; once contact has been established, the
facilitator “drops out” of the link, allowing the pair to com-
municate directly. The stages involved in this process are
illustrated in Figure 3, where we have a wrapped user agent
attempting to locate some service which, in this example, is
offered by a mediator. The fact that this example features a
wrapper contacting a mediator is not significant: the same
interaction could occur between any two kinds of KRAFT
facility. This explains why, within the KRAFT network,
there may be many-to-many communication links between
all kinds of facility.

4.2. Communication languages

In common with agent-based architectures [7], KRAFT
needs both a language implementing the protocol of com-
municating agents and a language expressing the actual in-
formation to be extracted, reused and fused.

In KRAFT, the Common Command and Query Lan-
guage (CCQL) is the external packaging of a message and
is defined by a set of performatives based upon a subset
of those used in KQML [7, 15] (e.g. ask, tell, deny,

error, register).
The KRAFT Constraint Interchange Format (CIF) is the

language carrying the actual information. In the current pro-
totype version, the language used is CoLan [5], a constraint-
based language, examples of which appear in Section 1.1.
As CoLan was not developed for this particular purpose,
it is being redesigned to ensure properties such as solution
compactness and semi-decidability of logical entailment. It
should be clear that a constraint language is an attractive ap-
proach when it comes to fusing knowledge because of the
partial nature of the information involved [2].

4.3. Wrappers

The above two languages are to be the Lingua Franca
and will be used universally within the KRAFT domain. To
achieve this, each external component that does not comply
with CCQL and CIF has to be “wrapped” by a dedicated
component, a wrapper. The issues involved in wrapping
vary greatly depending on the resources to be wrapped. As
we are currently using P/FDM databases as resources, the
wrapping procedure is syntactically straightforward; other
resources will be the subject of on-going research [1]. How-
ever, there are two major issues that a wrapper needs to
address besides mere syntactical translation. One issue is
the communication model supported: CCQL performatives
need to be mapped to requests that the resource is able to
fulfil. The other issue is the ontological problem: there may
be significant mis-matches between the ontology underly-
ing a message and that underlying a given resource. This is
the subject of the next section.

5. Ontologies in KRAFT

Sharing knowledge between resources requires not only
agreement on protocols and formats as described above: it
also requires agreement on the specification of the content
of the knowledge to be shared. Any formalised body of
knowledge will embody, implicitly if not explicitly, a con-
ceptualisation of the domain with which its knowledge is
concerned. By a “conceptualisation” we understand “the
objects, concepts and other entities that are assumed to ex-
ist in some area of interest and the relationships which hold
between them” [8]. Two resources can share knowledge
only to the extent that they share the conceptualisation: in
the extreme case, if one resource has no concept of a par-
ticular kind of object, knowledge about such objects will be
meaningless to it.

Of course, it would be possible simply to assume — or
hope — that the conceptualisations are sufficiently in har-
mony to permit knowledge sharing. But any such assump-
tion would be dangerous. In order to have any guarantee



UA

F

MW

UA’s wrapper
asks F to find
some service.

1.

UA

F

MW

F locates and 
"pings"
appropriate
mediator.

2.

UA

F

MW

F informs W
of M’s location.

3.

UA

F

MW

W and M
communicate
directly.

4.

Figure 3. How a facilitator initiates contact between a wrapper and a mediator.

that our hopes are fulfilled, we need to have a precise state-
ment of what the conceptualisation of a given resource is.
Recently such an explicit specification of a domain concep-
tualisation has become known as an “ontology” — largely
through the work of Gruber (for example, [11]). In spe-
cifying the conceptualisation, the ontology will determine
the vocabulary to be used by the resource to which it be-
longs. Given an ontology it is possible to make an ontolo-
gical commitment, which Gruber explains as an agreement
“to use a vocabulary (i.e. ask queries and make assertions)
in a way that is consistent (but not complete) with respect to
the theory specified by an ontology” [12]. Provided two re-
sources make the same ontological commitments they will
be speaking the same language, and so be in a position to
share knowledge. Provided they have an explicit ontology,
the harmony of their commitments can be determined.

Note that it is not necessary for the resources to have
identical ontologies: all that is required is that they make
the same commitments with respect to the knowledge be-
ing shared. Thus two resources may both have the concept
of number, but one may refine this concept into primes and
composite numbers, and the other into even numbers and
odd numbers. The resources both commit to the concept of
number and can exchange knowledge about numbers, even
though the more particular knowledge about kinds of num-
bers that they may have is incommunicable.

Once we recognise that different ontologies may non-
etheless make the same ontological commitments, we open
up the possibility of translation from the language of one re-
source to another. In the simplest case a lexical substitution
may be all that is needed. For example if one resource has
the concept of even-numbers and another numbers-exactly-

divisible-by-two, we can simply substitute the appropriate
term to make statements about this concept mutually in-
telligible. In other cases the translation might not be bid-
irectional: if one resource has the concept of even-numbers
and another powers-of-two, statements about even-numbers
will be true of powers-of-two, but not necessarily vice versa.
The process of translation requires the identification of mis-
matches between ontologies, and the provision of functions
to convert statements made using one vocabulary to state-
ments using the other. For a full discussion of types of mis-
match and their implications for translation see [20].

Now the aim of KRAFT is not simply to allow two re-
sources to share knowledge, but to provide for an extensible
federation of resources, each potentially with its own con-
ceptualisation, and hence its own ontology. The following
strategies are possible:

1. We could stipulate a single KRAFT ontology which
would be adopted by all the resources that wished
to use the KRAFT network. While this would make
things very easy by obviating any need for translation,
it is clearly too inflexible. Resources may well need
to express things peculiar to themselves, and make
ontological commitments which are neither necessary
nor desirable for the other resources. Moreover, the
task of converting an existing resource to use only the
common ontology would make the entry cost to the
KRAFT network prohibitive.

2. At the other extreme there would be no shared on-
tology: each resource would have its own ontology
and be capable of translation into the ontologies of the
other resources with which it shared knowledge. While



this maximises potential knowledge sharing, it would
seem unmanageable for any substantial number of re-
sources. Moreover, the cost of bringing on a new re-
source, and needing to provide a translation to every
other resource would be prohibitive.

3. The third option is for there to be a single KRAFT on-
tology. Unlike (1), however, each resource would use
its own ontology, tailored to its specific needs, but with
a translation to the shared ontology provided. Such a
shared ontology would represent a kind of lowest com-
mon denominator. This seems to be the strategy en-
visaged by Gruber, and to underlie his criterion that
ontologies should make as few commitments as pos-
sible [12]. The drawback here is that the shared on-
tology will be the weakest theory, and hence will re-
strict knowledge sharing to knowledge which can be
expressed in that weakest theory. Moreover, creating
such an ontology, able to accommodate a wide, extens-
ible, range of ontologies, would be a difficult task.

4. The fourth option is for there to be small number of
shared ontologies recognised by the KRAFT network.
If we picture these ontologies as nodes in a directed
graph with translations as the edges, the graph must be
connected, and there must exist a path from each node
to every other node. Here each resource will use its
own ontology, and provide a translation to at least one
shared ontology. Resources may now communicate
through the most appropriate shared ontology, allow-
ing ontologies with many commitments in common to
share richer knowledge than those which must rely on
the weakest ontology.

It is the fourth strategy that we will be exploring in the
KRAFT project, since it seems to provide the best com-
promise between keeping the number of translations re-
quired to a manageable level without being over restrictive
as to the knowledge that can be shared.

Within the KRAFT architecture, domain ontology trans-
lation is performed by a dedicated mediator (the ontology
mediator). If other mediators require an ontology transla-
tion, they pass the expression to be translated, together with
the source and target ontologies, to the ontology mediator
which will return the translated expression.

The above all relates to an ontology specifying the con-
ceptualisation of domain knowledge. In addition KRAFT
will require some other types of ontology. In particular, if
facilitators are to be able to select appropriate resources, the
capabilities of the various resources must be communicated
to them. This will require some common understanding of
the various capabilities present in the resources: we feel that
this will be best described through a task ontology.

6. Current Status and Future Plans

We have implemented an early prototype of the system,
distributed among the project sites and incorporating rudi-
mentary mediators and facilitators. The prototype is written
in Prolog, using a socket interface for communication [13].
Prolog term structures provide an easily extensible syntax
for the current message formats, and Prolog is well suited
to doing much of the knowledge transformation work itself.

The initial version of the CCQL protocol is based on
a subset of KQML. The choice of a CIF language for in-
terchanging constraints, based on predicates and functions
over an object data model, is working well. It allows us
to use known mathematical equivalences which guarantee
soundness in constraint transformation, while giving a great
deal of generality for modelling different kinds of constraint
information.

We have brought a database perspective to the original
KSE proposal by our use of an object data model to express
the knowledge. Thus, we have concentrated on knowledge
that can be related to stored data. Although this excludes
abstract knowledge of a more literary or philosophical kind,
it does allow us to build on the success of entity-relationship
models, which are widely used in business data processing
systems. The object data model also ties in easily with
frame-based knowledge representations used in many ex-
pert systems, but excludes the direct modelling of proced-
ural knowledge and triggered rules, as used in these sys-
tems. Instead, constraints express the abstract knowledge
which would otherwise be hard-coded into procedures and
rules. Having the knowledge in the form of constraints fa-
cilitates its transformation.

There are interesting issues in adapting query optimisa-
tion techniques for distributed queries to make use of con-
straints; we have encountered some of these in our proto-
type and they will be the subject of a future paper, as will
the work on constraint solving.

The most immediate issues concerning the architecture
are the design of the wrappers and the representation of on-
tologies. The domain of the current KRAFT prototype con-
cerns information about the course regulations and degree
requirements of the three universities involved in KRAFT.
The idea is to deal with problems such as the eligibility of
a student to transfer from one university to another, based
on course records to date. This exercise has revealed how
often we make implicit assumptions which need to be co-
dified in an ontology. It has also led to a classification of
various types of mismatch which can occur between one
ontology and another. Finally it has encouraged the adop-
tion of a number of shared ontologies as alternative targets
for knowledge fusion (Section 5).

We now need to see how to represent and use this onto-
logical knowledge so that constraint transformations can be



carried out by wrappers and mediators. Our current (proto-
type) domain has demonstrated that often information about
a domain is not explicitly recorded and is subject to user in-
terpretation. We are now investigating alternative domains,
such as that of the design example given earlier, to study the
implications of our approach in a range of different scen-
arios.

KRAFT is an ongoing collaborative project between re-
search teams at three UK universities (Aberdeen, Cardiff
and Liverpool) and a leading international telecommunica-
tions company (BT). This partnership of academia and in-
dustry is generating a strong focus on strategic issues of
knowledge base interoperability which we expect will lead
to a wide variety of significant results.

References

[1] W. Behrendt, M. Ashwell, N. Fiddian, and W. Gray. Mi-
gration tools for heterogeneous databases in wide-area net-
works. In Proceedings of 6th Workshop on Information
Technologies and Systems (WITS’96), pages 21–30, 1996.

[2] U. M. Borghoff, R. Pareschi, H. Karch, M. Nöhmeier, and
J. H. Schlichter. Constraint-based information gathering for
a network publication system. In Proc. 1st Int. Conf. on the
Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM’96) London, U.K., pages 45–59, April
1996.

[3] N. Consortium. Reference architecture for the intelligent
integration of information. Technical report, NIIIP Consor-
tium, November 1995.

[4] S. Deen. The ANSI/SPARC Architecture and its Implement-
ation in PRECI. In P. Stocker, P. Gray, and M. Atkinson, ed-
itors, Databases — Role and Structure, pages 93–104. Cam-
bridge University Press, 1984.

[5] S. Embury and P. Gray. Compiling a Declarative, High-
Level Language for Semantic Integrity Constraints. In
R. Meersman and L. Mark, editors, Proceedings of 6th
IFIP TC-2 Working Conference on Data Semantics, Atlanta,
USA, May 1995. Chapman and Hall.

[6] G. Fahl, T. Risch, and M. Sköld. AMOS — an Architec-
ture for Active Mediators. In Proc. Workshop on Next Gen-
eration Information Technologies and Systems (NGITS’93),
Haifa, Israel, June 1993.

[7] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML
as an Agent Communication Language. In Proceedings of
Third International Conference on Information and Know-
ledge Management (CIKM’94). ACM Press, 1994.

[8] M. R. Genesereth and N. Nilsson. Logical Foundations of
Artificial Intelligence. Morgan Kaufmann, San Mateo, CA,
1987.

[9] P. Gray. Knowledge Re-Use through Networks of Large
KBS. In D. Bowers, editor, Directions in Databases:
Proc. 12th British National Conference on Databases, BN-
COD’12, pages 13–22. Springer-Verlag, 1994.

[10] P. Gray. Large Databases and Knowledge Re-use. In I. Wand
and R. Milner, editors, Computing Tomorrow, pages 110–
126. Cambridge University Press, 1996.

[11] T. Gruber. The role of a common ontology in achieving shar-
able, reusable knowledge bases. In J. A. Allen, R. Fikes,
and E. Shandwell, editors, Principles of Knowledge Repres-
entation and Reasoning: Proceedings of the Second Inter-
national Conference, Cambridge, MA., Morgan Kaufmann,
1991.

[12] T. Gruber. Towards principles for the design of ontolo-
gies used for knowledge sharing. International Journal of
Human-Computer Studies, 43:907–928, 1995.

[13] K. Hui. A Socket Library for Network Communication in
Prolog. Technical Report AUCS/TR9703, University of Ab-
erdeen, Department of Computing Science, Mar. 1997.

[14] J. King. Query Optimisation by Semantic Reasoning. UMI
Research Press, 1984.

[15] Y. Labrou. Semantics for an Agent Communication Lan-
guage. PhD Thesis, Baltimore, Maryland, 1996.

[16] L. Liu, C. Pu, and Y. Lee. An Adaptive Approach to Query
Mediation across Heterogeneous Information Sources. In
Proceedings of 1st IFCIS International Conference on Co-
operative Information Systems (CoopIS’96), pages 144–
156, Brussels, Belgium, June 1996. IEEE Computer Society
Press.

[17] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Sen-
atir, and W. Swartout. Enabling Technology for Knowledge
Sharing. AI Magazine, 12(3):36–56, Fall 1991.

[18] N. Singh, M. Genesereth, and M. Syed. A distributed and
anonymous knowledge sharing approach to software inter-
operation. International Journal of Cooperative Information
Systems, 4(4):339–367, 1995.

[19] P. Van Hentenryck. Constraint Satisfaction in Logic Pro-
gramming. MIT Press, 1989.

[20] P. R. S. Visser, D. M. Jones, T. J. M. Bench-Capon, and
M. J. R. Shave. Analysis of ontology mismatches. In AAAI
Spring Symposium on Ontological Engineering, 1997.

[21] G. Wiederhold. Intelligent Integration of Diverse Informa-
tion. In T. Finin, C. Nichola, and Y. Yesha, editors, First
International Conference on Information and Knowledge
Management, Baltimore, USA, Nov. 1992.

[22] G. Wiederhold. Mediators in the Architecture of Future
Information Systems. IEEE Computer, 25(3):38–49, Mar.
1992.

[23] G. Wiederhold. Mediation and Software Maintenance.
Technical Report STAN-CS-TN-95-26, University of Stan-
ford, 1995.

[24] G. Wiederhold. Value-Added Mediation in Large Scale In-
formation Systems. In R. Meersman and L. Mark, editors,
Proceedings of 6th IFIP TC-2 Working Conference on Data
Semantics, Atlanta, USA, May 1995. Chapman and Hall.

[25] G. Wiederhold and M. Genesereth. The Basis for Mediation.
In S. Laufmann, S. Spaccapietra, and T. Yokoi, editors, Pro-
ceedings of 3rd International Conference on Cooperative In-
formation Systems (CoopIS-95), Vienna, Austria, May 1995.


